首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
镉和锌在皖景天细胞内的分布及化学形态   总被引:11,自引:0,他引:11  
运用差速离心法和化学试剂逐步提取法,分析了Cd和Zn在皖景天根、茎和叶的亚细胞分布及其化学形态.结果表明:10 μmol·L-1 Cd处理下,Cd在皖景天细胞内的主要分布位点是其可溶部分;在100 μmol·L-1 Cd处理下,Cd在根中主要分布在细胞壁、茎中主要分布在细胞壁和可溶部分、叶中超过90%的Cd分布在可溶部分.高Cd浓度处理时,皖景天根、茎和叶的细胞壁中Cd分布比例增加,而可溶部分Cd分布比例相对减少.在1和800 μmol·L-1 Zn处理条件下,Zn在皖景天根、茎和叶的主要分布位点是可溶部分;高Zn浓度处理时,皖景天叶、茎和根的可溶部分和细胞壁中Zn的分布比例无明显变化.细胞器中Zn和Cd分布都很少.Cd在皖景天根、茎和叶内主要以氯化钠提取态和水提取态存在,Zn在皖景天根、茎和叶内以多种化学形态存在.  相似文献   

2.
This study investigated the subcellular distribution and chemical forms of cadmium (Cd) in Hydrilla verticillata and the physiological mechanism underlying H. verticillata responses to Cd stress. Hydrilla verticillata was grown in a hydroponic system and was treated with various Cd concentrations (0, 10, 50, 100, 125, and 150?µM) for 7?days. Cadmium analysis of the leaves at the subcellular level showed that Cd was mainly stored in the soluble fraction (77.98–83.62%) and in smaller quantities in the cell wall fraction (11.99–17.30%) and the cell organelles (4.30–4.88%). The Cd taken up by H. verticillata was in different chemical forms. In the leaves and stems, the Cd was mostly extracted using 1?M NaCl and smaller amounts of Cd were extracted using 2% acetic acid. The malondialdehyde content significantly increased at all Cd concentrations, which indicated oxidative stress. The superoxide dismutase, guaiacol peroxidase, and catalase activities were enhanced. The proline, ascorbate, and glutathione contents increased at lower Cd concentrations, but decreased consistently as the Cd concentration rose. These results suggest that H. verticillata can be successfully used in the phytoremediation of Cd-contaminated water.  相似文献   

3.
Although Platycodon grandiflorum (Jacq.) A.DC. is a renowned medicine food homology plant, reports of excessive cadmium (Cd) levels are common, which affects its safety for clinical use and food consumption. To enable its Cd levels to be regulated or reduced, it is necessary to first elucidate the mechanism of Cd uptake and accumulation in the plant, in addition to its detoxification mechanisms. This present study used inductively couple plasma-mass-spectrometry to analyze the subcellular distribution and chemical forms of Cd in different tissues of P. grandiflorum. The experimental results showed that Cd was mainly accumulated in the roots [predominantly in the cell wall (50.96%–61.42%)], and it was found primarily in hypomobile and hypotoxic forms. The proportion of Cd in the soluble fraction increased after Cd exposure, and the proportion of insoluble phosphate Cd and oxalate Cd increased in roots and leaves, with a higher increase in oxalate Cd. Therefore, it is likely that root retention mechanisms, cell wall deposition, vacuole sequestration, and the formation of low mobility and low toxicity forms are tolerance strategies for Cd detoxification used by P. grandiflorum. The results of this study provide a theoretical grounding for the study of Cd accumulation and detoxification mechanisms in P. grandiflorum, and they can be used as a reference for developing Cd limits and standards for other medicine food homology plants.  相似文献   

