共查询到20条相似文献,搜索用时 0 毫秒
1.
Summary. The micropylar chamber of the mustard Coronopus didymus is a developmental domain distinct from the contiguous central chamber and the more extreme chalazal chamber. Early in syncytial
development the micropylar endosperm surrounding the embryo becomes populated with unusual fusiform to multilobed nuclei.
These nuclei are sheathed by unique parallel arrays of microtubules that focus at tips of the nuclei and flare to connect
with a reticulate network in the common cytoplasm. F-actin does not closely invest the nuclei but instead forms an extensive
but separate cytoplasmic reticulum. When the embryo is in the early heart stage, the cytoskeleton of the endosperm undergoes
a remarkable transition in preparation for cellularization. Microtubules become reorganized into radial arrays emanating from
the nuclei, which themselves become spherical. Radial microtubule systems (RMSs), which replace both the parallel microtubules
and the cytoplasmic reticulum, organize the common cytoplasm into evenly spaced nuclear cytoplasmic domains (NCDs). F-actin
gradually becomes coaligned with the RMSs. Phragmoplasts are initiated adventitiously at the interfaces of opposing RMSs in
the absence of mitosis. Cell plate deposition, which is initiated at multiple sites, results in a network of walls formed
more or less simultaneously around the densely packed NCDs. The walls, which are rich in 1–3-β-glucans, join with one another
and with the existing walls of both the central cell and embryo to complete cellularization in the micropylar chamber. In
the adjacent central chamber where the syncytium is restricted to a thin peripheral layer by the large central vacuole, basic
organization of the syncytium into NCDs is followed by alternating cycles of alveolation and periclinal cell division resulting
in cellularization.
Received July 19, 2001 Accepted October 16, 2001 相似文献
2.
The accumulation and removal efficiency of Fe by Centella asiatica was carried out at various Fe concentrations in soil treatments (0, 50, 100, 150 and 200 mg Fe/kg soil). Iron accumulation in different parts of C. asiatica (leaf, stem and root) was analyzed by atomic absorption spectrophotometer (AAS). Factorial experiment with a completely randomized design and Duncan's test were used for data analyses. The results revealed that C. asiatica have the ability to uptake and accumulate Fe significantly (p < 0.05; r = 0.977) in the aerial parts. The different soil treatments had significant effect on the total Fe accumulations in C. asiatica (p < 0.05). The potential of C. asiatica as a metal hyperaccumulator plant, harvested for analysis, shows efficient accumulation of Fe at high concentration (p < 0.05; r = 0.977). The root showed the highest accumulation of Fe followed by the leaves (p < 0.05) and the stem (p < 0.05). The Pearson correlation coefficient between leaves and root have showed highly significant correlation (p < 0.01; r = 0.785) as compared to the leaves and stem (p < 0.01; r = 0.780). The efficiency of Fe removal by C. asiatica from the contaminated soil has been evaluated by bioconcentration factor and translocation factor, found to be >1 and <1, respectively, further supporting its metal hyperaccumulator properties. 相似文献
3.
To evaluate the potential of the indigenous plant species for Arsenic (As) phytoremediation, a total of 138 plant samples and 138 soil samples from rooting zones were collected from two As-contaminated areas in Kurdistan, western Iran. The areas were the Sari Gunay Gold Mine (SG) and Ali Abad Village (AA). The soil of both areas naturally contains As, with mining activities at SG. Soil and plant samples were collected at five sites in the SG (SG1 to SG5) and at two sites in the AA (AA1 and AA2). Soil samples were analyzed for total and water-soluble As concentration, as well as for the main soil physical and chemical properties such as electrical conductivity (Ec), pH, organic carbon (C org.), available phosphorus (P ava.), and soil texture. Plant samples were analyzed for As concentration in their shoots and roots. The average total and water–soluble As concentrations in soil were 751.6 and 6.2 ppm at SG and 920.8 and 8.0 ppm at AA, respectively. The highest root and shoot As concentration was found in Juncus inflexus (751.5 ppm) at AA2 and in Astragalus gossypinus (158.7 ppm) at AA1, respectively. With regard to phytoremediation strategies, Acantholimon brachystachyum, Astragalus gossypinus, Stipa barbata, and Ephedra major with a high translocation factor (TF) can be potentially used for As phytoextraction. However, Juncus inflexus, Phragmites australis, Bromus tomentellus, and Elymus sp., which show high bioconcentration factor (BCF) and low TF, are suggested as good candidates for As phytostabilization. In general, the TF values of terrestrial plants were higher than those of amphibious plants; meanwhile, BCF values showed the opposite behavior. 相似文献
4.
