首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the present study, microwave treated Salvadora oleoides (MW-SO) has been investigated as a potential biosorbent for the removal of toxic methyl violet dye. A batch adsorption method was experimented for biosorptive removal of toxic methyl violet dye from the aqueous solution. The effect of various operating variables, viz., adsorbent dosage, pH, contact time and temperature on the removal of the dye was studied and it was found that nearly 99% removal of the dye was possible under optimum conditions. Kinetic study revealed that a pseudo-second-order mechanism was predominant and the overall process of the dye adsorption involved more than one step. Hence, in order to investigate the rate determining step, intra-particle diffusion model was applied. Adsorption equilibrium study was made by analyzing Langmuir, Freundlich, and Dubinin–Radushkevich (D–R) adsorption isotherm models and the biosorption data was found to be best represented by the Langmuir model. The biosorption efficiency of MW-SO was also compared with unmodified material, Salvadora oleoides (SO). It was found that the sorption capacity (qmax) increased from 58.5 mg/g to 219.7 mg/g on MW treatment. Determination of thermodynamic parameters such as free energy change (ΔG°), enthalpy change (ΔH°) and entropy change (ΔS°) confirmed the spontaneous, endothermic and feasible nature of the adsorption process. The preparation of MW-SO did not require any additional chemical treatment and a high percentage removal of methyl violet dye was obtained in much lesser time. Thus, it is in agreement with the principles of green chemistry. The results of the present research work suggest that MW-SO can be used as an environmentally friendly and economical alternative biosorbent for the removal of methyl violet dye from aqueous solutions.  相似文献   

2.
A green type composite biosorbent composed of pine, oak, hornbeam, and fir sawdust biomasses modified with cetyltrimethylammonium bromide (CTAB) was first used for biosorption of an unsafe synthetic food dye, Food Green 3 from liquid medium in this study. Batch studies were carried by observing the effects of pH, dye concentration, biosorbent amount, and contact time. The equilibrium data were analyzed using Freundlich, Langmuir, and Dubinin–Radushkevich equations. Freundlich model gave a better conformity than other equations. The maximum dye removal potential of biosorbent was found to be 36.6 mg/g based on Langmuir isotherm. The pseudo-first-order, pseudo-second-order, Elovich, and intra-particle diffusion models were applied to clarify the process kinetics of biosorption. The mechanism studies suggested the biosorption process obeying Elovich kinetics and involving pore diffusion. The estimated values of biosorption free energy from Dubinin–Radushkevich isotherm (E value <8 kJ/mol) and thermodynamic studies (0 < ΔG° < ?20 kJ/mol) implied a spontaneous, feasible, and physical process. Hence, this investigation suggested that the CTAB modified mix sawdust biomass could be a promising biosorbent for biosorption of such problematic dyes from impacted media.  相似文献   

3.
The study explores the adsorption potential of Chrysanthemum indicum biomass for nickel ion removal from aqueous solution. C. indicum flowers in raw (CIF-I) and biochar (CIF-II) forms were used as adsorbents in this study. Batch experiments were conducted to ascertain the optimum conditions of solution pH, adsorbent dosage, contact time, and temperature for varying initial Ni(II) ion concentrations. Surface area, surface morphology, and functionality of the adsorbents were characterized by Brunauer, Emmett, and Teller (BET) surface analysis, scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and Fourier transform infrared spectroscopy (FTIR). Adsorption kinetics were modeled using pseudo-first order, pseudo-second order, Elovich, intraparticle diffusion, Bangham's, and Boyd's plot. The equilibrium data were modeled using Langmuir, Freundlich, Temkin, and Dubinin–Radushkevich (D-R) isotherm models. Experimental data provided the best fit to pseudo-second-order kinetic model and Langmuir isotherm model for the adsorption of Ni(II) ion on both CIF-I and CIF-II with maximum adsorption capacities of 23.97 and 44.02 mg g?1, respectively. Thermodynamic analysis of the data proved the process to be spontaneous and endothermic in nature. Desorption studies were conducted to evaluate the possibility of reusing the adsorbents. Findings of the present study provide substantial evidence for the use of C. indicum flower as an eco-friendly and potential adsorbent for the removal of Ni(II) ions from aqueous solution.  相似文献   

