首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
With the exceptions of Bacillus cereus and Bacillus anthracis, Bacillus species are generally perceived to be inconsequential. However, the relevance of other Bacillus species as food poisoning organisms and etiological agents in nongastrointestinal infections is being increasingly recognized. Eleven Bacillus species isolated from veterinary samples associated with severe nongastrointestinal infections were assessed for the presence and expression of diarrheagenic enterotoxins and other potential virulence factors. PCR studies revealed the presence of DNA sequences encoding hemolysin BL (HBL) enterotoxin complex and B. cereus enterotoxin T (BceT) in five B. cereus strains and in Bacillus coagulans NB11. Enterotoxin HBL was also harbored by Bacillus polymyxa NB6. After 18 h of growth in brain heart infusion broth, all seven Bacillus isolates carrying genes encoding enterotoxin HBL produced this toxin. Cell-free supernatant fluids from all 11 Bacillus isolates demonstrated cytotoxicity toward human HEp-2 cells; only one Bacillus licheniformis strain adhered to this test cell line, and none of the Bacillus isolates were invasive. This study constitutes the first demonstration that Bacillus spp. associated with serious nongastrointestinal infections in animals may harbor and express diarrheagenic enterotoxins traditionally linked to toxigenic B. cereus.  相似文献   

2.
Forty-seven strains representing 14 different Bacillus species isolated from clinical and food samples were grown in reconstituted infant milk formulae (IMF) and subsequently assessed for adherence to, invasion of, and cytotoxicity toward HEp-2 and Caco-2 cells. Cell-free supernatant fluids from 38 strains (81%) were shown to be cytotoxic, 43 strains (91%) adhered to the test cell lines, and 23 strains (49%) demonstrated various levels of invasion. Of the 21 Bacillus cereus strains examined, 5 (24%) were invasive. A larger percentage of clinically derived Bacillus species (20%) than of similar species tested from the food environment were invasive. Increased invasion occurred after growth of selected Bacillus species in reconstituted IMF containing glucose. While PCR primer studies revealed that many different Bacillus species contained DNA sequences encoding the hemolysin BL (HBL) enterotoxin complex and B. cereus enterotoxin T, not all of these isolates expressed these diarrheagenic genes after growth in reconstituted IMF. Of the 47 Bacillus isolates examined, 3 isolates of B. cereus and 1 isolate of B. subtilis produced the HBL enterotoxin after 18 h of growth in brain heart infusion broth. However, eight isolates belonging to the species B. cereus, B. licheniformis, B. circulans, and B. megaterium were found to produce this enterotoxin after growth in reconstituted IMF when assessed with the B. cereus enterotoxin (diarrheal type) reversed passive latex agglutination (RPLA) kit. It is concluded that several Bacillus species occurring occasionally in clinical specimens and food samples are of potential medical significance due to the expression of putative virulence factors.  相似文献   

3.
The prevalence of the hemolytic enterotoxin complex HBL was determined in all species of the Bacillus cereus group with the exception of Bacillus anthracis. hblA, encoding the binding subunit B, was detected by PCR and Southern analysis and was confirmed by partial sequencing of 18 strains. The sequences formed two clusters, one including B. cereus and Bacillus thuringiensis strains and the other one consisting of Bacillus mycoides, Bacillus pseudomycoides, and Bacillus weihenstephanensis strains. From eight B. thuringiensis strains, the enterotoxin gene hblA could be amplified. Seven of them also expressed the complete HBL complex as determined with specific antibodies against the L1, L2, and B components. Eleven of 16 B. mycoides strains, all 3 B. pseudomyoides strains, 9 of 15 B. weihenstephanensis strains, and 10 of 23 B. cereus strains carried hblA. While HBL was not expressed in the B. pseudomycoides strains, the molecular assays were in accordance with the immunological assays for the majority of the remaining strains. In summary, the hemolytic enterotoxin HBL seems to be broadly distributed among strains of the B. cereus group and relates neither to a certain species nor to a specific environment. The consequences of this finding for food safety considerations need to be evaluated.  相似文献   