4.
Bechmeria nivea (L.) Gaud. (Ramie) is a promising species for Cd phytoextraction with large biomass and fast growth rate. Nevertheless, little information is available on its tolerance mechanisms towards Cd. Determination of Cd distribution and chemical speciation in ramie is essential for understanding the mechanisms involved in Cd accumulation, transportation and detoxification. In the present study, ramie plants were grown in hydroponics with increasing Cd concentrations (0, 1, 3, 7 mg l?1). The subcellular distribution and chemical forms of Cd in different tissues were determined after 20 days exposure to this metal. To assess the effect of Cd uptake on plant performance, nitrate reductase activity in leaves and root activity were analyzed during the entire experimental period. Increased Cd level in the medium caused a proportional increase in Cd uptake, and the highest Cd concentration occurred in roots, followed by stems and leaves. Subcellular fractionation of Cd-containing tissues indicated that about 48.2–61.9% of the element was localized in cell walls and 30.2–38.1% in soluble fraction, and the lowest in cellular organelles. Cd taken up by ramie rapidly equilibrated among different chemical forms. Results showed that the greatest amount of Cd was found in the extraction of 1 M NaCl and 2% HAC, and the least in residues in all test tissues. In roots, the subdominant amount of Cd was extracted by d-H2O and 80% ethanol, followed by 0.6 M HCl. While in stems and leaves, the amount of 0.6 M HCl-extractable Cd was comparable with that extracted by 80% ethanol or d-H2O. 1 mg l?1 Cd stimulated nitrate reductase activity in leaves and root activity, while a concentration-dependent inhibitory effect was observed with increasing Cd concentration, particularly at 7 mg l?1 Cd. It could be suggested that the protective mechanisms evolved by ramie play an important role in Cd detoxification at relatively low Cd concentrations (below 3 mg l?1 Cd) but become restricted to maintain internal homeostasis with higher Cd stress.  相似文献   

5.
Subcellular distribution and chemical forms of cadmium in Morus alba L.   总被引:1,自引:0,他引:1  
Morus alba L. (mulberry) is a perennial woody tree and a species with great potential for Cd phyremediation owing to its large biomass and extensive root system. The mechanisms involved in Cd detoxification were investigated by analyzing the subcellular distribution and chemical forms of Cd in mulberry in the present study. These results indicated that 53.27–70.17% of Cd mulberry accumulated was stored in the root and only about 10% were in the leaves. Lots of the Cd was located in the cell wall of the mulberry root and in soluble fraction of the mulberry leaf. Moreover, in roots, the largest amount of Cd was in the form of undissolved Cd-phosphate. While in mulberry leaves and stems, most of the Cd was extracted by 2% Acetic acid and 0.6 M HCl, representing Cd-phosphate and Cd-oxalate. It could be concluded that the Cd combination with peptides and organo-ligands in vacuole of leaf or complexed with proteins or cellulose in the cell wall of root might be contributed to the tolerance of mulberry to Cd stress. The mulberry could be used to remediate the Cd polluted farmland soils.  相似文献   

6.
The effect of excessive Cd on the growth and metal uptake by leafy vegetables Brassica chinensis L. (cv. Wuyueman) and Brassica pekinensis (Lour.) Rupr. (cv. Qingyan 87-114) were studied in hydroponic solution culture. The Cd concentration higher than 10 μM significantly decreased the root elongation and leaf chlorophyll contents of both plant species. The shoots of B. pekinensis had significantly higher concentrations of total and water-soluble Cd than B. chinensis. The roots of both species accumulated more Cd than the shoots in all the Cd treatments. Most of the Cd in the roots was found in the cell walls. The shoot/root ratio of Cd concentrations in B. pekinensis was always greater than that in B. chinensis. But, the concentration and proportion of Cd in the cell walls in B. chinensis were higher than that in B. pekinensis. Cadmium treatments also increased the concentrations of total non-protein thiols (NPT) in the shoots of the both species. A significant correlation was found between the concentrations of soluble Cd and NPT in plant shoots.  相似文献   

7.
Soybean (Glycine max L.) plants grown in nutrient solution were exposed to 1 mM Cd(NO3)2 for 24 h. Dynamics of distribution of cadmium among its different forms (water soluble, Ca-exchangeable and complexed) in the intercellular space and the ratio of the intercellular and intracellular cadmium in roots, stems and leaves were studied. In roots, in the beginning of treatment the largest portion of Cd was found in the intercellular space and 1 h later Cd content started to decrease, so that between 13- and 24-h treatment an equilibrium was reached in which about 70 % of Cd was found inside cells. In stems, already after 1-h treatment, the Cd concentrations in the cells and intercellular space were similar, the equilibrium being disturbed after 13 h, so that after 24-h treatment 80 % of Cd was found inside cells. In leaves, up to the 13 h Cd distribution showed fluctuation, after that equilibrium was reached, with 70 % of intracellular Cd. The highest contents of all Cd forms in the intercellular space was observed in roots.  相似文献   

