首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 503 毫秒
1.
The aim of the study was to determine tolerance of plant growth promoting rhizobacteria (PGPR) in different concentrations of Cu, Cr, Co, Cd, Ni, Mn, and Pb and to evaluate the PGPR-modulated bioavailability of different heavy metals in the rhizosphere soil and wheat tissues, grown in saline sodic soil. Bacillus cereus and Pseudomonas moraviensis were isolated from Cenchrus ciliaris L. growing in the Khewra salt range. Seven-day-old cultures of PGPR were applied on wheat as single inoculum, co-inoculation and carrier-based biofertilizer (using maize straw and sugarcane husk as carrier). At 100 ppm of Cr and Cu, the survival rates of rhizobacteria were decreased by 40%. Single inoculation of PGPR decreased 50% of Co, Ni, Cr and Mn concentrations in the rhizosphere soil. Co-inoculation of PGPR and biofertilizer treatment further augmented the decreases by 15% in Co, Ni, Cr and Mn over single inoculation except Pb and Co where decreases were 40% and 77%, respectively. The maximum decrease in biological concentration factor (BCF) was observed for Cd, Co, Cr, and Mn. P. moraviensis inoculation decreases the biological accumulation coefficient (BAC) as well as translocation factor (TF) for Cd, Cr, Cu Mn, and Ni. The PGPR inoculation minimized the deleterious effects of heavy metals, and the addition of carriers further assisted the PGPR.  相似文献   

2.
The present attempt was made to determine the effects of untreated municipal wastewater (MW) on growth and physiology of maize and to evaluate the role of Ag nanoparticle and plant-growth-promoting rhizobacteria (PGPR) when interacting with MW used for irrigation. It was used for the isolation of PGPR. The isolates were identified and characterized based on the colony morphology, C/N source utilization pattern using miniaturized identification system (QTS 24), catalase (CAT) and oxidase tests, and 16S rRNA sequence analyses. The three PGPR isolates were Planomicrobium chinense (accession no. NR042259), Bacillus cereus (accession no. CP003187) and Pseudomonas fluorescens (accession no. GU198110). The isolates solubilized phosphate and exhibited antibacterial activities against pathogenic bacteria i.e., Staphylococcus aureus, Pseudomonas aeruginosa, Bacillus subtilis, Klebsiella pneumoniae and Escherichia coli and antifungal activities against Helminthosporium sativum and Fusarium solani. The untreated MW irrigation as well as Ag nanoparticle treatment resulted in significant accumulation of Ni in the rhizosphere soil. PGPR induced accumulation of Ni and Pb in the rhizosphere soil and maize shoot. Ag nanoparticle also caused Ni and Pb accumulation in maize shoot. Combined treatment with PGPR, Ag nanoparticle and MW resulted in decreased accumulation of Pb and Ni both in the rhizosphere soil and maize shoot. Combined treatment of Ag nanoparticle, MW and PGPR decreased Na accumulation and increased K accumulation. Ag nanoparticle increased Fe and Co accumulation but decreased Zn and Cu accumulation in MW treatment; in combined treatment, it reduced PGPR-induced accumulation of Co and Fe in the rhizosphere and Co accumulation in shoot. PGPR significantly increased root weight, shoot weight, root length, shoot length, leaf area, and proline, chlorophyll and carotenoid content of the maize plant. Ag nanoparticle also enhanced the leaf area, fresh weight, root length and antioxidant activities of maize. Treatment with Ag nanoparticle increased the gibberellic acid (GA) and abscisic acid (ABA) content of maize leaves but decreased the accumulation of GA in the presence of PGPR and MW.  相似文献   

3.
Both the plant growth promoting rhizobacteria (PGPR) and plant growth regulators (PGR) exert beneficial effects on plant growth even under stress, but combined effect of both of them has not been evaluated yet. Present investigation was aimed to determine the responses of 2 chickpea varieties (differing in drought tolerance) to 3 PGPR viz. Bacillus subtilis, Bacillus thuringiensis and Bacillus megaterium and PGR (SA and Putrescine) on physiology of chickpea grown in sandy soil. The PGR, Salicylic acid (SA) and Putrescine (Put) were sprayed on the seedling 20 days after germination. Results revealed, synergistic effects of PGPR and PGR on chlorophyll, protein and sugar contents. Addition of PGR to PGPR inoculated plants assisted the plant in osmoregulation and amelioration of oxidative stresses and in induction of new proteins. Combined application of PGR and PGPR decreased lipid peroxidation more effectively but increased the leaf area. It is inferred that PGPR and PGR work synergistically to promote growth of plants under moisture and nutrient deficit condition of sandy soil. Since, SA induces Systemic Acquired Resistance (SAR) in plants hence the addition of SA along with PGPR may render the plant more productive and better tolerant to diseases/pathogen attack.  相似文献   

