首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The migration of nonaqueous phase liquid (NAPL) contaminants in the subsurface results in a complex multiphase environment due in part to heterogeneity in both the soil and fluid saturations. To accurately predict the flow, transport, and remediation of NAPL contaminants, research has focused on laboratory and numerical modeling of the subsurface environment. Within this research, 2-D laboratory model are advantageous due to the fact that the capillary, viscous, and buoyancy forces found in the subsurface environment can be reproduced. Thus, they can be used to study flow and transport, test and develop remediation technologies, and verify numerical models. However, to date a comprehensive review of the 2-D experimental work has not been compiled. The review presented in this article should be of interest to geohydrologists, engineers and scientists involved in both applied and research aspects of NAPL-contaminated aquifers.  相似文献   

2.
A model is formulated to describe dissolution of naphthalene from an insoluble nonaqueous phase liquid (NAPL) and its subsequent biodegradation in the aqueous phase in completely mixed batch reactors. The physicochemical processes of equilibrium partitioning and mass transfer of naphthalene between the NAPL and aqueous phases were incorporated into the model. Biodegradation kinetics were described by Monod's microbial growth kinetic model, modified to account for the inhibitory effects of 1,2-naphthoquinone formed during naphthalene degradation under certain conditions. System parameters and biokinetic coefficients pertinent to the NAPL-water systems were determined either by direct measurement or from nonlinear regression of the naphthalene mineralization profiles obtained from batch reactor tests with two-component NAPLs comprised of naphthalene and heptamethylnonane. The NAPLs contained substantial mass of naphthalene, and naphthalene biodegradation kinetics were evaluated over the time required for near complete depletion of naphthalene from the NAPL. Model predictions of naphthalene mineralization time profiles compared favorably to the general trends observed in the data obtained from laboratory experiments with the two-component NAPL, as well as with two coal tars obtained from the subsurface at contaminated sites and composed of many different PAHs (polycyclic aromatic hydrocarbon compounds). The effects of varying the NAPL mass and the naphthalene mole fractions in the NAPL are discussed. It was observed that the time to achieve a given percent removal of naphthalene does not change significantly with the initial mass of naphthalene in a fixed volume of the NAPL. Significant changes in the mineralization profiles are observed when the volume (and mass) of NAPL in the system is changed.  相似文献   

3.
A finite element code was used for investigating the effect of some relevant characteristics of a phytoremediation project (crop type and density, presence of an irrigation system, soil capping and root depth). The evolution of the plume of contamination of Cd2+, Pb2+, and Zn2+ was simulated taking into account reactive transport and root processes. The plant contaminant uptake model was previously calibrated using data from greenhouse experiments. The simulations adopted pedological and climatological data representative of a sub-tropical environment. Although the results obtained were specific for the proposed scenario, it was observed that, for more mobile contaminants, poor water conditions favor stabilization but inhibit plant extraction. Otherwise an irrigation system that decreases crop water stress had an opposite effect. For less mobile contaminants, the remediation process did not have appreciable advantages. Despite its simplifying assumptions, particularly about contaminant sorption in the soil and plant system, the numerical analysis provided useful insight for the phytoextraction process important in view of field experiments.  相似文献   