4.
Abstract

A series of batch adsorption experiments were carried out, with the aim of removing cadmium ions from aqueous solutions and water samples using powdered marble wastes (PMW) as an effective inorganic sorbent. PMW is inexpensive, widespread, and may be considered as environmental problem. The main parameters (i.e. solution pH, sorbent and cadmium concentrations, stirring time, and temperature) influencing the sorption process were investigated. The results obtained for sorption of cadmium ions onto PMW are well described by the Freundlich and Langmuir models. The Dubinin-Radushkevick (D–R) isotherm model was applied to describe the nature of the adsorption of the metal ion; it was found that the adsorption process was chemical in nature. The thermodynamic parameters were also calculated from the Gibbs free energy change (ΔG°), enthalpy (AH°) and entropy (ΔS°). These parameters indicated that the adsorption process of cadmium(II) ions on PMW was spontaneous and endothermic in nature. Under the optimum experimental conditions employed the removal of ca ~100% of Cd2+ ions was attained. The procedure was successfully applied to removal of the cadmium ions from aqueous and various natural water samples. The adsorption mechanism is discussed.  相似文献   

5.
Chromium(VI) was removed from aqueous solution using sulfuric- and phosphoric-acid-activated Strychnine tree fruit shells (SSTFS and PSTFS) as biosorbents. Effects of various parameters such as adsorbent dose (0.02–0.1 g/L), temperature (303–333 K), agitation speed, solution pH (2–9), contact time, and initial Cr(VI) concentration (50–250 mg/L) were studied for a batch adsorption system. The optimum pH range for Cr(VI) adsorption was determined as 2. Equilibrium adsorption data were analyzed with isotherm models and the Langmuir and Freundlich models got best fitted values for SSTFS (R2 value – 0.994) and PSTFS (R2 value – 0.996), respectively. The maximum adsorption capacities of SSTFS and PSTFS were 100 and 142.85 mg/g, respectively. The biosorption process was well explained by pseudo-second-order kinetic model with higher R2 value (SSTFS – 0.996, PSTFS – 0.990) for both biosorbents. Characterization of biosorbents was done using Fourier transform infrared spectroscopy, scanning electron microscopy, elemental analysis, energy-dispersive X-ray analysis, and thermogravimetric analysis. Thermodynamic studies revealed the spontaneous, endothermic, and randomness in nature of the Cr(VI) adsorption process. Different concentrations of NaOH solutions were used to perform the desorption studies. The results demonstrated that both SSTFS and PSTFS can be used as an effective and low-cost biosorbent for removal of Cr(VI) from aqueous solutions.  相似文献   

6.
The influence of process variables in batch adsorption has been used to assess the removal of methylene blue dye from aqueous solution using pure and carbonized biomasses of water hyacinth and water spinach. Dried leaves of the water weeds were carbonized at temperature up to 750°C. The optimum removal of dye was achieved at pH 10, 30°C, and 55 min at a dye concentration of 10 mg/L. In an attempt to describe the adsorption process, the equilibrium isotherm for each adsorbent was determined using Langmuir and Freundlich adsorption isotherm models. Maximum adsorption capacities based on the Langmuir model for pure and carbonized water hyacinth were (mg/g) 7.05 and 2.07, respectively, whereas those of pure and carbonized water spinach were 1.25 and 5.32, respectively. It was observed that the equilibrium data were well fit by both the Freundlich and Langmuir isotherms as R 2 > .97. This study demonstrates that the two waterweeds are effective, environmentally friendly, and inexpensive biomaterials for the removal of color from industrial effluents.  相似文献   

7.
Rice husk, a lignocellulosic by-product of the agroindustry, was treated with alkali and used as a low-cost adsorbent for the removal of safranin from aqueous solution in batch adsorption procedure. In order to estimate the equilibrium parameters, the equilibrium adsorption data were analyzed using the following two-parameter isotherms: Freundlich, Langmuir, and Temkin. A comparison of linear and nonlinear regression methods in selecting the optimum adsorption isotherm was applied on the experimental data. Six linearized isotherm models (including four linearized Langmuir models) and three nonlinear isotherm models are thus discussed in this paper. In order to determine the best-fit isotherm predicted by each method, seven error functions namely, coefficient of determination (r 2), the sum of the squares of the errors (SSE), sum of the absolute errors (SAE), average relative error (ARE), hybrid fractional error-function (HYBRID), Marquardt's percent standard deviation (MPSD), and the chi-square test (χ2) were used. It was concluded that the nonlinear method is a better way to obtain the isotherm parameters and the data were in good agreement with the Langmuir isotherm model.  相似文献   