4.
为了了解不同土壤重金属浓度梯度及污染梯度下香樟不同器官的富集特征,测定了香樟树叶、树枝、树干和根际土壤中6种重金属元素(Cu、Zn、Pb、Cr、Mn、Ni)的含量.结果表明: 香樟地上部分重金属含量因器官、元素种类、根际土壤重金属浓度的不同而存在差异.香樟树叶和树枝重金属含量的大小顺序均为:Mn>Zn>Cu>Cr>Pb>Ni,树干重金属含量为:Mn>Zn>Cr>Pb>Ni>Cu.树叶对Mn的富集系数较高,为2.409;树干对Ni的富集系数较高,分别为树叶、树枝的8.6和17倍,且在不同土壤重金属浓度梯度下,香樟树干对Cu、Zn、Pb、Cr、Ni的富集系数均明显高于其他器官.香樟地上部分器官对Cu、Zn、Pb、Cr、Mn、Ni 6种重金属元素的综合富集能力大小顺序为:树叶>树干>树枝.随着土壤重金属污染等级的增加,香樟地上部分各器官的富集系数均逐渐降低.研究区域平均胸径为22 cm的单株香樟对重金属元素富集效能的大小顺序为:树叶>树干>树枝,其中树干对Cu、Zn、Pb、Cr、Ni的积累量均显著高于树叶和树枝.表明香樟对6种重金属元素均有一定的富集能力,并且树干对Pb和Ni的富集效能明显,分别占地上部分总积累量的82.7%和91.9%,能很好地富集并稳固土壤中的Pb和Ni,可作为修复治理土壤重金属污染的备选树种.  相似文献   

5.
The effect of endophytic and rhizospheric bacteria was studied on salt stress in a local paddy rice (Oryza sativa L.) variety GJ-17. Plants inoculated with endophytic bacterium Pseudomonas pseudoalcaligenes showed significantly higher concentration of glycine betaine-like quaternary compounds and higher shoot biomass at lower salinity levels. While at higher salinity levels, mixture of both P. pseudoalcaligenes and Bacillus pumilus showed better response against the adverse effects of salinity. However, accumulation of proline showed an opposite trend against plant growth promoting rhizobacteria (PGPR) treatment in salinity stress. Proline concentration increased with salinity but decreased in plants inoculated with either of the PGPRs or mixture of both P. pseudoalcaligenes and B. pumilus. The present study shows that inoculation of paddy rice (Oryza sativa L.) with a mixture of endophytic and rhizospheric bacteria could serve as a useful tool for alleviating salinity stress.  相似文献   

6.
植物根际促生菌的筛选及鉴定   总被引:15,自引:0,他引:15  
【目的】植物根际促生菌(PGPR)和植物的互作关系往往不稳定,PGPR菌群有可能提高菌株对野外环境的适应性。为此,本文根据PGPR促生机制的多样性,从不同植物根际土壤进行了PGPR的筛选及鉴定。【方法】首先,按照固氮、解磷、解钾、拮抗6种常见病原真菌,同时能在植物根际定殖为基本初筛标准,然后在实验室条件下测定初筛菌株的多项促生能力(PGP),最后通过生理生化试验和16SrRNA基因序列分析对所筛菌株进行鉴定。【结果】从江苏扬州、盐城等地土壤样品筛选出14株PGPR,具有体外抑菌、产NH3、产IAA、产HCN、产嗜铁素、解磷、溶钾、固氮以及产抗生素等促生能力。分类鉴定结果显示:7株属于假单胞菌属(Pseudomonas)、3株属于类芽孢杆菌属(Paenibacillus)、2株为芽孢杆菌属(Bacillus)、1株为布克霍尔德氏菌属(Burkholderia)、1株为欧文氏菌属(Erwinia)。【结论】所筛细菌具有多种促生能力,且能在根际定殖,为进一步构建多功能PGPR广适菌群提供菌株资源。  相似文献   