4.
Intrinsic bioremediation in a solvent-contaminated alluvial groundwater   总被引:1,自引:0,他引:1  
An industrial site contaminated with a mixture of volatile organic compounds in its subsurface differed from previously reported locations in that the contamination consisted of a mixture of chlorinated, brominated, and non-halogenated aromatic and aliphatic solvents in an alluvial aquifer. The source area was adjacent to a river. Of the contaminants present in the aquifer, benzene, toluene, and chlorobenzene (BTC) were of primary concern. Studies of the physical, chemical, and microbiological characteristics of site groundwater were conducted. The studies concentrated on BTC, but also addressed the fate of the other aquifer VOCs. Gas chromatographic analyses performed on laboratory microcosms demonstrated that subsurface microorganisms were capable of BTC degradation. Mineralization of BTC was demonstrated by the release of 14CO2 from radiolabelled BTC. In the field, distribution patterns of nutrients and electron acceptors were consistent with expression of in situ microbial metabolic activity: methane, conductivity, salinity and o-phosphate concentrations were all positively correlated with contaminant concentration; while oxidation-reduction potential, nitrate, dissolved oxygen and sulfate concentrations were negatively correlated. Total aerobes, aerotolerant anaerobes, BTC-specific degraders, and acridine orange direct microscopic microorganism counts were strongly and positively correlated with field contaminant concentrations. The relative concentrations of benzene and toluene were lower away from the core of the plume compared to the less readily metabolized compound, chlorobenzene. Hydrodynamic modeling of electron-acceptor depletion conservatively estimated that 450 kg of contaminant have been removed from the subsurface yearly. Models lacking a biodegradation term predicted that 360 kg of contaminant would reach the river annually, which would result in measurable contaminant concentrations. River surveillance, however, has only rarely detected these compounds in the sediment and then only at trace concentrations. Thus, the combination of field modeling, laboratory studies, and site surveillance data confirm that significant in situ biodegradation of the contaminants has occurred. These studies establish the presence of intrinsic bioremediation of groundwater contaminants in this unusual industrial site subsurface habitat. Received 01 December 1995/ Accepted in revised form 27 July 1996  相似文献   

5.
Phytoremediation in Wetland Ecosystems: Progress,Problems, and Potential   总被引:1,自引:0,他引:1  
Assessing the phytoremediation potential of wetlands is complex due to variable conditions of hydrology, soil/sediment types, plant species diversity, growing season, and water chemistry. Conclusions about long-term phytoremediation potential are further complicated by the process of ecological succession in wetlands. This review of wetlands phytoremediation addresses the role of wetland plants in reducing contaminant loads in water and sediments, including metals; volatile organic compounds (VOC), pesticides, and other organohalogens; TNT and other explosives; and petroleum hydrocarbons and additives. The review focuses on natural wetland conditions and does not attempt to review constructed wetland technologies. Physico-chemical properties of wetlands provide many positive attributes for remediating contaminants. The expansive rhizosphere of wetland herbaceous shrub and tree species provides an enriched culture zone for microbes involved in degradation. Redox conditions in most wetland soil/sediment zones enhance degradation pathways requiring reducing conditions. However, heterogeneity complicates generalizations within and between systems. Wetland phytoremediation studies have mainly involved laboratory microcosm and mesocosm technologies, with the exception of planted poplar communities. Fewer large-scale field studies have addressed remediation actions by natural wetland communities. Laboratory findings are encouraging with regards to phytoextraction and degradation by rhizosphere and plant tissue enzymes. However, the next phase in advancing the acceptance of phytoremediation as a regulatory alternative must demonstrate sustained contaminant removal by intact natural wetland ecosystems.  相似文献   

6.
Contamination of soils and groundwater by chlorobenzene and benzene is a common problem at industrial sites worldwide. Since chemical remediation techniques are rarely completely effective, remnants of these contaminants often persist at levels that can still influence ecosystem health. We evaluated the potential of Pinus taeda and Eucalyptus urograndis to accelerate the removal of these compounds from sand/water systems using a completely randomized block greenhouse experiment with a no-plant control. At 2-day intervals, we added a solution containing both chlorobenzene and benzene with the same concentration of 50 mg L?1 (25 mg pot?1), and we monitored leachate concentrations daily. The planted treatments showed greater decrease of contaminants over time. In the absence of plants, the contaminant mass decreased 50–60% during each 2-day cycle; whereas, in the planted treatments the contaminant mass decreased 91–98%. At the end of the experiment the plant roots, leaves, and the sand-substrate each contained less than 1 mg kg?1 of contaminants, which is ~1% of the total contaminant mass added. In addition, we observed no tree mortality even at concentrations exceeding the aqueous solubility limit of both compounds. Our results suggest both trees are good candidates for remediating chlorobenzene and benzene in soils and groundwater.  相似文献   