4.
Artisanal and industrial sausages were analyzed for their aerobic, heat-resistant microflora to assess whether new emerging pathogens could be present among Bacillus strains naturally contaminating cured meat products. Sixty-four isolates were characterized by randomly amplified polymorphic DNA (RAPD)-PCR and fluorescent amplified fragment length polymorphism (fAFLP). The biotypes, identified by partial 16S rRNA gene sequence analysis, belonged to Bacillus subtilis, Bacillus pumilus, and Bacillus amyloliquefaciens species. Both RAPD-PCR and fAFLP analyses demonstrated that a high genetic heterogeneity is present in the B. subtilis group even in strains harvested from the same source, making it possible to isolate 56 different biotypes. Moreover, fAFLP analysis made it possible to distinguish B. subtilis from B. pumilus strains. The strains were characterized for their toxigenic potential by molecular, physiological, and immunological techniques. Specific PCR analyses revealed the absence of DNA sequences related to HBL, BcET, NHE, and entFM Bacillus cereus enterotoxins and the enzymes sphingomyelinase Sph and phospholipase PI-PLC in all strains; also, the immunological analyses showed that Bacillus strains did not react with NHE- and HBL-specific antibodies. However, some isolates were found to be positive for hemolytic and lecithinase activity. The absence of toxigenic potential in Bacillus strains from the sausages analyzed indicates that these products can be considered safe under the processing conditions they were produced; however, great care should be taken when the ripening time is shortened, particularly in the case of traditional sausages, which could contain high amounts of Bacillus strains and possibly some B. cereus cells.  相似文献   

5.
A Rapid PCR-Based DNA Test for Enterotoxic Bacillus cereus   总被引:6,自引:0,他引:6       下载免费PDF全文
The occurrence of DNA sequences encoding the hemolysin HblA complex and Bacillus cereus enterotoxin BceT, which have recently been confirmed as enterotoxins, was studied in Bacillus spp. To amplify these DNA sequences, PCR primer systems for the B component of hblA and for bceT DNA sequences were developed. The results from the amplification of hblA sequences correlated well with results obtained with the B. cereus enterotoxin (diarrheal type) test kit (RPLA kit), but not with the results of the Bacillus diarrheal enterotoxin visual immunoassay (BDE kit). Except for two thermophilic strains, all strains that were positive in PCR amplification assays with the hblA primers were also positive when tested with the RPLA kit. The hblA DNA sequence was found in 33 strains, and these strains were closely related according to 16S rDNA-RFLP analysis, except B. pasteurii. In PCR amplifications with the bceT primers only the model strain gave a positive signal. It is concluded that screening of the hemolysin HblA complex by the PCR method allows faster detection of enterotoxin production than does testing with the RPLA enterotoxin kit.  相似文献   

6.
Many strains of Bacillus cereus cause gastrointestinal diseases, and the closely related insect pathogen B. thuringiensis has also been involved in outbreaks of diarrhea. The diarrheal types of diseases are attributed to enterotoxins. Two different enterotoxic protein complexes, hemolysin BL (HBL) and nonhemolytic enterotoxin (NHE), and an enterotoxic protein, enterotoxin T, have been characterized, and the genes have been sequenced. PCR primers for the detection of these genes were deduced and used to detect the genes in 22 B. cereus and 41 B. thuringiensis strains. At least one gene of each of the two protein complexes HBL and NHE was detected in all of the B. thuringiensis strains, while six B. cereus strains were devoid of all three HBL genes, three lacked at least two of the three NHE genes, and one lacked all three. Five different sets of primers were used for detection of the gene (bceT) encoding enterotoxin T. The results obtained with these primer sets indicate that bceT is widely distributed among B. cereus and B. thuringiensis strains and that the gene varies in sequence among different strains. PCR with the two primer sets BCET1-BCET3 and BCET1-BCET4 unambiguously detected the bceT gene, as confirmed by Southern analysis. The occurrence of the genes within the two complexes is significantly associated, while neither the occurrence of the two complexes nor the occurrence of the bceT gene is significantly associated in the 63 strains. We suggest an approach for detection of enterotoxin-encoding genes in B. cereus and B. thuringiensis based on PCR analysis with the six primer sets for the detection of genes in the HBL and NHE operons and with the BCET1, BCET3, and BCET4 primers for the detection of bceT. PCR analysis of the 16S-23S rRNA gene internal transcribed spacer region revealed identical patterns for all strains studied.  相似文献   