8.
Low-cost activated carbon was prepared from Spartina alterniflora by phosphoric acid activation for the removal of Pb(II) from dilute aqueous solution. The effect of experimental parameters such as pH, initial concentration, contact time and temperature on the adsorption was studied. The obtained data were fitted with the Langmuir and Freundlich equations to describe the equilibrium isotherms. The kinetic data were fitted with the Lagergren-first-order, pseudo-second-order and Elovich models. It was found that pH played a major role in the adsorption process. The maximum adsorption capacity for Pb(II) on S. alterniflora activated carbon (SAAC) calculated from Langmuir isotherm was more than 99 mg g−1. The optimum pH range for the removal of Pb(II) was 4.8–5.6. The Freundlich isotherm model was found to best describe the experimental data. The kinetic rates were best fitted to the pseudo-second-order model. Thermodynamic study showed the adsorption was a spontaneous exothermic process.  相似文献   

9.
In the present study a novel biomass, derived from the pulp of Saccharum bengalense, was used as an adsorbent material for the removal of Pb (II) ions from aqueous solution. After 50 minutes contact time, almost 92% lead removal was possible at pH 6.0 under batch test conditions. The experimental data was analyzed using Langmuir, Freundlich, Timken and Dubinin-Radushkevich two parameters isotherm model, three parameters Redlich—Peterson, Sip and Toth models and four parameters Fritz Schlunder isotherm models. Langmuir, Redlich—Peterson and Fritz-Schlunder models were found to be the best fit models. Kinetic studies revealed that the sorption process was well explained with pseudo second-order kinetic model. Thermodynamic parameters including free energy change (ΔG°), enthalpy change (ΔH°) and entropy change (ΔS°) have been calculated and reveal the spontaneous, endothermic and feasible nature of the adsorption process. The thermodynamic parameters of activation (ΔG #, ΔH #and ΔS #) were calculated from the pseudo-second order rate constant by using the Eyring equation. Results showed that Pb (II) adsorption onto SB is an associated mechanism and the reorientation step is entropy controlled.  相似文献   

10.
The development of a simple method to synthesize highly efficient and stable magnetic microsphere beads for sulfathiazole (STZ) removal from contaminated aqueous media was demonstrated in this study. Conocarpus (Conocarpus erectus L.) tree waste (CW) derived biochar (BC) was modified to fabricate chitosan-BC (CBC) and magnetic CBC (CBC-Fe) microsphere beads. Proximate, chemical, and structural properties of the produced adsorbents were investigated. Kinetics, equilibrium, and pH adsorption batch trials were conducted to evaluate the effectiveness of the synthesized adsorbents for STZ removal. All adsorbents exhibited the highest STZ adsorption at pH 5.0. STZ adsorption kinetics data was best emulated using pseudo-second order and Elovich models. The equilibrium adsorption data was best emulated using Langmuir, Freundlich, Redlich–Peterson, and Temkin models. CBC-Fe demonstrated the highest Elovich, pseudo-second order, and power function rate constants, as well as the highest apparent diffusion rate constant. Additionally, Langmuir isotherm predicted maximum adsorption capacity was the highest for CBC-Fe (98.67 mg g−1), followed by CBC (56.54 mg g−1) and BC (48.63 mg g−1). CBC-Fe and CBC removed 74.5%–108.8% and 16.2%–25.6% more STZ, respectively, than that of pristine BC. π-π electron-donor–acceptor interactions and Lewis acid-base reactions were the main mechanisms for STZ removal; however, intraparticle diffusion and H-bonding further contributed in the adsorption process. The higher efficiency of CBC-Fe for STZ adsorption could be due to its magnetic properties as well as stronger and conducting microsphere beads, which degraded the STZ molecules through generation of HO radicals.  相似文献   

11.
Lee YC  Chang SP 《Bioresource technology》2011,102(9):5297-5304
The aim of this research was to develop a low cost adsorbent for wastewater treatment. The prime objective of this study was to search for suitable freshwater filamentous algae that have a high heavy metal ion removal capability. This study evaluated the biosorption capacity from aqueous solutions of the green algae species, Spirogyra and Cladophora, for lead (Pb(II)) and copper (Cu(II)). In comparing the analysis of the Langmuir and Freundlich isotherm models, the adsorption of Pb(II) and Cu(II) by these two types of biosorbents showed a better fit with the Langmuir isotherm model. In the adsorption of heavy metal ions by these two types of biosorbents, chemical and physical adsorption of particle surfaces was perhaps more significant than diffusion and adsorption between particles. Continuous adsorption-desorption experiments discovered that both types of biomass were excellent biosorbents with potential for further development.  相似文献   