7.
Microorganisms are important for phytoremediation of soil contaminated with heavy metals. In the present study, bacteria Bacillus sp., Pseudomonas sp., Alcaligenes sp., and Flavobacterium sp. isolated from the Zhangshi Irrigation Area were applied to bioadsorbed Cd and Pb in liquid cultures with root exudates of sunflower as a sole carbon source. The experimental data demonstrated that these bacteria had a high potential of enrichment of Cd and Pb, and Bacillus sp. and Alcaligenes sp. had better ability to accumulate Cd or Pb than the others; the distinct bioadsorption of Cd and Pb by bacteria might depend on the physiology of bacteria, categories of heavy metals, and environmental factors (such as pH). In addition, root exudates of sunflower could not only support the growth of these bacteria, but also influence the toxicity and bioavailability of Cd and Pb. Our results indicated that amendment with bacteria isolated from heavy-metal-polluted soil and root exudates could be considered as a potential approach to enhance the phytoremediation of Cd- or Pb-contaminated soil.  相似文献   

8.
In order to study the effect of mycorrhizal fungi (inoculated and non-inoculated) and heavy metals stress [0, Pb (150 and 300 mg/kg) and Cd (40 and 80 mg/kg)] on pot marigold (Calendula officinalis L.), a factorial experiment was conducted based on a randomized complete block design with 4 replications in Research Greenhouse of Department of Horticultural Sciences, University of Tehran, Iran, during 2012–2013. Plant height, herbal and flower fresh and dry weight, root fresh and dry weight and root volume, colonization percentage, total petal extract, total petal flavonoids, root and shoot P and K uptakes, and Pb and Cd accumulations in root and shoot were measured. Results indicated that with increasing soil Pb and Cd concentration, growth and yield of pot marigold was reduced significantly; Cd had greater negative impacts than Pb. However, mycorrhizal fungi alleviated these impacts by improving plant growth and yield. Pot marigold concentrated high amounts of Pb and especially Cd in its roots and shoots; mycorrhizal plants had a greater accumulation of these metals, so that those under 80 mg/kg Cd soil?1 accumulated 833.3 and 1585.8 mg Cd in their shoots and roots, respectively. In conclusion, mycorrhizal fungi can improve not only growth and yield of pot marigold in heavy metal stressed condition, but also phytoremediation performance by increasing heavy metals accumulation in the plant organs.  相似文献   

9.
Plants show enhanced phytoremediation of heavy metal contaminated soils particularly in response to fungal inoculation. Present study was conducted to find out the influence of Nickel (Ni) toxicity on plant biomass, growth, chlorophyll content, proline production and metal accumulation by L. usitatissimum (flax) in the presence of Glomus intraradices. Flax seedlings of both inoculated with G. intraradices and non-inoculated were exposed to different concentrations i.e., 250, 350 and 500 ppm of Ni at different time intervals. Analysis of physiological parameters revealed that Ni depressed the growth and photosynthetic activity of plants. However, the inoculation of plants with arbuscular mycorrhizae (G. intraradices) partially helped in the alleviation of Ni toxicity as indicated by improved plant growth under Ni stress. Ni uptake of non- mycorrhizal flax plants was increased by 98% as compared to control conditions whereas inoculated plants showed 19% more uptake when compared with the non-inoculated plants. Mycorrhizal plants exhibited increasing capacity to remediate contaminated soils along with improved growth. Thus, AM assisted phytoremediation helps in the accumulation of Ni in plants to reclaim Ni toxic soils. Based on our findings, it can be concluded that the role of flax plants and mycorrhizal fungi is extremely important in phytoremediation.  相似文献   