This study assessed the accumulation of Cd (II), Hg (II), Cr (VI) and Pb (II) in Gynerium sagittatum (Gs), Colocasia esculenta (Ce) and Heliconia psittacorum (He) planted in constructed wetlands treating synthetic landfill leachate. Sixteen bioreactors were operated in two experimental blocks. Metal concentrations in the influent and effluent; root, stem, branch and leaves of plants were analysed, as well as COD, N-NH 4+, TKN, T, pH, ORP, DO, and EC. Average removal efficiencies of COD, TKN and NH 4+-N were 66, 67 and 72%, respectively and heavy metal removal ranged from 92 to 98% in all units. Cr (VI) was not detected in any effluent sample. The bioconcentration factors (BCF) were 10 0 -10 2. The BCF of Cr (VI) was the lowest: 0.59 and 2.5 (L kg ?1) for Gs and He respectively; whilst Cd (II) had the highest (130–135 L kg ?1) for Gs. Roots showed a higher metal content than shoots. Translocation factors (TF) were lower, He was the plant exhibiting TFs >1 for Pb (II), Cr (T) and Hg (II) and 0.4–0.9 for Cd (II) and Cr (VI). The evaluated plants demonstrate their suitability for phytoremediation of landfill leachate and all of them can be categorized as metals accumulators. 相似文献
5.
This hydroponic experiment was conducted to determine the effects of nitrogen (N) and phosphorus (P) levels and frond-harvesting on the effectiveness of arsenic (As)-hyperaccumulator Chinese brake fern (Pteris vittata L.) to remove As from contaminated groundwater collected from south Florida. Three-month old ferns were grown in 38-L plastic tanks (two ferns per tank) containing 30-L of As-contaminated water (130 μg·L ?1 As), which was amended with modified 0.25 strength Hoagland's solution #2. Two N (26 or 52 mg·L ?1) and two P levels (1.2 and 2.4 mg·L ?1) were tested in one experiment, whereas the effect of frond-harvesting was tested in a separate experiment. Initially, N had little effect on plant As removal whereas low P treatment was more effective than high P and As was reduced to <5 μg·L ?1 in 28 d compared to 35 d. For well-established ferns, N and P levels had little effect. Reused fern, with or without harvesting the As-rich fronds, took up arsenic more rapidly so the As concentration in the groundwater declined faster (130 to ~10 μg·L ?1 in 8 h). Regardless of the treatments, most As (85–93%) was located in the aboveground tissue (rhizomes and fronds). Frond As concentrations were higher for non-harvested ferns than for ferns where fronds were partially harvested prior to treatment. Conversely, rhizomes accumulated more arsenic in ferns where fronds had been partially harvested. Low-P treatment coupled with reuse of more established ferns with or without harvesting fronds can be used to effectively remove arsenic from contaminated water using P. vittata 相似文献
6.
AbstractCadmium (Cd) contamination is one of the most serious global environmental problems, and phytoremediation, which uses Cd-accumulator plants, is potentially one of the sustainable solutions. Pot experiments with natural and Cd-amended soils were conducted to investigate the accumulation of heavy metals in 10 leading cultivars of tobacco in China. The extraction ability and profiles of Cd accumulation among plant organs were also analyzed. The tobacco roots accumulated cobalt, nickel, and Cd, while the leaf highly bioaccumulated Cd and lowly accumulated zinc, selenium and mercury. The transport from the tobacco stem to the leaf plays a critical role in the accumulation of these elements. The ratios of Cd concentration in the leaves at lower, middle and upper positions were comparatively stable. The high Cd-extracting cultivars were “Hongda”, “NC89” and “Zhongyan 100” when grown in normal soils, “CuiBi 1” and “Hongda” in moderately contaminated soils, and “YuYan 87”, “LongJiang 851” and “K326” in severely contaminated soils. Tobacco leaves could accumulate about 80% of the total Cd extracted from the soil by the plant. Considering the Cd-extraction limitations exhibited by leading tobacco cultivars, screening of germplasm resources for high or low levels of Cd-accumulation is still an important target for the future. 相似文献
7.