12.
The adsorption behavior of drin pesticides from aqueous solution onto acid treated olive stones (ATOS) was investigated using stir bar sorptive extraction and gas chromatography coupled with mass spectroscopy. The effects of sorbent particle size, adsorbent dose, contact time, concentration of pesticide solution and temperature on the adsorption processes were systematically studied in batch shaking sorption experiments. Maximum removal efficiency (94.8%) was reached for aldrin (0.5 mg L−1) using the fraction 63–100 μm of ATOS (solid/liquid ratio: 1 g L−1). Experimental data were modeled by Langmuir, Freundlich and Dubinin–Radushkevich (D–R) isotherms. The Freundlich isotherm model (R2 = 0.98–0.99) fitted the equilibrium data better than the Langmuir and D–R isotherm models, with low sum of error values (SE = 1.4–9.2%). The mean adsorption free energy derived from the D–R isotherm model (R2 = 0.95–0.99) showed that the adsorption of drin pesticides was taken place by weak physical forces, such as van der Waals forces and hydrogen bonding. The calculated thermodynamic parameters, ΔH, ΔS and ΔG prove that drin pesticides adsorption on ATOS was feasible, spontaneous and exothermic under examined conditions. The pseudo first order, pseudo second order kinetic and the intra-particle diffusion models were used to describe the kinetic data and rate constants were evaluated.  相似文献   

13.
Moringa oliferia seed pod was modified using orthophosphoric acid (H3PO4) and used as adsorbent for sequestering Rhodamine B (Rh-B) dye from aqueous solution. The acid-modified adsorbent (MOSPAC) was characterized using Scanning Electron microscopy (SEM), Fourier Transform Infra Red (FTIR), Energy Dispersive X-ray (EDX), pH point of zero charge (pHpzc) and Boehm Titration (BT) techniques, respectively. Operational parameters such as contact time, initial dye concentration, adsorbent dosage, pH and solution temperature were studied in batch process. Optimum dye adsorption was observed at pH 3.01. Equilibrium adsorption data was tested data using four different isotherm models: Langmuir, Freundlich, Temkin and Dubinin-Radushkevich. Langmuir isotherm model fitted most with maximum monolayer adsorption capacity of 1250 mg g–1. Pseudo-second-order kinetic model provided the best correlation for the experimental data. Thermodynamic study showed that the process is endothermic, spontaneous and feasible. MOSPAC is an effective adsorbent for the removal of RhB dye from aqueous solutions.  相似文献   

14.
A bench-scale integrated process based on submerged aerobic powdered activated carbon-membrane bioreactor (PAC-MBR) has been utilized and established for the treatment of landfill leachate. The results showed that the submerged PAC-MBR system effectively removed biodegradable trace organic compounds by the average removal rate about 71 % at optimum food to microorganism (F/M) ratio of 0.4 gCOD/g day under a HRT of 24 h. Adding nanofiltration (NF) process increased the treatment efficiency up to 99 %. Further, adding powdered activated carbon to activated sludge (AS) resulted in a higher adsorption capacity in comparison with AS. Adsorption isotherms were investigated and fitted by the Langmuir and Freundlich isotherm models in which the Langmuir model performed better. The specific oxygen uptake rate (SOUR) showed that adding PAC reduces the effects of COD on microorganism activities. NH3–N, TKN and Heavy metals removal efficiency amounted to 97 ± 2, 96 ± 2, and 99 ± 2 %, respectively.  相似文献   

15.
An acetyl-11-keto-β-boswellic acid (AKBA) is potent anti-inflammatory agent found in Boswellia serrata oleogum resin. Adsorption characteristics of AKBA from B. serrata were studied using macroporous adsorbent resin to understand separation and adsorption mechanism of targeted molecules. Different macroporous resins were screened for adsorption and desorption of AKBA and Indion 830 was screened as it showed higher adsorption capacity. The kinetic equations were studied and results showed that the adsorption of AKBA on Indion 830 was well fitted to the pseudo first-order kinetic model. The influence of two parameters such as temperature (298, 303, and 308?K) and pH (5–8) on the adsorption process was also studied. The experimental data was further investigated using Langmuir, Freundlich, and Temkin isotherm models. It was observed that Langmuir isotherm model was found to be the best fit for AKBA adsorption by Indion 830 and highest adsorption capacity (50.34?mg/g) was obtained at temperature of 303?K. The values of thermodynamic parameters such as the change of Gibbs free energy (ΔG*), entropy (ΔS*), and enthalpy (ΔH*), indicated that the process of adsorption was spontaneous, favourable, and exothermic.  相似文献   