7.
Forty-seven strains representing 14 different Bacillus species isolated from clinical and food samples were grown in reconstituted infant milk formulae (IMF) and subsequently assessed for adherence to, invasion of, and cytotoxicity toward HEp-2 and Caco-2 cells. Cell-free supernatant fluids from 38 strains (81%) were shown to be cytotoxic, 43 strains (91%) adhered to the test cell lines, and 23 strains (49%) demonstrated various levels of invasion. Of the 21 Bacillus cereus strains examined, 5 (24%) were invasive. A larger percentage of clinically derived Bacillus species (20%) than of similar species tested from the food environment were invasive. Increased invasion occurred after growth of selected Bacillus species in reconstituted IMF containing glucose. While PCR primer studies revealed that many different Bacillus species contained DNA sequences encoding the hemolysin BL (HBL) enterotoxin complex and B. cereus enterotoxin T, not all of these isolates expressed these diarrheagenic genes after growth in reconstituted IMF. Of the 47 Bacillus isolates examined, 3 isolates of B. cereus and 1 isolate of B. subtilis produced the HBL enterotoxin after 18 h of growth in brain heart infusion broth. However, eight isolates belonging to the species B. cereus, B. licheniformis, B. circulans, and B. megaterium were found to produce this enterotoxin after growth in reconstituted IMF when assessed with the B. cereus enterotoxin (diarrheal type) reversed passive latex agglutination (RPLA) kit. It is concluded that several Bacillus species occurring occasionally in clinical specimens and food samples are of potential medical significance due to the expression of putative virulence factors.  相似文献   

8.
A total of five hybridoma cell lines that produced monoclonal antibodies against the components of the hemolysin BL (HBL) enterotoxin complex and sphingomyelinase produced by Bacillus cereus were established and characterized. Monoclonal antibody 2A3 was specific for the B component, antibodies 1A12 and 8B12 were specific for the L2 component, and antibody 1C2 was specific for the L1 protein of the HBL enterotoxin complex. No cross-reactivity with other proteins produced by different strains of B. cereus was observed for monoclonal antibodies 2A3, 1A12, and 8B12, whereas antibody 1C2 cross-reacted with an uncharacterized protein of approximately 93 kDa and with a 39-kDa protein, which possibly represents one component of the nonhemolytic enterotoxin complex. Antibody 2A12 finally showed a distinct reactivity with B. cereus sphingomyelinase. The monoclonal antibodies developed in this study were also successfully applied in indirect enzyme immunoassays for the characterization of the enterotoxic activity of B. cereus strains. About 50% of the strains tested were capable of producing the HBL enterotoxin complex, and it could be demonstrated that all strains producing HBL were also highly cytotoxic.  相似文献   

9.
Members of the Bacillus genus are ubiquitous soil microorganisms and are generally considered harmless contaminants. However, a few species are known toxin producers, including the foodborne pathogen, B. cereus. This species produces two distinct types of foodborne illness, the emetic (vomit-inducing) syndrome, associated with consumption of toxin in cooked rice dishes, and the diarrheal illness seen occasionally following consumption of contaminated meats, sauces, and certain dairy products. In the latter case, illness results from the production of enterotoxins by vegetative cells in the small intestine of the host. In dairy products, the occurrence of Bacillus spp. is inevitable, and the spore-forming ability of this organism allows it to easily survive pasteurization. Many strains have been shown to grow and produce enterotoxin in dairy products at refrigeration temperatures. Evaluation of toxin gene presence and toxin expression in Bacillus spp. other than B. cereus has not been thoroughly investigated. However, the presence of natural isolates of Bacillus spp. harboring one or more enterotoxin gene(s) and subsequent demonstration of conditions which may support toxin expression holds crucial importance in the food safety arena.  相似文献   