8.
Jie Xiong  Lingyao An  Han Lu  Cheng Zhu 《Planta》2009,230(4):755-765
To study the mechanisms of exogenous NO contribution to alleviate the cadmium (Cd) toxicity in rice (Oryza sativa), rice plantlets subjected to 0.2-mM CdCl2 exposure were treated with different concentrations of sodium nitroprusside (SNP, a NO donor), and Cd toxicity was evaluated by the decreases in plant length, biomass production and chlorophyll content. The results indicated that 0.1 mM SNP alleviated Cd toxicity most obviously. Atomic absorption spectrometry and fluorescence localization showed that treatment with 0.1 mM SNP decreased Cd accumulation in both cell walls and soluble fraction of leaves, although treatment with 0.1 mM SNP increased Cd accumulation in the cell wall of rice roots obviously. Treatment with 0.1 mM SNP in nutrient solution had little effect on the transpiration rate of rice leaves, but this treatment increased pectin and hemicellulose content and decreased cellulose content significantly in the cell walls of rice roots. Based on these results, we conclude that decreased distribution of Cd in the soluble fraction of leaves and roots and increased distribution of Cd in the cell walls of roots are responsible for the NO-induced increase of Cd tolerance in rice. It seems that exogenous NO enhances Cd tolerance of rice by increasing pectin and hemicellulose content in the cell wall of roots, increasing Cd accumulation in root cell wall and decreasing Cd accumulation in soluble fraction of leaves.  相似文献   

9.
Abstract

Concentrations of surface soil Zn and Cd from agricultural areas of the Henan Province were measured. About 234 soil samples were collected. Total metal analyses, sequential chemical fractionation which were divided into seven fractions according to the method of the Geological Survey Technical Standard (DD2005-03) set by the China Geological Survey were carried out on the samples. Total Cd and Zn concentrations of the topsoil were 0.1909 (0.1–0.549) and 63.07 (33.3–344.3) mg kg?1 respectively. Compared with the values permitted in China’s control standards for soil (GB 15618–1995) and background value in Henan Province, the soil samples showed high levels of Cd. The soil organic carbon has a significantly positive correlation with Cd and Zn concentration in the soil. Significant positive correlation between pH and Cd, Zn concentration was observed. On average, the order of Cd in each fraction was exchangeable, (27.3%)>weakly bound to organic matter; (22.7%)>strongly bound to organic matter; (16.4%)>residual; (15.1%)>carbonate; (12.1%)>Fe/Mn oxide bound; (4.5%)>water soluble; (2.0%), Zn was residual; (66.3%)>Fe/Mn oxide bound; (10.9%)> weakly bound to organic matter; (9.4%)> exchangeable; (6.0%)> strongly bound to organic matter; (3.9%)> carbonate (2.9%)> water soluble (0.6%). The accuracy of the sequential extraction was judged by the relative error (RE). RE for Cd ranged from 0 to 45% with a mean of 16.3%. RE for Zn ranged from 0.1 to 11.4% with a mean of 3.4%. On average, bioavailability index (BI) for Cd and Zn was 39.1% and 9.0% respectively. The mobility of the elements in the order Cd> Zn corresponds with the plant-availability of individual elements. Comparisons between activities of Cd2+ and Zn2+ calculated by Sauve semi-mechanistic equations and that of the water soluble fractions were demonstrated. The activities of Cd2+ and Zn2+ calculated by the semi-empirical equation are lower than its water soluble fraction.  相似文献   

