首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Ecological interactions between plants and insects are of paramount importance for the maintenance of biodiversity and ecosystem functioning. Herbicides have long been considered a threat to plant and insect populations, but global increases in intensive agriculture and availability of herbicide-resistant crops have intensified concerns about their full impact on biodiversity. Here, we argue that exposure to sublethal herbicide doses has the potential to alter plant–insect interactions as a result of disruptions in their chemical communication. This is because herbicides interfere with biosynthetic pathways and phytohormones involved in the production of several classes of plant volatiles that mediate plant–insect chemical communication. Sublethal herbicide doses can modify the morphological and life-history plant traits and affect interactions with insects. However, the potential changes in plant volatiles and their consequences for plant–insect chemical communication have not yet received as much attention. We discuss how target-site (disruptors of primary metabolism) and non-target-site (synthetic auxins) herbicides could alter the production of plant volatiles and disrupt plant–insect chemical communication. We suggest research avenues to fill in the current gap in our knowledge that might derive recommendations and applied solutions to minimize herbicides' impacts on plant–insect interactions and biodiversity.  相似文献   

3.
Conservatism in species interaction, meaning that related species tend to interact with similar partners, is an important feature of ecological interactions. Studies at community scale highlight variations in conservatism strength depending on the characteristics of the ecological interaction studied. However, the heterogeneity of datasets and methods used prevent to compare results between mutualistic and antagonistic networks. Here we perform such a comparison by taking plant–insect communities as a study case, with data on plant–herbivore and plant–pollinator networks. Our analysis reveals that plants acting as resources for herbivores exhibit the strongest conservatism in species interaction among the four interacting groups. Conservatism levels are similar for insect pollinators, insect herbivores and plants as interacting partners of pollinators, although insect pollinators tend to have a slightly higher conservatism than the two others. Our results thus clearly support the current view that within antagonistic networks, conservatism is stronger for species as resources than for species as consumer. Although the pattern tends to be opposite for plant–pollinator networks, our results suggest that asymmetry in conservatism is much less pronounced between the pollinators and the plant they interact with. We discuss these differences in conservatism strength in relation with the processes structuring plant–insect communities.  相似文献   

4.
The serious problem of extended tissue thickness in the analysis of plant–fungus associations was overcome using a new method that combines physical and optical sectioning of the resin-embedded sample by microtomy and confocal microscopy. Improved tissue infiltration of the fungal-specific, high molecular weight fluorescent probe wheat germ agglutinin conjugated to Alexa Fluor® 633 resulted in high fungus-specific fluorescence even in deeper tissue sections. If autofluorescence was insufficient, additional counterstaining with Calcofluor White M2R or propidium iodide was applied in order to visualise the host plant tissues. Alternatively, the non-specific fluorochrome acid fuchsine was used for rapid staining of both, the plant and the fungal cells. The intricate spatial arrangements of the plant and fungal cells were preserved by immobilization in the hydrophilic resin Unicryl?. Microtomy was used to section the resin-embedded roots or leaves until the desired plane was reached. The data sets generated by confocal laser scanning microscopy of the remaining resin stubs allowed the precise spatial reconstruction of complex structures in the plant–fungus associations of interest. This approach was successfully tested on tissues from ectomycorrhiza (Betula pendula), arbuscular mycorrhiza (Galium aparine; Polygala paniculata, Polygala rupestris), ericoid mycorrhiza (Calluna vulgaris), orchid mycorrhiza (Limodorum abortivum, Serapias parviflora) and on one leaf–fungus association (Zymoseptoria tritici on Triticum aestivum). The method provides an efficient visualisation protocol applicable with a wide range of plant–fungus symbioses.  相似文献   

5.
6.
<正>Plants have to overcome different types of environment stress including various insect and pathogen attacks during their life cycle. With long-term evolution, plants have developed sophisticated systems to recognize different biotic attacks and initiate an integrated defense network for survival. On the other hand, pathogens and insects have devised multiple strategies to adapt to their host plants. In the past  相似文献   

7.