10.
The major part (94%) of the Bacillus cereus-like isolates from a Danish sandy loam are psychrotolerant Bacillus weihenstephanensis according to their ability to grow at temperatures below 7 °C and/or two PCR-based methods, while the remaining 6% are B. cereus. The Bacillus mycoides-like isolates could also be␣divided into psychrotolerant and mesophilic isolates. The psychrotolerant isolates of B. mycoides could␣be discriminated from the mesophilic by the two PCR-based methods used to characterize B.␣weihenstephanensis. It is likely that the mesophilic B. mycoides strains are synonymous with Bacillus pseudomycoides, while psychrotolerant B. weihenstephanensis, like B. mycoides, are B. mycoides senso stricto. B. cereus is known to produce a number of factors, which are involved in its ability to cause gastrointestinal and somatic diseases. All the B. cereus-like and B. mycoides like isolates from the sandy loam were investigated by PCR for the presence of 12 genes encoding toxins. Genes for the enterotoxins (hemolysin BL and nonhemolytic enterotoxin) and the two of the enzymes (cereolysin AB) were present in the major part of the isolates, while genes for phospolipase C and hemolysin III were present in fewer isolates, especially among B. mycoides like isolates. Genes for cytotoxin K and the hemolysin II were only present in isolates affiliated to B. cereus. Most of the mesophilic B. mycoides isolates did not possess the genes for the nonhemolytic enterotoxin and the cereolysin AB. The presence of multiple genes coding for virulence factors in all the isolates from the B. cereus group suggests that all the isolates from the sandy loam are potential pathogens.  相似文献   

11.
The toxigenic potential of Bacillus species isolated from the traditional fermented condiment okpehe was determined; this is aimed at selection of non-toxigenic bacilli as starter cultures to bring about production of safe product. B. subtilis and B. cereus strains isolated from okpehe were evaluated for their possible possession of virulence characteristics. Fifty isolates were screened for their ability to produce diarrhoea enterotoxin by reversed passive latex agglutination (BCET-RPLA) test kit; the result showed that 40% of the B. cereus strains were toxigenic. The ability of the selected isolates to compete in situ and in vitro toxin production during the fermentation was also determined. The enterotoxin was not detected using BCET-RPLA kit in the spontaneously fermented samples of okpehe, but the toxin was detected in the okpehe samples fermented using B. cereus enterotoxin producer in mixed starter culture fermentation. The PCR amplification of virulence genes revealed that Bacillus cereus and B. licheniformis, a strain from the B. subtilis group, contained DNA sequences encoding the haemolysin BL (hblD) enterotoxin complex. The growth ability of B. cereus strains to high population during the fermentation and the presence of detectable diarroheagenic genes in B. cereus and B. licheniformis showed that strains carrying virulence characteristics cannot be totally ruled out in traditionally fermented okpehe.  相似文献   

12.
13.
Food poisoning laboratories identify Bacillus cereus using routine methods that may not differentiate all Bacillus cereus group species. We recharacterized Bacillus food-poisoning strains from 39 outbreaks and identified B. cereus in 23 outbreaks, B. thuringiensis in 4, B. mycoides in 1, and mixed strains of Bacillus in 11 outbreaks.  相似文献   

14.
One hundred twenty-one strains of the Bacillus cereus complex, of which 80 were isolated from a variety of sources in Brazil, were screened by PCR for the presence of sequences (bceT, hblA, nheBC, plc, sph, and vip3A) encoding putative virulence factors and for polymorphisms in variable-number tandem repeats (VNTR), using a variable region of the vrrA open reading frame as the target. Amplicons were generated from isolates of B. cereus and Bacillus thuringiensis for each of the sequences encoding factors suggested to play a role in infections of mammals. Intriguingly, the majority of these sequences were detected more frequently in Bacillus thuringiensis than in B. cereus. The vip3A sequence, which encodes an insecticidal toxin, was detected exclusively in B. thuringiensis. VNTR analysis demonstrated the presence of five different fragment length categories in both species, with two of these being widely distributed throughout both taxa. In common with data generated from previous studies examining European, Asian, or North American populations, our investigation of Brazilian isolates supports the notion that B. cereus and B. thuringiensis should be considered to represent a single species.  相似文献   