10.
Impatiens walleriana plants accumulate sufficiently high concentrations of cadmium (Cd) for this species to be considered a potential Cd hyperaccumulator. Rooted cuttings were grown hydroponically for 25 and 50 days in solutions spiked with various Cd concentrations. The subcellular distribution and chemical forms of Cd in different organs were analyzed, and its upward translocation was also assessed. The plants accumulated large amounts of Cd; the Cd concentration in the roots and shoots reached 120–1900 and 60–1600 mg/kg, respectively. Regardless of the growth period, the Cd accumulated in the roots was primarily compartmentalized in the soluble fraction or ethanol and deionized water extractable chemical forms with high migration abilities. Translocation to the shoots was followed by an association of Cd mainly in the cell wall or with pectate and protein. The roots’ Cd showed a high migration capacity for predicting the shoots’ Cd concentrations. Different exposure periods significantly affected the subcellular distribution of Cd in the stems, and thus the upward translocation.  相似文献   

11.
Ma JF  Ueno D  Zhao FJ  McGrath SP 《Planta》2005,220(5):731-736
Thlaspi caerulescens (Ganges ecotype) is able to accumulate large concentrations of cadmium (Cd) and zinc (Zn) in the leaves without showing any toxicity, suggesting a strong internal detoxification. The distribution of Cd and Zn in the leaves was investigated in the present study. Although the Cd and Zn concentrations in the epidermal tissues were 2-fold higher than those of mesophyll tissues, 65–70% of total leaf Cd and Zn were distributed in the mesophyll tissues, suggesting that mesophyll is a major storage site of the two metals in the leaves. To examine the subcellular localisation of Cd and Zn in mesophyll tissues, protoplasts and vacuoles were isolated from plants exposed to 50 M Cd and Zn hydroponically. Pure protoplasts and vacuoles were obtained based on light-microscopic observation and the activities of marker enzymes of cytosol and vacuoles. Of the total Cd and Zn in the mesophyll tissues, 91% and 77%, respectively, were present in the protoplast, and all Cd and 91% Zn in the protoplast were localised in the vacuoles. Furthermore, about 70% and 86% of total Cd and Zn, respectively, in the leaves were extracted in the cell sap, suggesting that most Cd and Zn in the leaves is present in soluble form. These results indicate that internal detoxification of Cd and Zn in Thlaspi caerulescens leaves is achieved by vacuolar compartmentalisation.  相似文献   

12.
The cadmium hyperaccumulator Thlaspi praecox Wulfen (Brassicaceae) can accumulate unusually high amounts of Cd (>1,000 μg g?1 dry weight) in its seeds without drastically affecting seed viability. As embryonic tissues are the most sensitive to Cd toxicity, the aim of this study was to investigate the Cd coordination and ligand environment in seeds of field collected T. praecox using extended X-ray absorption fine structure (EXAFS), and to compare the Cd ligand environment to that in the vegetative tissues of the plant. In intact seeds and isolated embryos, almost two thirds of the Cd ligands were thiol groups (Cd-S-C-). In addition, there was coordination to phosphate groups via bridging oxygens (Cd-O-P-), as for phytate, although this ligand was not observed in the vegetative organs and tissues. In roots and shoots up to 80% of the Cd ligands were oxygen ligands that are provided by the cell walls and by organic acids stored in vacuoles. In leaf epidermis only a slightly higher percentage of oxygen ligands was detected, as compared to the mesophyll, making vacuolar compartmentation and binding to the cell walls the main detoxification mechanisms in both of these leaf tissues.  相似文献   

13.
Phytochelatins (PCs) are post-translationally synthesized thiol reactive peptides that play important roles in detoxification of heavy metal and metalloids in plants and other living organisms. The overall goal of this study is to develop transgenic plants with increased tolerance for and accumulation of heavy metals and metalloids from soil by expressing an Arabidopsis thaliana AtPCS1 gene, encoding phytochelatin synthase (PCS), in Indian mustard (Brassica juncea L.). A FLAG-tagged AtPCS1 gDNA, under its native promoter, is expressed in Indian mustard, and transgenic pcs lines have been compared with wild-type plants for tolerance to and accumulation of cadmium (Cd) and arsenic (As). Compared to wild type plants, transgenic plants exhibit significantly higher tolerance to Cd and As. Shoots of Cd-treated pcs plants have significantly higher concentrations of PCs and thiols than those of wild-type plants. Shoots of wild-type plants accumulated significantly more Cd than those of transgenic plants, while accumulation of As in transgenic plants was similar to that in wild type plants. Although phytochelatin synthase improves the ability of Indian mustard to tolerate higher levels of the heavy metal Cd and the metalloid As, it does not increase the accumulation potential of these metals in the above ground tissues of Indian mustard plants.  相似文献   