7.
Polycyclic aromatic hydrocarbons (PAHs) are a group of organic nonaqueous‐phase liquid (NAPL) contaminants of critical environmental concern. The treatment method used for a contaminated soil depends primarily on the nature and extent of the contamination as well as the cost effectiveness of the method. Current research has shown that bioremediation is perhaps the simplest and most economic process for the treatment of large contaminated areas. Although bioremediation feasibility and effectiveness has been well documented, additional information is required to fully understand subsurface kinetics. Specifically, the importance and effect of interactions between bacteria, supplemental nutrients, oxygen source, contaminant, and soil type must be understood. Preliminary respirometer experiments have been conducted to address these factors for the development of a kinetic model for both steady‐state and unsteady‐state conditions.  相似文献   

8.
Phytoremediation is the use of plants for the removal of pollutants from contaminated soil or water. Phytoremediation is an environmentally friendly and cost-effective alternative to current remediation technologies. This review article outlines general aspects of phytoremediation, along with discussions about its advantages and limitations. It further reviews various phytoremediation processes in detail: phytoextraction, rhizofiltration, phytostabilization, phytodegradation, and phytovolatilization. Unlike previous review articles available in various journals, this paper presents a more comprehensive view of this issue, and deals with a much wider range of its applications to environmental pollution control. These include the treatment of wastewaters, removal of heavy metals and metalloids (e.g. lead and arsenic), phytoremediation of organic pollutants, such as 2,4,6-trinitrotoluene (TNT) and polychlorinated biphenyls (PCBs), and cleanup of soil and water contaminated with radionuclides, such as cesium (137Cs) and strontium (90Sr). This paper also describes recent developments of transgenic plants for improving phytoremediation. Along the way, the present status of phytoremediation research in Korea is briefly introduced. Finally, the article concludes with suggestions for future research.  相似文献   

9.
Microcosms were prepared with subsurface material from two aquifers to examine the effects of preparation methods on rates of toluene biodegradation under denitrifying conditions. In both cases, the data fit a zero-order kinetics plot. However, rates of removal were generally proportional to initial toluene concentrations, resulting in similar half-lives. Increasing the solid/liquid mass ratio resulted in decreased lag times in one aquifer material, although in both cases the specific toluene mass removal rate (g toluene g sediment −1 day−1) also decreased. Varying either the initial toluene concentrations or the solid/liquid ratios by two to three orders of magnitude resulted in a half-life variation of only a factor of two, with most of the differences occurring at the extreme ranges of the test variables. These data indicate that similar biodegradation rates might be expected from microcosms prepared with different contaminant concentrations and solid/liquid ratios, which is useful for design of microcosm studies to evaluate biodegradation at field sites. Received 14 March 1996/ Accepted in revised form 24 July 1996  相似文献   

10.
Pristine and energy-limited aquifers are considered to have a low resistance and resilience towards organic pollution. An experiment in an indoor aquifer system revealed an unexpected high intrinsic potential for the attenuation of a short-term toluene contamination. A 30 h pulse of 486 mg of toluene, used as a model contaminant, and deuterated water (D2O) through an initially pristine, oxic, and organic carbon poor sandy aquifer revealed an immediate aerobic toluene degradation potential. Based on contaminant and tracer break-through curves, as well as mass balance analyses and reactive transport modelling, a contaminant removal of 40 % over a transport distance of only 4.2 m in less than one week of travel time was obtained. The mean first-order degradation rate constant was λ = 0.178 day?1, corresponding to a half-life time constant T1/2 of 3.87 days. Toluene-specific stable carbon isotope analysis independently proved that the contaminant mass removal can be attributed to microbial biodegradation. Since average doubling times of indigenous bacterial communities were in the range of months to years, the aerobic biodegradation potential observed is assumed to be present and active in the pristine, energy-limited groundwater ecosystems at any time. Follow-up experiments and field studies will help to quantify the immediate natural attenuation potential of aquifers for selected priority contaminants and will try to identify the key-degraders within the autochthonous microbial communities.  相似文献   