Coronopus didymus has been emerged as a promising wild, unpalatable plant species to alleviate lead (Pb) from the contaminated soils. This work investigated the hypothesis regarding various metabolic adaptations of C. didymus under lead (Pb) stress. In pot experiments, we assessed the effect of Pb at varied concentrations (500–2900 mg kg ?1) on growth, photosynthetic pigments, alteration of macromolecular (protein and carbohydrate) content, and activities of enzymes like protease, α-and β-amylase, peroxidase (POX), and polyphenol oxidase (PPO) in C. didymus for 6 weeks. Results revealed that Pb exposure enhanced the growth, protein, and carbohydrate level, but decreased the leaf pigment concentration and activities of hydrolytic enzymes. The activities of POX and PPO in roots increased progressively by ~337 and 675%, respectively, over the control, at 2900 mg kg ?1 Pb treatment. Likewise, contemporaneous findings were noticed in shoots of C. didymus, strongly indicating its inherent potential to cope Pb-induced stress. Furthermore, the altered plant biochemical status and upregulated metabolic activities of POX and PPO indulged in polyphenol peroxidation elucidate their role in allocating protection and conferring resistance against Pb instigated stress. The current work suggests that stress induced by Pb in C. didymus stimulated the POX and PPO activities which impart a decisive role in detoxification of peaked Pb levels, perhaps, by forming physical barrier or lignifications. 相似文献
8.
The effect of increasing level of cadmium in soil was investigated on biomass production, antioxidants, Cd bioaccumulation and translocation in Ricinus communis vis-à-vis a commonly studied oil crop Brassica juncea. The plants were exposed to 25, 50, 75, 100, and 150 mg Cd/Kg soil for up to 60 days. It was found that R. communis produced higher biomass at all the contamination levels than that of B. juncea. Proline and malondialdehyde in the leaves increased with increase in Cd level in both the species, whereas soluble protein decreased. The bioaccumulation of Cd was higher in B. juncea on the basis of the per unit biomass, total metal accumulation per plant was higher in R. communis. The translocation of Cdfrom roots to shoot was also higher in B. juncea at all Cd concentrations. R. communis appeared more tolerant and capable to clean Cd contaminated soil for longer period in one sowing than B. juncea and the former can grow in wasteland soil also in which later cannot be cultivated. 相似文献
9.
Metal-contaminated soils constitute a serious environmental problem with adverse consequences for human health. This study was conducted to determine phytoextraction efficiency of Echinochloa crus galii for Pb and Cr and the EDTA-assisted (0. 2.5, 5, 10 mmol kg ?1) phytoextraction and the potential for leaching of the metals during the phytoextraction process. The results revealed that the bioconcentration factors of roots of the plant were relatively higher than the bioconcentration factors of the shoot. Thus, the plant species of E. crus galii would be applicable for Pb and Cr phytostabilization. Addition of EDTA had virtually a significant effect on uptake of the metals by the plant and elevated Pb and Cr concentrations in plant organs as compared with the control. Optimum phytoextraction was observed when 5 mmol kg ?1 EDTA was added in a single dosage 60 days after the plant cultivation and consequently soil Pb and Cr concentration decreased with the passage of time. 相似文献
10.