10.
Fast-growing metal-accumulating woody plants are considered potential candidates for phytoremediation of metals. Tonglushan mining, one of the biggest Cu production bases in China, presents an important source of the pollution of environment. The sample was collected at Tonglushan ancient copper spoil heap. The aims were to measure the content of heavy metal in the soil and woody plants and to elucidate the phytoremediation potential of the plants. The result showed that soil Cu, Cd and Pb were the main contamination, the mean contents of which were 3166.73 mg/kg, 3.66 mg/kg and 137.06 mg/kg respectively, which belonged to severe contamination. Fourteen species from 14 genera of 13 families were collected and investigated; except for Ligutrum lucidum, the other 13 woody plants species were newly recorded in this area. In addition, to assess the ability of metal accumulation of these trees, we proposed accumulation index. Data suggested that Platanus × acerilolia, Broussonetia papyrifera, Ligutrum lucidum, Viburnum awabuki, Firmiana simplex, Robina pseudoacacia, Melia azedarach and Osmanthus fragrans exhibited high accumulated capacity and strong tolerance to heavy metals. Therefore, Platanus × acerilolia and Broussonetia papyrifera can be planted in Pb contaminated areas; Viburnum awabuki, Firmiana simplex, Robina pseudoacacia and Melia azedarach are the suitable trees for Cd contaminated areas; Viburnum awabuki, Melia azedarach, Ligutrum lucidum, Firmiana simplex, Osmanthus fragrans and Robina pseudoacacia are appropriate to Cu, Pb and Cd multi-metal contaminated areas.  相似文献   

11.
Heavy metal contamination in soil is an important environmental problem and it has negative effect on agriculture. Bacteria play a major role in phytoremediation of heavy metals contaminated soil. In this study, the effect of Bacillus licheniformis NCCP-59, a halophilic bacterium isolated from salt mines near Karak, Pakistan, were determined on a three week old greenhouse grown seedling and germinating seeds of two rice varieties (Basmati-385 (B-385) and KSK-282) in soil contaminated with different concentrations (0, 100, 250, 500, and 1000 ppm) of Nickel. Nickel significantly reduced the germination rate and germination percentage mainly at 500 and 1000 ppm. Significant decrease in ion contents (Na, K, and Ca) was observed while Ni ion concentration in the plant tissues increases as the concentration of Ni applied increases. The photosynthetic pigments (chlorophyll a (chl a), chlorophyll b (chl b), and carotenoids) were also decreased by the application of different concentrations of Ni. Total protein and organic nitrogen were found to be reduced at higher concentrations of Nickel. Inoculation of Bacillus Licheniformis NCCP-59 improved seed germination and biochemical attribute of the plant under Ni stress. It is clear from the results that the Bacillus Licheniformis NCCP-59 strain has the ability to protect the plants from the toxic effects of nickel and can be used for the phytoremediation of Ni contaminated soil.  相似文献   

12.
A field experiment was conducted to evaluate the effective utilization of tannery sludge for cultivation of clarysage (Salvia sclarea) at CIMAP research farm, Lucknow, India during the year 2012–2013. Six doses (0, 20, 40, 60, 80, 100 tha?1) of processed tannery sludge were tested in randomised block design with four replications. Results revealed that maximum shoot, root, dry matter and oil yield were obtained with application of 80 tha?1of tannery sludge and these were 94, 113 and 61% higher respectively, over control. Accumulation of heavy metals (Cr, Ni, Fe, Pb) were relatively high in shoot portion of the plant than root. Among heavy metals, magnitude of chromium accumulation was higher than nickel, iron and lead in shoot as well as in root. Linalool, linalyl acetate and sclareol content in oil increased by 13,8 and 27% respectively over control, with tannery sludge application at 80 tha?1. Heavy metals such as chromium, cadmium and lead content reduced in postharvest soil when compared to initial status. Results indicated that clarysage (Salvia sclarea) can be grown in soil amended with 80 tha?1sludge and this can be a suitable accumulator of heavy metals for phytoremediation of metal polluted soils.  相似文献   

13.
The aim of this study is to characterize the heavy metal phytoremediation potential of Miscanthus sp. Goedae-Uksae 1, a hybrid, perennial, bio-energy crop developed in South Korea. Six different metals (As, Cu, Pb, Ni, Cd, and Zn) were used for the study. The hybrid grass effectively absorbed all the metals from contaminated soil. The maximum removal was observed for As (97.7%), and minimum removal was observed for Zn (42.9%). Similarly, Goedae-Uksae 1 absorbed all the metals from contaminated water except As. Cd, Pb, and Zn were completely (100%) removed from contaminated water samples. Generally, the concentration of metals in roots was several folds higher than in shoots. Initial concentration of metals highly influenced the phytoremediation rate. The results of the bioconcentration factor, translocation factor, and enrichment coefficient tests indicate that Goedae-Uksae 1 could be used for phytoremediation in a marginally contaminated ecosystem.  相似文献   