11.
Hybrid poplar trees were exposed to eleven organic compounds in hydroponic systems. The eleven contaminants were common pollutants with a wide range of physio-chemical properties such as the octanol-water partition coefficient, Henry's constant, vapor pressure, and molecular weight. Contaminants, 14C-labeled, were introduced into the root zone, and contaminant transport and fate were examined. Aqueous concentrations were monitored throughout each experiment as was vapor phase concentrations in the air stream passing over the leaves. At experiment conclusion, plant tissues were oxidized to determine 14C concentrations. The uptake, distribution, and volatilization of these contaminants varied greatly among the 11 contaminants in the study. Uptake and translocation of the contaminants ranged from < 0.3% (of the applied 14C-labeled compound) for 1,2,4-trichlorobenzene to 20% for benzene. Volatile compounds were volatilized from the leaves. Volatilization in the transpiration stream was related to the vapor pressure of the compound. The fate and transport mechanisms investigated in this study provide valuable insight into the potential fate of contaminants in full-scale phytoremediation.  相似文献   

12.
Exposure to soil‐borne contaminants can occur through ingestion, inhalation and/or dermal absorption. A study was undertaken to assess the relative frequency with which dermal exposures are predicted to pose the greatest risk attributable to contaminated soils in Superfund risk assessments. Screening of over 200 risk assessments from the period 1989–1992 resulted in identification of 37 sites at which projected lifetime excess cancer risks attributed to dermal contact with soil were greater than the nominal regulatory threshold of 1.10‐4. At 19 of these sites, the dermal/soil pathway is estimated to contribute the largest carcinogenic risk associated with surface soil contamination, and may therefore drive cleanup of that medium. At 9 of the sites, the dermal/soil pathway is predicted to present a higher carcinogenic risk than any other pathway. Chemical contaminant type and estimates of soil adherence and surface area exposed appear to be the primary factors that distinguish sites at which dermal/soil pathway carcinogenic risk estimates are elevated relative to other exposure pathways. Quantification of exposure parameters, especially those related to behavior, remains a significant need.  相似文献   

13.
In some phytoremediation studies it is desirable to separate and define the specific contribution of plants and root-colonizing bacteria towards contaminant removal. Separating the influence of plants and associated bacteria is a difficult task for soil root environments. Growing plants hydroponically provides more control over the biological factors in contaminant removal. In this study, a hydroponic system was designed to evaluate the role of sterile plant roots, rhizodeposition, and root-associated bacteria in the removal of a model contaminant, phenol. A strain of Pseudomonas pseudoalcaligenes that grows on phenol was inoculated onto plant roots. The introduced biofilm persisted in the root zone and promoted phenol removal over non-augmented controls. These findings indicate that this hydroponic system can be a valuable tool for phytoremediation studies that investigate the effects of biotic and abiotic factors on pollution remediation.  相似文献   

14.
Pentachlorophenol (PCP) is a widespread, highly toxic contaminant of soil and water that is generally recalcitrant to microbial breakdown and thus may be considered a good candidate for phytoremediation. PCP toxicity and rates of mineralization were compared in crested wheatgrass seedlings that were either sterile or root-inoculated with microbial consortia derived from soil at a PCP-contaminated site. Inoculated seedlings were more tolerant to PCP and mineralized threefold more 14C-PCP than sterile seedlings. Only 10% of the recovered radioactivity from sterile seedlings represented mineralized PCP, indicating that rhizosphere microorganisms are primarily responsible for PCP mineralization. The levels of PCP degradation exhibited by several microbial consortia and isolates in liquid culture were not correlated with their ability to protect crested wheatgrass seedlings from PCP toxicity. Most probable number estimates showed that the presence of crested wheatgrass root exudates enhanced the number of PCP-degrading microorganisms by 100-fold in liquid culture, indicating that exudate components provide some nutritive benefit, possibly as PCP co-metabolites. A close association of plants and rhizosphere microorganisms appears to be necessary for crested wheatgrass survival in PCP-contaminated soil, although understanding the molecular details of this association requires further research.  相似文献   