Chemical fractionation methods may be capable of providing an inexpensive estimate of contaminant bioavailability and risk in smelter-contaminated soil. In this study, the relationship between metal fractionation and methods used to estimate bioavailability of these metal contaminants in soil was evaluated. The Potentially BioAvailable Sequential Extraction (PBASE) was used for Cd, Pb, and Zn fractionation in 12 soils contaminated from Pb and Zn mining and smelting activities. The PBASE procedure is a four-step sequential extraction: extraction 1 (E1) is 0.5 M Ca(NO 3) 2, E2 is 1.0 M NaOAc, E3 is 0.1 M Na 2EDTA, and E4 is 4 M HNO 3. Metal bioavailability for two human exposure pathways, plant uptake (phytoavailability) and incidental ingestion (gastrointestinal, Gl, availability), was estimated using a lettuce ( Lactuca sativa L.) bioassay and the in vitro-Gl Physiologically Based Extraction Test(PBET). Metal in the PBASE E1 fraction was correlated with lettuce Cd (P < 0.001) and Zn (P < 0.05) and was the best predictor of Cd and Zn phytoavailability. Only total metal content or the sum of all PBASE fractions, ΣE 1–4, were correlated (P < 0.001) with PBET gastric phase for Pb. The sum of the first two PBASE fractions, ΣE 1–2, was strongly correlated (P < 0.001) with Pb extracted by the PBET intestinal phase. The PBASE extraction method can provide information on Cd and Zn phytoavailability and Gl availability of Pb in smelter-contaminated soils. 相似文献
11.
This study was conducted to investigate the uptake of lead (Pb) and arsenic (As) from contaminated soil using Melastoma malabathricum L. species. The cultivated plants were exposed to As and Pb in separate soils for an observation period of 70 days. From the results of the analysis, M. malabathricum accumulated relatively high range of As concentration in its roots, up to a maximum of 2800 mg/kg. The highest accumulation of As in stems and leaves was 570 mg/kg of plant. For Pb treatment, the highest concentration (13,800 mg/kg) was accumulated in the roots of plants. The maximum accumulation in stems was 880 mg/kg while maximum accumulation in leaves was 2,200 mg/kg. Only small amounts of Pb were translocated from roots to above ground plant parts (TF < 1). However, a wider range of TF values (0.01–23) for As treated plants proved that the translocation of As from root to above ground parts was greater. However, the high capacity of roots to take up Pb and As (BF > 1) is indicative this plants is a good bioaccumulator for these metals. Therefore, phytostabilisation is the mechanism at work in M. malabathricum's uptake of Pb, while phytoextraction is the dominant mechanism with As. 相似文献
12.
The suitability of five plant species was studied for phytoextraction and phytostabilisation in a region with temperate maritime climate of coastal British Columbia, Canada. Pot experiments were conducted using Lolium perenne L (perennial rye grass), Festuca rubra L (creeping red fescue), Helianthus annuus L (sunflower), Poa pratensis L (Kentucky bluegrass) and Brassica napus L (rape) in soils treated with three different metal (Cu, Pb, Mn, and Zn) concentrations. The bio-metric characters of plants in soils with multiple-metal contaminations, their metal accumulation characteristics, translocation properties and metal removal were assessed at different stages of plant growth, 90 and 120 DAS (days after sowing). Lolium was found to be suitable for the phytostabilisation of Cu and Pb, Festuca for Mn and Poa for Zn. Metal removal was higher at 120 than at 90 days after sowing, and metals concentrated more in the underground tissues with less translocation to the aboveground parts. Bioconcentration factors indicate that Festuca had the highest accumulation for Cu, Helianthus for Pb and Zn and Poa for Mn. 相似文献
13.
The in situ remediation of a lead‐contaminated silt loam by electrokinetic (EK) soil flushing was studied. Two initial soil Pb concentrations (150 and 1000 mg/kg of Pb) and applied voltages (30 and 60 V) were investigated. The EK soil flushing process was less efficient for the 150 mg/kg of Pb soils despite these tests being operated for longer durations, having larger EO flows and energy inputs, and lower soil pHs. The decrease in effectiveness was attributed to a larger average metal‐soil binding energy for the lower contaminated soil. Increasing the voltage increased the EO flow, current, energy input (kW‐hr/kg of soil), and provided a more evolved low pH front, resulting in more soil being remediated. There appeared to be a correlation between the amount of EO flow and the desorption and transport of soil‐bound lead. Because complete soil remediation did not occur in any of the tests, the final energy input per kilogram of soil could not be calculated. 相似文献
14.