14.
The effect of cadmium (Cd) on fungal growth, Cd bioaccumulation and biosorption, and on the formation of potential heavy metal response indicators such as thiols, oxalate, and laccase was investigated in the white rot fungi Cerrena unicolor andAbortiporus biennis. Only the highest Cd concentration employed (200 μM) inhibited growth of C. unicolor, whereas already lower Cd concentrations caused decreasing mycelia dry weights in A. biennis. Cd biosorption onto the mycelial surface was the predominant Cd sequestration mechanism in C. unicolor. Surface-bound and bioaccumulated Cd concentrations were essentially in the same range in A. biennis, leading to considerably higher intracellular Cd concentrations in A. biennis than in C. unicolor. Oxalate and laccase were produced by both of the fungal strains and their extracellular levels were elevated upon Cd exposure. Oxalate concentrations and laccase titres were considerably higher in C. unicolor than in A. biennis. Both fungi responded to increasing Cd concentrations by increasing intracellular amounts of thiol compounds (cysteine, γ-glutamylcysteine, glutathione in both its reduced and oxidized form) but Cd application increased the amounts of thiols to a higher extend in A. biennis. Taken together, these species-specific responses towards Cd suggest that C. unicolor possesses a more efficient system than A. biennis to keep intracellular Cd concentrations low.  相似文献   

15.
Cadmium effects on nodule structure and changes in organic and amino acids, proteins, nutrients and some stress indicators were studied in nodules of white lupin (Lupinus albus L., cv. Multolupa). Plants were grown hydroponically on perlite for 49 d with (18 μM) or without Cd in the nutrient solution. Cadmium-treated plants showed decreases in leaf chlorophyll and shoot sucrose concentrations, but sucrose did not change in nodules. Cadmium application produced alterations in nodule cortex and infected zone structure. Furthermore, Cd supply caused a marked decrease in P, K, leghemoglobin, N–amino compounds, malate, succinate and soluble protein in the nodules. Conversely, the levels of lipid peroxidation and total thiols increased strongly. Results obtained suggest that white lupin nodules are Cd sensitive, in spite of Cd sequestering by cell walls and thiols. The main phytotoxic effects of Cd on nodule structure and function were the occlusion with glycoprotein of intracellular spaces of nodule cortex, alterations in symbiosomes, enrichment in Cd of cell walls and oxidative stress. Glycoprotein accumulation and leghemoglobin depletion may be considered useful indicators of Cd stress in white lupin nodules.  相似文献   

16.
Morphological, mineralogical, and chemical investigations were undertaken to determine the structure and composition of the cell walls of the comb in the nest of Vespa orientalis, Paravespula germanica, and Vespacrabro. Nests of V. orientalis were from three sites having different soil types, namely, Khamra soil, Gramosol soil, and organically rich soil from the city dump in Tel Aviv. Nests of P. germanica were from areas rich in organic matter, and those of V. crabro, shipped from Austria, were similarly comprised of organic matter. Structure and composition of cell walls in the three species differed; furthermore, grain size in the combs differed from that of particles in the surrounding soil.  相似文献   

17.
A pot experiment was carried out to study the effect of growth-promoting hormone diethyl aminoethyl hexanoate (DA-6) on Cd phytoextraction and detoxification in ryegrass. Foliar spray of DA-6 significantly enhanced Cd extraction efficiency (P < 0.05), with 1 μM DA-6 the most effective. At the subcellular level, 43–53% of Cd was soluble fraction and 23–46% in cell wall, and 9–25% in organelles. Chemical speciation analysis showed that 52.7–58.5% of Cd was NaCl extractable, 12.1–22.7% ethanol extractable, followed by other fractions. DA-6 alleviated metal toxicity by fixing more Cd in cell wall and decreasing Cd migration in plant. In conclusion, ryegrass tolerates Cd by cell wall compartmentalization along with protein and organic acids combination, and the treatment of 1 μM DA-6 appears to be optimal for enhancing the remediation efficiency of ryegrass for Cd contaminated soil.  相似文献   