15.
Bacillus cereus is an opportunistic human pathogen responsible for food poisoning and other, nongastrointestinal infections. Due to the emergence of multidrug-resistant B. cereus strains, the demand for alternative therapeutic options is increasing. To address these problems, we isolated and characterized a Siphoviridae virulent phage, PBC1, and its lytic enzymes. PBC1 showed a very narrow host range, infecting only 1 of 22 B. cereus strains. Phylogenetic analysis based on the major capsid protein revealed that PBC1 is more closely related to the Bacillus clarkii phage BCJA1c and phages of lactic acid bacteria than to the phages infecting B. cereus. Whole-genome comparison showed that the late-gene region, including the terminase gene, structural genes, and holin gene of PBC1, is similar to that from B. cereus temperate phage 250, whereas their endolysins are different. Compared to the extreme host specificity of PBC1, its endolysin, LysPBC1, showed a much broader lytic spectrum, albeit limited to the genus Bacillus. The catalytic domain of LysPBC1 when expressed alone also showed Bacillus-specific lytic activity, which was lower against the B. cereus group but higher against the Bacillus subtilis group than the full-length protein. Taken together, these results suggest that the virulent phage PBC1 is a useful component of a phage cocktail to control B. cereus, even with its exceptionally narrow host range, as it can kill a strain of B. cereus that is not killed by other phages, and that LysPBC1 is an alternative biocontrol agent against B. cereus.  相似文献   

16.
Enterotoxin production is a key factor in Bacillus cereus food poisoning. Herein, the effect of the growth rate (μ) on B. cereus toxin production when grown on sucrose was studied and the Hemolytic BL enterotoxin (HBL) and nonhemolytic enterotoxin (Nhe) production by B. cereus was compared according to carbohydrate at μ = 0.2 h−1. The anaerobic growth was carried out on continuous cultures in synthetic medium supplemented with glucose, fructose, sucrose, or an equimolar mixture of glucose and fructose. Concerning the HBL and Nhe enterotoxin production: (1) the highest enterotoxin production has occurred at μ = 0.2 h−1 when growing on sucrose; (2) HBL production was repressed when glucose was consumed and the presence of fructose (alone or in mixture) cancelled glucose catabolite repression; (3) the consumption of sucrose increased Nhe production, which was not affected by the catabolite repression. Furthermore, analysis of the fermentative metabolism showed that whatever the μ or the carbon source, B. cereus used the mixed acid fermentation to ferment the different carbohydrates. The enterotoxin productions by this strain at μ = 0.2 h−1 are highly influenced by the carbohydrates that do not involve any fermentative metabolism changes.  相似文献   

17.
Characterization of Bacillus Probiotics Available for Human Use   总被引:4,自引:0,他引:4       下载免费PDF全文
Bacillus species (Bacillus cereus, Bacillus clausii, Bacillus pumilus) carried in five commercial probiotic products consisting of bacterial spores were characterized for potential attributes (colonization, immunostimulation, and antimicrobial activity) that could account for their claimed probiotic properties. Three B. cereus strains were shown to persist in the mouse gastrointestinal tract for up to 18 days postadministration, demonstrating that these organisms have some ability to colonize. Spores of one B. cereus strain were extremely sensitive to simulated gastric conditions and simulated intestinal fluids. Spores of all strains were immunogenic when they were given orally to mice, but the B. pumilus strain was found to generate particularly high anti-spore immunoglobulin G titers. Spores of B. pumilus and of a laboratory strain of B. subtilis were found to induce the proinflammatory cytokine interleukin-6 in a cultured macrophage cell line, and in vivo, spores of B. pumilus and B. subtilis induced the proinflammatory cytokine tumor necrosis factor alpha and the Th1 cytokine gamma interferon. The B. pumilus strain and one B. cereus strain (B. cereus var. vietnami) were found to produce a bacteriocin-like activity against other Bacillus species. The results that provided evidence of colonization, immunostimulation, and antimicrobial activity support the hypothesis that the organisms have a potential probiotic effect. However, the three B. cereus strains were also found to produce the Hbl and Nhe enterotoxins, which makes them unsafe for human use.  相似文献   