Background

Chiral epoxides and diols are important synthons for manufacturing fine chemicals and pharmaceuticals. The epoxide hydrolases (EC 3.3.2.-) catalyze the hydrolytic ring opening of epoxides producing the corresponding vicinal diol. Several isoenzymes display catalytic properties that position them as promising biocatalytic tools for the generation of enantiopure epoxides and diols.

Scope of review

This review focuses on the present data on enzyme structure and function in connection to biocatalytic applications. Available data on biocatalysis employed for purposes of stereospecific ring opening, to produce chiral vicinal diols, and kinetic resolution regimes, to achieve enantiopure epoxides, are discussed and related to results gained from structure–activity studies on the enzyme catalysts. More recent examples of the concept of directed evolution of enzyme function are also presented.

Major conclusions

The present understanding of structure–activity relationships in epoxide hydrolases regarding chemical catalysis is strong. With the ongoing research, a more detailed view of the factors that influence substrate specificities and stereospecificities is expected to arise. The already present use of epoxide hydrolases in synthetic applications is expected to expand as new enzymes are being isolated and characterized. Refined methodologies for directed evolution of desired catalytic and physicochemical properties may further boost the development of novel and useful biocatalysts.

General significance

The catalytic power of enzymes provides new possibilities for efficient, specific and sustainable technologies to be developed for production of useful chemicals.  相似文献   

8.
Proteomics, one of the major tools of ‘omics’ is evolving phenomenally since the development and application of two-dimensional gel electrophoresis coupled with mass spectrometry at the end of twentieth century. However, the adoption and application of advanced proteomic technologies in understanding plant–pathogen interactions are far less, when compared to their application in other related fields of systems biology. Hence, this review is diligently focused on the advances in various proteomic approaches and their gamut of applications in different facets of phyto-pathoproteomics. Especially, the scope and application of proteomics in understanding fundamental concepts of plant–pathogen interactions such as identification of pathogenicity determinants (effector proteins), disease resistance proteins (resistance and pathogenesis-related proteins) and their regulation by post-translational modifications have been portrayed. This review, for the first time, presents a critical appraisal of various proteomic applications by assessing all phyto-pathoproteomics-related research publications that were published in peer-reviewed journals, during the period 2000–2016. This assessment has revealed the present status and contribution of proteomic applications in different categories of phyto-pathoproteomics, namely, cellular components, host–pathogen interactions, model and non-model plants, and utilization of different proteomic approaches. Comprehensively, the analysis highlights the burgeoning application of global proteome approaches in various crop diseases, and demand for acceleration in deploying advanced proteomic technologies to thoroughly comprehend the intricacies of complex and rapidly evolving plant–pathogen interactions.  相似文献   

9.
The sugars will eventually be exported transporters (SWEET) family of transporters in plants is identified as a novel class of sugar carriers capable of transporting sugars, sugar alcohols and hormones. Functioning in intercellular sugar transport, SWEETs influence a wide range of physiologically important processes. SWEETs regulate the development of sink organs by providing nutritional support from source leaves, responses to abiotic stresses by maintaining intracellular sugar concentrations, and host–pathogen interactions through the modulation of apoplastic sugar levels. Many bacterial and fungal pathogens activate the expression of SWEET genes in species such as rice and Arabidopsis to gain access to the nutrients that support virulence. The genetic manipulation of SWEETs has led to the generation of bacterial blight (BB)-resistant rice varieties. Similarly, while the overexpression of the SWEETs involved in sucrose export from leaves and pathogenesis led to growth retardation and yield penalties, plants overexpressing SWEETs show improved disease resistance. Such findings demonstrate the complex functions of SWEETs in growth and stress tolerance. Here, we review the importance of SWEETs in plant–pathogen and source–sink interactions and abiotic stress resistance. We highlight the possible applications of SWEETs in crop improvement programmes aimed at improving sink and source strengths important for enhancing the sustainability of yield. We discuss how the adverse effects of the overexpression of SWEETs on plant growth may be overcome.  相似文献   