14.
An investigation was carried out to evaluate the effect of heavy metal toxicity on growth, herb, oil yield and quality and metal accumulation in rose scented geranium (Pelargonium graveolens) grown in heavy metal enriched soils. Four heavy metals (Cd, Ni, Cr, and Pb) each at two levels (10 and 20 mg kg–1 soil) were tested on geranium. Results indicated that Cr concentration in soil at 20 mg kg–1 reduced leaves, stem and root yield by 70, 83, and 45%, respectively, over control. Root growth was significantly affected in Cr stressed soil. Nickel, Cr, and Cd concentration and accumulation in plant increased with higher application of these metals. Chromium, nickel and cadmium uptake was observed to be higher in leaves than in stem and roots. Essential oil constituents were generally not significantly affected by heavy metals except Pb at 10 and 20 ppm, which significantly increased the content of citronellol and Ni at 20 ppm increased the content of geraniol. Looking in to the higher accumulation of toxic metals by geranium and the minimal impact of heavy metals on quality of essential oil, geranium can be commercially cultivated in heavy metal polluted soil for production of high value essential oil.  相似文献   

15.
The investigation evaluated the role of plant growth promoting rhizobacteria (PGPR) and Ag-nano particle on the growth and metabolism of maize irrigated with municipal wastewater (MW). Three PGPR isolated from MW were identified on the basis of 16S-rRNA gene sequence analyses as Pseudomonas sp., Pseudomonas fluorescence, and Bacillus cereus. The municipal waste water was used to irrigate the maize seeds inoculated with 3 isolated PGPR. The isolated PGPR had catalase and oxidase enzymes, solubilize insoluble bound phosphate and exhibit antifungal and antibacterial activities. The colony forming unit (cfu) of the PGPR was inhibited by Ag-nano particle, but was stimulated by the municipal wastewater. The Ag-nano particles augmented the PGPR induced increase in root area and root length. The root-shoot ratio was also changed with the Ag-nano particles. The plants irrigated with municipal wastewater had higher activities of peroxidase and catalase which were further augmented by Ag-nano particle. The Ag- nano particle application modulated level of ABA (34%), IAA (55%), and GA (82%), increased proline production (70%) and encountered oxidative stress and augmented the bioremediation potential of PGPR for Pb, Cd, and Ni. Municipal wastewater needs to be treated with PGPR and Ag nano particle prior to be used for irrigation. This aims for the better growth of the plant and enhanced bioremediation of toxic heavy metals.  相似文献   

16.
Most metals disperse easily in environments and can be bioconcentrated in tissues of many organisms causing risks to the health and stability of aquatic ecosystems even at low concentrations. The use of plants to phytoremediation has been evaluated to mitigate the environmental contamination by metals since they have large capacity to adsorb or accumulate these elements. In this study we evaluate Salvinia minima growth and its ability to accumulate metals. The plants were cultivated for about 60 days in different concentrations of Cd, Ni, Pb and Zn (tested alone) in controlled environmental conditions and availability of nutrients. The results indicated that S. minima was able to grow in low concentrations of selected metals (0.03 mg L?1 Cd, 0.40 mg L?1 Ni, 1.00 mg L?1 Pb and 1.00 mg L?1 Zn) and still able to adsorb or accumulate metals in their tissues when cultivated in higher concentrations of selected metals without necessarily grow. The maximum values of removal metal rates (mg m2 day?1) for each metal (Cd = 0.0045, Ni = 0.0595, Pb = 0.1423 e Zn = 0.4046) are listed. We concluded that S. minima may be used as an additional tool for metals removal from effluent.  相似文献   