As a green remediation technology, phytoremediation is becoming one of the most promising methods for treating petroleum hydrocarbons (PHCs)-contaminated soil. Pot culture experiments were conducted in this study to investigate phytoremediation potential of two representative Iridaceae species ( Iris dichotoma Pall. and Iris lactea Pall.) in remediation of petroleum hydrocarbon-contaminated saline-alkali soil from the Dagang Oilfield in Tianjin, China. The results showed that I. lactea was more endurable to extremely high concentration of PHCs (about 40,000 mg/kg), with a relatively high degradation rate of 20.68%.The degradation rate of total petroleum hydrocarbons (TPHs) in soils contaminated with 10,000 and 20,000 mg/kg of PHCs was 30.79% and 19.36% by I. dichotoma, and 25.02% and 19.35% by I. lactea, respectively, which improved by 10–60% than the unplanted controls. The presence of I. dichotoma and I. lactea promoted degradation of PHCs fractions, among which saturates were more biodegradable than aromatics. Adaptive specialization was observed within the bacterial community. In conclusion, phytoremediation by I. dichotoma should be limited to soils contaminated with ≤20,000 mg/kg of PHCs, while I. lactea could be effectively applied to phytoremediation of contaminated soils by PHCs with at least 40,000 mg/kg. 相似文献
16.
我国鸡饲养量已占世界总量的24%,鸡饲料添加剂中高含量的Cu和Zn随鸡粪排出体外,鸡粪作为优良的有机肥大量施用于菜园土壤,会导致土壤和蔬菜中重金属Cu和Zn的含量过高,进而通过食物链影响动物和人类健康。研究含高Cu和高Zn的鸡粪施入土壤后典型蔬菜对Cu和Zn的富集和转运,对于阐明鸡粪中Cu和Zn的土壤环境行为和蔬菜的健康风险评价具有重要的科学价值,同时可为蔬菜安全生产提供参考。本研究以Cu和Zn浓度分别为1137.3 mg/kg和1503.4 mg/kg的鸡粪堆肥作为实验材料,设置5个鸡粪施用处理,即11、22、44、89 g/kg和222 g/kg,相当于25、50、100、200 t/hm2和500 t/hm2,以不施鸡粪处理为对照。通过小白菜盆栽实验,研究了施用鸡粪对土壤与小白菜中Cu和Zn的影响。结果表明:土壤全Cu和全Zn含量范围分别为58.6—203.4 mg/kg和78.1—431.6 mg/kg;EDTA-Cu为12.7—119.8 mg/kg,EDTA-Zn为15.6—215.1 mg/kg。鸡粪施用量大于50 t/hm2时,土壤中Cu和Zn全量均较对照显著提高。小白菜地上、地下部以及整株Cu和Zn的含量都随鸡粪施用量的增加而提高,且地下部Cu、Zn的含量均高于地上部,同时小白菜各部分Zn的含量都高于Cu。鸡粪施用量大于100 t/hm2处理的小白菜地上部Cu含量显著高于对照处理,但是各处理小白菜中地上部的Zn含量与对照相比,均无显著性差异。施鸡粪量为大于50 t/hm2时,地下部分Cu含量较对照显著增加,而施鸡粪量大于100 t/hm2时,地下部分Zn含量显著增加。土壤有效态的Cu(EDTA-Cu)与植物各部分吸收Cu的相关性较好,但土壤有效态的Zn(EDTA-Zn)与植物各部分吸收Zn的相关性较差。随着鸡粪施用量的增加,小白菜对土壤中Cu的富集系数由11%增加到15%,对Zn富集系数却由47%下降到19%,小白菜对Cu和Zn的转运系数分别下降36%和51%。小白菜地上、地下部及整株的Zn/Cu都随鸡粪施用量的增加而减小,说明小白菜对Cu、Zn吸收转运能力的差异随着鸡粪施用量的增加而下降。 相似文献
17.