10.
The role of post-translational modification of cell proteins with polyamines, a reaction catalyzed by a tissue tranglutaminase (TG, EC 2.3.2.13), in the induction of cell differentiation, represents an intriguing strategy to control cell proliferation and metastatic ability of different tumor cell lines. In this review, we focus our attention on the metabolic aspects of some natural compounds (methylxantines, retinoids and flavonoids) responsible of their antitumor effects exerted through the induction of TG activity in cancer cells.  相似文献   

11.
12.
Aplysinopsins are tryptophan-derived natural products that have been isolated from a variety of marine organisms and have been shown to possess a range of biological activities. In vitro receptor binding assays showed that of the 12 serotonin receptor subtypes, analogues showed a high affinity for the 5-HT2B and 5-HT2C receptor subtypes, with selectivity for 5-HT2B over 5-HT2C. While no conclusions could be drawn about the number and position of N-methylations, bromination at C-4 and C-5 of the indole ring resulted in greater binding affinities, with Ki’s as low as 35 nM. This data, combined with previous knowledge of the CNS activity of aplysinopsin analogs, suggested that these compounds may have potential as leads for antidepressant drugs. Compounds 3c, 3u, and 3x were evaluated in the chick anxiety–depression model to assess their in vivo efficacy. Compound 3c showed a modest antidepressant effect at a dose of 30 nM/kg in the animal model.  相似文献   

13.
A pot experiment was conducted to investigate the organic phosphorus (P) (phytate) utilization of Zea mays L. with different nitrogen (N) forms (NH4+ and NO3?) when both arbuscular mycorrhizal (AM) fungus (Funelliformis mosseae) and phosphate-solubilizing bacterium (PSB, Pseudomonas alcaligenes) are present. The soil was supplied with either KNO3 or (NH4)2SO4 (200 mg kg?1 N) with or without phytin (75 mg P kg?1). Results showed that the application of NH4+ to the soil in a plant–AM fungus–PSB system decreased rhizosphere pH and increased phosphatase activity. It also enhanced the mineralization rate of phytin, which resulted in the release of more inorganic P. The application of NO3? promoted mycorrhizal colonization and hyphal length density in the soil. The inorganic P in the hyphosphere decreased, but more P was transferred to the plant through the mycorrhizal hyphae. Hence, in addition, the application of the two different N forms did not significantly alter the content of plant P. The plant supplied with different N fertilizers acquired P through different mechanisms associated with other microbes. NH4+ application promoted phytin mineralization by decreasing soil pH, whereas NO3? application increased inorganic P uptake by strengthening the mycorrhizal pathway.  相似文献   

14.
《Process Biochemistry》2010,45(9):1517-1522
This study was to examine the effects of polysaccharides from a plant growth-promoting rhizobacterium (PGPR) Bacillus cereus on the growth and tanshinone production of Salvia miltiorrhiza hairy roots. A polysaccharide fraction designated BPS was isolated from the hot water extract of B. cereus cells by ethanol precipitation. BPS applied to the root culture at 100–400 mg l−1 a few days before the stationary growth phase stimulated the tanshinone accumulation of roots by about 7-fold (1.59 mg g−1 versus 0.19 mg g−1) and also notably promoted the root growth (15% increase in biomass). BPS was a polysaccharide–protein complex containing about 27% protein, which is essential for root growth promotion. BPS was separated by ultrafiltration into two molecular weight (MW) fractions, of which the high MW fraction (∼35.8 kDa) with higher protein content (∼31%) promoted the root growth while the lower MW fraction with lower protein content (∼17%) suppressed the growth. The results suggest that the polysaccharide portion of BPS was responsible for stimulating the tanshinone accumulation while the protein portion was responsible for promoting the hairy root growth. Polysaccharides from PGPR are potential sources of active elicitors and growth-promoting agents for plant roots in culture.  相似文献   

15.
Plant Molecular Biology - Short review focussing on the role and targeting of vacuolar substructure in plant immunity and pathogenesis. Plants lack specialized immune cells, therefore each plant...  相似文献   