17.
Two plant growth promoting rhizobacteria (PGPR), one identified as rhizospheric Bacillus pumilus and other as endophytic Pseudomonas pseudoalcaligenes, were isolated from the root surface as well as from within the roots of paddy variety GJ17. Adhesion and invasion of the isolated strains with the paddy root was confirmed by 2, 3, 5-triphenyl tetrazolium chloride (TTC) staining. The effects of these two PGPRs were tested alone and in combination on the production of defense related enzymes such as chitinase, polyperoxidase (PO) and polyphenol oxidase (PPO) in the presence of Magnaporthe grisea, the causative agent of rice blast. The results indicate that the endophytic bacteria showed a better response to the fungal infection than the rhizospheric one. The PGPRs were able to induce the defense enzymes even in the absence of the pathogen. This induction of defense enzymes in response to PGPRs persists for the entire life of the plant to defend against pathogens. So association of PGPRs with the paddy GJ-17 root acts as a vaccine to reduce disease severity by Magnaportha grisea.  相似文献   

18.
弋良朋  王祖伟 《生态学报》2017,37(20):6855-6862
根际是控制植物养分动态的重要因素,养分动态也影响着根际土壤环境。当土壤被污水污泥改良后,根际土壤中的养分和重金属性质也会发生变化。目前很少有人研究施用污泥的土壤中植物根系对根际重金属有效性和分布的影响。采用根垫—冰冻薄层切片法对施用污泥后土壤中油菜根际的养分和重金属分布情况进行研究,以期探明污泥改良土壤中根际重金属的活化特征。当土壤施用污泥后,根际土壤中DTPA提取态Zn,Cd,Ni,Mn,有效磷,有效钾和铵态氮被显著消耗,而根际土壤中DTPA提取态Cu没有明显的消耗或积累。当土壤中施用大量污泥时,根际土壤的pH值随着离根表面距离的增加而增加。无论土壤是否用污泥处理,油菜根际土壤中可交换态Cu都显著减少。当土壤被50%污泥改良时,在距离根表面0—2 mm处的油菜根际土壤中碳酸盐结合态,铁锰氧化物结合态,有机物结合态,残渣态的Cu和Zn都被消耗较多。污泥的施用对油菜的生长有促进作用。随着污泥施用量的增加,油菜地上部分Cu和Zn的含量没有显著变化。施用污泥量小于25%的土壤中,污泥没有增加重金属的可利用性和移动性。除了Cu,油菜根际土壤中DTPA提取态Zn,Cd,Ni的减少表明施用污泥的土壤中重金属的活化是非常有限的。  相似文献   

19.
Aquatic macrophytes were found to be the potential scavengers of heavy metals from aquatic environment. In this study, influences of ladder concentration of lead (Pb) on the leaves of Potamogeton crispus Linn were studied after 7 days of treatment. The accumulation of Pb, nutrient element contents, the generation rate of superoxide radical (O2·−), MDA, proline, and polyamine (PAs) contents, as well as the activities of diamine oxidases (DAO), polyamine oxidases (PAO), arginine decarboxylase (ADC), and ornithine decarboxylase (ODC) in P. crispus leaves were investigated. The result indicated that Pb treatment decreased the activity of DAO, whereas the proline content, MDA content, the generation rate of O2·− and the activity of ODC increased in different degrees. Meantime, Pb treatment significantly increased the free putrescine (Put) level and made other PAs levels dynamic changes. The activities of PAO and ADC were declined firstly and then enhanced with the increase in the Pb concentration.  相似文献   

20.
Menthol mint (Mentha arvensis L.) cultivation is significantly affected by the heavy metals like cadmium (Cd) which also imposes severe health hazards. Two menthol mint cultivars namely Kosi and Kushal were evaluated under Cd stress conditions. Impact of plant growth regulators (PGRs) like salicylic acid (SA), gibberellic acid (GA3) and triacontanol (Tria) on Cd stress tolerance was assessed. Reduced growth, photosynthetic parameters, mineral nutrient concentration, and increased oxidative stress biomarkers like electrolyte leakage, malondialdehyde, and hydrogen peroxide contents were observed under Cd stress. Differential upregulation of proline content and antioxidant activities under Cd stress was observed in both the cultivars. Interestingly, low electrolyte leakage, lipid peroxidation, hydrogen peroxide and Cd concentration in leaves were observed in Kushal compared to Kosi. Among all the PGRs tested, SA proved to be the best in improving Cd-stress tolerance in both the cultivars but Kushal responded better than Kosi.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号