15.
Soil contamination with crude oil from petrochemicals and oil exploitation is an important worldwide issue. Comparing available remediation techniques, bioremediation is widely considered to be a cost-effective choice; however, slow degradation of crude oil is a common problem due to the low numbers of bacteria capable of degrading petroleum hydrocarbons and the low bioavailability of contaminants in soil. To promote crude oil removal, biocarrier for immobilization of indigenous hydrocarbon-degrading bacteria was developed using porous materials such as activated carbon and zeolite. Microbial biomass reached 1010 cells g?1 on activated carbon and 106 cells g?1 on zeolite. Total microbial and dehydrogenase activities were approximately 12 times and 3 times higher, respectively, in activated carbon than in zeolite. High microbial colonization by spherical and rod shapes were observed for the 5–20 μm thick biofilm on the outer surface of both biocarriers using electronic microscopy. Based on batch-scale experiments containing free-living bacterial cultures and activated carbon biocarrier into crude oil contaminated soil, biocarrier enhanced the biodegradation of crude oil, with 48.89% removal, compared to natural attenuation with 13.0% removal, biostimulation (nutrient supplement only) with 26.3% removal, and bioaugmentation (free-living bacteria) with 37.4% removal. In addition, the biocarrier increased the bacterial population to 108 cells g?1 dry soil and total microbial activity to 3.5 A490. A hypothesis model was proposed to explain the mechanism: the biocarrier improved the oxygen, nutrient mass transfer and water holding capacity of the soil, which were the limiting factors for biodegradation of non-aqueous phase liquid (NAPL) contaminants such as crude oil in soil.Scientific relevanceThis study explored the role of biocarrier in enhancing biodegradation of hydrophobic contaminants such as crude oil, and discussed the function of biocarrier in improving oxygen mass transfer and soil water holding capacity, etc.  相似文献   

16.
Unique sampling techniques have generated a new understanding regarding the fate of volatile organic compounds (VOCs) in phytoremediation systems. Tissue sampling and diffusion traps were used to determine how VOCs are transported in and diffuse from vegetation, particularly woody species. These techniques were then utilized to observe how plants interact with different contaminated media, showing transport of contaminants occurs from the vadose zone (vapor phase) as well as the saturated zone (aqueous phase). Data was gathered in laboratory studies, in native vegetation, and in engineered phytoremediation systems. The findings reveal that diffusion from the xylem tissues to the atmosphere is a major fate for VOCs in phytoremediation applications. Linking VOCs' fate with groundwater hydraulics, mass removal rates from contaminant plumes can be estimated. These techniques were also utilized to observe the impact of engineered plant/microbe systems, which utilize recombinant, root-colonizing organisms to selectively degrade compounds and subsequently alter the fate of VOCs and other organic compounds. The genetically enhanced rhizoremediation methods pose a novel approach that may allow for biodegradation of compounds that formerly were considered recalcitrant.  相似文献   

17.
Anion exchange membrane adsorbers are used for contaminant removal in flow‐through polishing steps in the manufacture of biopharmaceuticals. This contribution describes the clearance of minute virus of mice, DNA, and host cell proteins by three commercially available anion‐exchange membranes: Sartobind Q, Mustang Q, and ChromaSorb. The Sartobind Q and Mustang Q products contain quaternary amine ligands; whereas, ChromaSorb contains primary amine based ligands. Performance was evaluated over a range of solution conditions: 0–200 mM NaCl, pH 6.0–9.0, and flow rates of 4–20 membrane volumes/min in the presence and absence of up to 50 mM phosphate and acetate. In addition contaminant clearance was determined in the presence and absence of 5 g/L monoclonal antibody. The quaternary amine based ligands depend mainly on Coulombic interactions for removal of negatively charged contaminants. Consequently, performance of Sartobind Q and Mustang Q was compromised at high ionic strength. Primary amine based ligands in ChromaSorb enable high capacities at high ionic strength due to the presence of secondary, hydrogen bonding interactions. However, the presence of hydrogen phosphate ions leads to reduced capacity. Monoclonal antibody recovery using primary amine based anion‐exchange ligands may be lower if significant binding occurs due to secondary interactions. The removal of a specific contaminant is affected by the level of removal of the other contaminants. The results of this study may be used to help guide selection of commercially available membrane absorbers for flow‐through polishing steps. Biotechnol. Bioeng. 2013; 110: 500–510. © 2012 Wiley Periodicals, Inc.  相似文献   