16.
  1. Download : Download high-res image (258KB)
  2. Download : Download full-size image
Highlights► Rhizobacteria degrade a wide range of pollutants and efficiently colonize plant roots. ► Plants have an effect on the selection of their own rhizospheric microorganisms. ► Catabolic pathways can be induced by natural secondary plant products. ► Horizontal gene transfer has an important role in bioremediation. ► Manipulation of plant/microbe interactions could improve rhizoremediation outcomes.  相似文献   

17.
Studies of community assembly focus on finding rules that predict which species can become member of a plant community. Within a community, species can be categorized in two ways: functional groups classify species according to their functional traits, whereas generalized guilds group species based on their (co-)occurrence, spatial distribution and abundance patterns. This study searches for community assembly rules by testing for coherence among functional groups and generalized guilds, as well as for correlations between the individual functional traits and assembly features, in two wetland plant communities in South Africa. The classifications of functional groups and generalized guilds were not consistent. However, rhizome internode length was related to fine-scale spatial pattern, suggesting that in systems dominated by clonal species (including wetlands, where recruitment sites are strongly limited) community assembly may be strongly linked to colonization ability. Functional groups do not predict guilds in wetland plant communities, precluding their use as the basis for assembly rules. However, an explicit consideration of clonal strategies and their effect on species’ spatial patterns appears to be important for understanding community assembly in systems dominated by clonal plants.  相似文献   

18.
The proteins synthesized in the mitochondria of mouse and human cells grown in tissue culture were examined by electrophoresis in polyacrylamide gels. The proteins were labelled by incubating the cells in the presence of [(35)S]methionine and an inhibitor of cytoplasmic protein synthesis (emetine or cycloheximide). A detailed comparison between the labelled products of mouse and human mitochondrial protein synthesis was made possible by developing radioautograms after exposure to slab-electrophoresis gels. Patterns obtained for different cell types of the same species were extremely similar, whereas reproducible differences were observed on comparison of the profiles obtained for mouse and human cells. Four human-mouse somatic cell hybrids were examined, and in each one only components corresponding to mouse mitochondrially synthesized proteins were detected.  相似文献   

19.
The Qinghai–Tibet Plateau (QTP) is the highest and largest plateau in the world. It covers correspondingly wide geological, topographical, and climatic gradients, and thus hosts greater biodiversity than surrounding lowlands and other high elevation regions. Due to its extreme environmental and biological diversity, the QTP is an ideal region for studying adaptations of plant species under harsh environmental conditions at multiple evolutionary levels. Many recent ecological studies have revealed functions of distinctive morphological features of various plants in the region that improve their reproductive success. Examples include large and showy bracts, hairy inflorescences, and drooping flowers. Numerous other investigations have examined QTP plants' sexual systems, patterns of biomass allocations, and biotic interactions. This paper summarizes recent advances in understanding of morphological adaptations, plant–plant interactions, plant–pollinator interactions, floral color patterns, pollination adaptations, and resource allocation patterns of alpine plants of the QTP. The overall aim is to synthesize current knowledge of the general mechanisms of plant survival and reproduction in this fascinating region.  相似文献   

20.
It has well been known that human and rodents exhibit a preference for fats. This suggests the existence of an orosensory system responsible for the detection of dietary fats. A plasma membrane glycoprotein CD36, besides the role in the uptake of long-chain fatty acids (LCFAs) as well as oxidized low-density lipoprotein (OxLDL) in a variety of cells, has been postulated to be a candidate fat taste receptor on the tongue. Therefore, molecules that bind with CD36 to cause intracellular signaling but have fewer calories could be substitutes for dietary fats. In the present study, we developed an in vitro system for the screening of CD36 ligands using Chinese hamster ovary-K1 cells (CHO-K1) stably transfected with human or mouse CD36. When incubated with OxLDL labeled with fluorescence dye, the fluorescence was much higher in the transfected CHO-K1 cells than in non-transfected CHO-K1 cells. Incubation of the transfected cells with OxLDL caused a rapid phosphorylation of extracellular signal regulated kinase, and the degree was significantly higher compared with that in non-transfected CHO-K1 cells. The expression system using CHO-K1 cells could be a convenient tool to screen the novel ligands of CD36.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号