18.
Abstract

The distribution and chemical forms of thallium (Tl) and cadmium (Cd) in Lemna minor have been investigated using extractants of different polarity, enzyme digestion and ultrafiltration and chromatographic methods. Over 80% of Tl and 60% of Cd taken up by the plant was found in aqueous soluble forms. Water was more efficient than ethanol in extracting both elements; about 30% of bound Cd was released by dilute HCI treatment and Cd was mainly bound to pectins and proteins in the cell wall fractions but only a small proportion of Tl was associated with these components. In the aqueous soluble extracts a sizeable proportion of Cd was complexed with soluble moieties, including proteins; whereas Tl seems to be mainly present in the free ionic form.  相似文献   

19.
Compartmentation of heavy metals on or within mycorrhizal fungi may serve as a protective function for the roots of forest trees growing in soils containing elevated concentrations of metals such as Cd and Zn. In this paper we present the first quantitative measurements by X‐ray microanalysis of heavy metals in high‐pressure frozen and cryosectioned ectomycorrhizal fungal hyphae. We used this technique to analyse the main sites of Cd and Zn in fungal cells of mantle and Hartig net hyphae and in cortical root cells of symbiotic Picea abies – Hebeloma crustuliniforme associations to gain new insights into the mechanisms of detoxification of these two metals in Norway spruce seedlings. The mycorrhizal seedlings were exposed in growth pouches to either 1 mM Cd or 2 mM Zn for 5 weeks. The microanalytical data revealed that two distinct Cd‐ and Zn‐binding mechanisms are involved in cellular compartmentation of Cd and Zn in the mycobiont. Whereas extracellular complexation of Cd occurred predominantly in the Hartig net hyphae, both extracellular complexation and cytosolic sequestration of Zn occurred in the fungal tissue. The vacuoles were presumed not to be a significant pool for Cd and Zn storage. Cadmium was almost exclusively localized in the cell walls of the Hartig net (up to 161 mmol kg ? 1 DW) compared with significantly lower concentrations in the cell walls of mantle hyphae (22 mmol kg ? 1 DW) and in the cell walls of cortical cells (15 mmol kg ? 1 DW). This suggests that the apoplast of the Hartig net is a primary accumulation site for Cd. Zinc accumulated mainly in the cell walls of the mantle hyphae (111 mmol kg ? 1 DW), the Hartig net hyphae (130 mmol kg ? 1 DW) and the cortical cells (152 mmol kg ? 1 DW). In addition, Zn occurred in high concentrations in the cytoplasm of the fungal mantle hyphae (up to 164 mmol kg ? 1 DW) suggesting that both the cell walls and the cytoplasm of fungal tissue are the main accumulation sites for Zn in P. abies resulting in decreased Zn transfer from the fungus to the root.  相似文献   

20.
Copper (Cu) accumulation in soils is becoming a major environmental problem. Elsholtzia splendens, a Cu-tolerant plant growing in Cu mine areas, can accumulate high levels of Cu. This study develops a systematic method of detecting the intracellular localization and different chemical forms of Cu to comprehensively understand the mechanisms involved in Cu tolerance and detoxification of E. splendens. Various chemical forms of Cu were absorbed by E. splendens, the highest proportion of which was stored in its cell walls (68 %) and vacuoles (42 %). Most of the Cu in the roots, stems and leaves were extracted by 2 % hydrate acetic acid (HAc) in controls. The distribution characteristics of Cu, particularly in the roots, were closely related to the Cu tolerance of E. splendens. In addition, the binding capacity of Cu to soluble salts or proteins decreased and its binding capacity to insoluble oxalate increased with the increasing Cu supply. These results indicated that Cu ions were integrated with compounds of low bioavailable, such as undissolved phosphate or oxalate, which contributed to the metal tolerance and detoxification of E. splendens. Cluster analysis, based on Cu abundance levels, reveals that correlations exist between the chemical forms of Cu and their intracellular locations, which in turn indicates a relationship between their migration activity and toxicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号