18.
In a study of occupational exposure to Bacillus thuringiensis, 20 exposed greenhouse workers were examined for Bacillus cereus-like bacteria in fecal samples and on biomonitoring filters. Bacteria with the following characteristics were isolated from eight individuals: intracellular crystalline inclusions characteristic of B. thuringiensis, genes for and production of B. cereus enterotoxins, and positivity for cry11 as determined by PCR. DNA fingerprints of the fecal isolates were identical to those of strains isolated from the commercial products used. Work processes (i.e., spraying) correlated with the presence of B. thuringiensis in the fecal samples (102 to 103 CFU/g of feces). However, no gastrointestinal symptoms correlated with the presence of B. thuringiensis in the fecal samples.  相似文献   

19.
Raw minced meat samples (25) were randomly collected from different slaughterhouses in Dakhlia and Sharkyia Governorates, Egypt. One hundred and fifty Bacillus species related to the cereus group were isolated from the collected meat samples using Mannitol Yolk Polymyxin (MYP) agar plates. Purified bacterial cultures were then tested for their virulence factors with respect to hemolysin, protease and lecithinase. Of the tested Bacillus strains (150), 81, 95.3 and 76 % of total tested Bacillus strains were positive for hemolysin, protease and lecithinase tests, respectively. The identity of one of the most potent strains suspected and encoded as Bacillus cereus F23 was confirmed by amplifying its 16S rRNA gene. The partial nucleotide sequence of the amplified 16S rRNA gene of the tested strain was submitted to GenBank with accession number JX455159. Multiplex PCR amplification of enterotoxin genes in the tested strain, using specific primers, yielded amplicons of molecular sizes 695 and 565 bp for enterotoxins hblC and cytK, respectively. Thermal resistance of B. cereus F23 (JX455159) spores was determined by calculating D values at 65, 75, 85 and 95 °C for 36, 25, 19 and 16 min, respectively, and the calculated Z value was recorded as 0.119 °C. A lactic acid bacteria (LAB) strain isolated from pickles was preliminary identified as Lactobacillus plantarum F14 (LBF14) and later confirmed by detecting its 16S rRNA gene, and it was submitted to GenBank with accession number JX282192. The identified LAB strain was tested as a bioprotective agent against toxigenic B. cereus F23 spores both in minced meat samples and BHI broth medium. A reduction in B. cereus F23 population between 4 and 6 log cycles under different tested conditions was recorded. The activity of virulence factors (protease and lecithinase) decreased and hemolytic activity was completely inhibited in the presence of 103 CFU/ml of Lactobacillus plantarum F14 (JX282192). Inthe presence of 105 CFU/ml Lactobacillus plantarum F14 (JX282192), protease and lecithinase activities of B. cereus F23 were decreased by 85 and 71 %, respectively.  相似文献   

20.
DNA from over 300 Bacillus thuringiensis, Bacillus cereus, and Bacillus anthracis isolates was analyzed by fluorescent amplified fragment length polymorphism (AFLP). B. thuringiensis and B. cereus isolates were from diverse sources and locations, including soil, clinical isolates and food products causing diarrheal and emetic outbreaks, and type strains from the American Type Culture Collection, and over 200 B. thuringiensis isolates representing 36 serovars or subspecies were from the U.S. Department of Agriculture collection. Twenty-four diverse B. anthracis isolates were also included. Phylogenetic analysis of AFLP data revealed extensive diversity within B. thuringiensis and B. cereus compared to the monomorphic nature of B. anthracis. All of the B. anthracis strains were more closely related to each other than to any other Bacillus isolate, while B. cereus and B. thuringiensis strains populated the entire tree. Ten distinct branches were defined, with many branches containing both B. cereus and B. thuringiensis isolates. A single branch contained all the B. anthracis isolates plus an unusual B. thuringiensis isolate that is pathogenic in mice. In contrast, B. thuringiensis subsp. kurstaki (ATCC 33679) and other isolates used to prepare insecticides mapped distal to the B. anthracis isolates. The interspersion of B. cereus and B. thuringiensis isolates within the phylogenetic tree suggests that phenotypic traits used to distinguish between these two species do not reflect the genomic content of the different isolates and that horizontal gene transfer plays an important role in establishing the phenotype of each of these microbes. B. thuringiensis isolates of a particular subspecies tended to cluster together.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号