本文以根盒试验与盆栽试验相结合的方法,研究了红壤性水稻土、淀浆白土、第四纪红土和赤红壤植稻后根际微生态系统中Si、Fe、Mn和Al等元素的状况及其与水稻生长的关系。结果表明,新垦红壤植稻后根际中活性Fe和Al富集;活性Mn量降低,但亏缺率小;活性Si则亏缺不明显,有时甚至富集。而熟化水稻土植稻后根际中活性Fe和Al则出现亏缺;Mn的亏缺较大,且差值明显;活性Si的亏缺现象更为显著。由于新垦红壤植稻后Fe和Al在根际微生态系统中富集,根茎叶中累积量较高,从而使Si、P和Mn等元素的吸收受阻,导致新垦红壤上水稻生长明显比熟化水稻土上的水稻要差。 相似文献
18.
The flagellate alga Pavlova viridis Tseng was investigated in the laboratory for accumulation of the heavy metals, silver,
cadmium, cobalt, copper, mercury, nickel and lead. The cultures were grown in an artificial seawater medium mixed with the
individual metals at different concentrations. Based on data from the controls, the baseline metal concentrations in P. viridis
were shown to be in an order of Cu > Pb > Co > Cd > Ni > Ag > Hg. In the experimental groups, the seven metals displayed different
isotherm equilibrium patterns and the metal uptake capacity of the alga was Ni > Pb > Co > Hg > Cu > Cd > Ag at equilibrium.
When assessed using the bioconcentration factors, metal accumulation by P. viridis was demonstrated to be the most efficient
at a concentration of 0.001 mg L-1 for Ag, Cd and Co, and at 0.01 mg L-1 for Cu, Hg, Ni and Pb. This study suggests that P.
viridis can be a source of mineral supplements in mariculture. The alga is not, however, recognized as an effective agent
for removing heavy metals from wastewater.
This revised version was published online in June 2006 with corrections to the Cover Date. 相似文献
19.
The aboveground biomass built up annually by Allium ursinum (L.) contains similar amounts of nutrients as the foliage of mature Fagus sylvatica (L.) stands. The decomposition of the A. ursinum stand in early summer provides N rich forage for grazing mesofauna, especially favouring collembolans and accelerating mineralization of soil organic matter. Short term decreases of soil pH had no negative effect on populations of collembolans. Synergistic effects from soil fauna and microbes may accelerate nitrogen release from decomposing leaf litter. A positive feed back may have emerged. High animal abundance and diverse mesofauna populations are capable of high rates of litter fragmentation. Consequently, favourable conditions for microorganisms are created and allow high rates of mineralization and release of nutrients. Our data show that substantial amounts of nitrogen are lost from the system. Undisturbed forest ecosystems are considered to recycle mineralized nitrogen efficiently though. But temporal uncoupling of the N cycle due to microbial activity and delayed or decreased N uptake of higher plants can cause enhanced leaching even from undisturbed systems. The tendency to loose nutrients is apparent from high nitrate concentrations in the soil solution throughout the year. When nutrient losses from A. ursinum subsystems are considered, lateral nutrient imports from adjacent parts of the ecosystem have to be taken into account. If lateral import does not counterbalance losses, maintenance of the soil nutrient status must occur by weathering or a decline is to be expected. 相似文献
20.
The objectives of the present study were to investigate the mitigation of lead (Pb), cadmium (Cd), and arsenic (As) in a multi-metal contaminated soil and their accumulation in rice plants ( Oryza sativa L., cv II You 93) using a combined amendment (CMF, calcium carbonate + metakaolin + fused calcium–magnesium phosphate fertilizer). The results showed that application of CMF was effective in reducing the acid-extractable concentrations of soil Pb and Cd. The exchangeable concentrations of soil As showed an initial decrease followed by a gradual increase. The application of 0.2% CMF notably reduced the concentrations of Pb, Cd, and As in brown rice by 46.5%, 43.6%, and 32.0%, respectively. The concentration of As in brown rice was 0.179 mg kg ?1 at 0.2% CMF, which met the maximum levels of contaminants in foods of China (MLs) (the ML of Pb, Cd, and As is 0.2 mg kg ?1 according to the China national standard GB 2762-2012). At 1.6% CMF, the concentrations of Pb and Cd in brown rice were 0.002 and 0.185 mg kg ?1, respectively, i.e., reductions of 99.6% and 74.1%, and these values also fell within the MLs. 相似文献
|