18.
The mass emissions rate of contaminants from nonaqueous-phase liquids (NAPLs) is a driving factor in remediation efforts, whether those efforts are designed to remove, transform, or stabilize the entrapped NAPL or down-gradient aqueous concentrations. Enhancement of mass flux from NAPL source zones has been previously reported in the presence of microbial reductive dechlorination activity in systems containing NAPL with a low proportion of tetrachloroethene (PCE) or a low residual saturation (e.g., 2%). The results reported here demonstrate reductive dechlorination of PCE at residual saturations of 35%, obtained under two different column flow velocities and NAPL configurations. Mass flux in biotic columns was approximately 45% greater than that in uninoculated columns, due to both the presence of daughter products and higher concentrations of PCE in the effluent from biotic columns. Daughter product concentrations were greater in columns with NAPL emplaced only in the lower quarter compared to those with NAPL throughout, and in columns run at the slower velocity. The elevated PCE concentrations in biotic column effluents suggest the influence of microbially generated surfactants, which was supported by surface tension measurements. These results demonstrate the potential significance of bioactivity within NAPL source zones on NAPL longevity and down-gradient aqueous concentrations.  相似文献   

19.
Designers, students, teachers, gardeners, farmers, landscape architects, architects, engineers, homeowners, and others have uses for the practice of phytoremediation. This research looks at the creation of a phytoremediation database which is designed for ease of use for a non-scientific user, as well as for students in an educational setting (http://www.steviefamulari.net/phytoremediation). During 2012, Environmental Artist & Professor of Landscape Architecture Stevie Famulari, with assistance from Kyla Witz, a landscape architecture student, created an online searchable database designed for high public accessibility. The database is a record of research of plant species that aid in the uptake of contaminants, including metals, organic materials, biodiesels & oils, and radionuclides.

The database consists of multiple interconnected indexes categorized into common and scientific plant name, contaminant name, and contaminant type. It includes photographs, hardiness zones, specific plant qualities, full citations to the original research, and other relevant information intended to aid those designing with phytoremediation search for potential plants which may be used to address their site's need. The objective of the terminology section is to remove uncertainty for more inexperienced users, and to clarify terms for a more user-friendly experience. Implications of the work, including education and ease of browsing, as well as use of the database in teaching, are discussed.  相似文献   

20.
Integration of partial nitrification (nitritation) and anaerobic ammonium oxidation (anammox) in constructed wetlands creates a sustainable design for nitrogen removal. Three wetland treatment systems were operated with synthetic wastewater (60 mg NH3–N L?1) in a batch mode of fill – 1-week reaction – drain. Each treatment system had a surface flow wetland (unplanted, planted, and planted plus aerated, respectively) with a rooting substrate of sandy loam and limestone pellets, followed by an unplanted subsurface flow wetland. Meanwhile, three surface flow wetlands with a substrate of sandy loam and pavestone were operated in parallel to the former surface flow wetlands. Influent and effluent were monitored weekly for five cycles. Aeration reduced nitrogen removal due to hindered nitrate reduction. Vegetation maintained pH near neutral and moderate dissolved oxygen, significantly improved ammonia removal by anammox, and had higher TN removal due to coexistence of anammox and denitrification in anaerobic biofilm layers. Nitrite production was at a peak at the residence time of 4–5 d. Relative to pavestone, limestone increased the nitrite mass production peak by 97%. The subsurface flow wetlands removed nitrogen via nitritation and anammox, having an anammox activity of up to 2.4 g N m?3 d?1 over a startup operation of two months.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号