16.
In the present study, the interactions between chitosan-coated magnetic nanoparticles (C-MNP) and Trichoderma sp. spores as well as Kluyveromyces marxianus cells were studied. By Plackett–Burman design, it was demonstrated that factors which directly influenced on yeast cell immobilization and magnetic separation were inoculum and C-MNP quantity, stirring speed, interaction time, and volume of medium, while in the case of fungal spores, the temperature also was disclosed as an influencing factor. Langmuir and Freundlich models were applied for the mathematical analysis of adsorption isotherms at 30°C. For Trichoderma sp. spore adsorption isotherm, the highest correlation coefficient was observed for lineal function of Langmuir model with a maximum adsorption capacity at 5.00E?+?09 spores (C-MNP g?1). Adsorption isotherm of K. marxianus cells was better adjusted to Freundlich model with a constant (Kf) estimated as 2.05E?+?08 cells (C-MNP g?1). Both systems may have a novel application in fermentation processes assisted with magnetic separation of biomass.  相似文献   

17.
Many studies have been carried out on the biosorption capacity of different kinds of biomass. However, reports on the kinetic and equilibrium study of the biosorption process are limited. In our experiments, the removal of Cr(VI) from aqueous solution was investigated in a batch system by sorption on the dead cells of Bacillus licheniformis isolated from metal-polluted soils. Equilibrium and kinetic experiments were performed at various initial metal concentrations, pH, contact time, and temperatures. The biomass exhibited the highest Cr(VI) uptake capacity at 50°C, pH 2.5 and with the initial Cr(VI) concentration of 300 mg/g. The Langmuir and Freundlich models were considered to identify the isotherm that could better describe the equilibrium adsorption of Cr(VI) onto biomass. The Langmuir model fitted our experimental data better than the Freundlich model. The suitability of the pseudo first-order and pseudo second-order kinetic models for the sorption of Cr(VI) onto Bacillus licheniformis was also discussed. It is better to apply the pseudo second-kinetic model to describe the sorption system.  相似文献   

18.
Arsenic is hazardous and causes several ill effects on human beings. Phytoremediation is the use of aquatic plants for the removal of toxic pollutants from external media. In the present research work, the removal efficiency as well as the arsenic uptake capacity of duckweed Lemna minor has been studied. Arsenic concentration in water samples and plant biomass were determined by AAS. The relative growth factor of Lemna minor was determined. The duckweed had potential to remove as well as uptake arsenic from the aqueous medium. Maximum removal of more than 70% arsenic was achieved at initial concentration of 0.5 mg/l arsenic on 15th day of experimental period of 22 days. Removal percentage was found to decrease with the increase in initial concentration. From BCF value, Lemna minor was found to be a hyperaccumulator of arsenic at initial concentration of 0.5 mg/L, such that accumulation decreased with increase in initial arsenic concentration.  相似文献   

19.
The present study investigates the ability of two genus of duckweed (Lemna minor and Spirodela polyrhiza) to phytoremediate cadmium from aqueous solution. Duckweed was exposed to six different cadmium concentrations, such as, 0.5, 1.0, 1.5, 2.0, 2.5, and 3.0 mg/L and the experiment was continued for 22 days. Water samples were collected periodically for estimation of residual cadmium content in aqueous solution. At the end of treatment period plant samples were collected and accumulated cadmium content was measured. Cadmium toxicity was observed through relative growth factor and changes in chlorophyll content. Experimental results showed that Lemna minor and Spirodela polyrhiza were capable of removing 42–78% and 52–75% cadmium from media depending upon initial cadmium concentrations. Cadmium was removed following pseudo second order kinetic model. Maximum cadmium accumulation in Lemna minor was 4734.56 mg/kg at 2 mg/L initial cadmium concentration and 7711.00 mg/kg in Spirodela polyrhiza at 3 mg/L initial cadmium concentration at the end of treatment period. Conversely in both cases maximum bio-concentration factor obtained at lowest initial cadmium concentrations, i.e., 0.5 mg/L, were 3295.61 and 4752.00 for Lemna minor and Spirodela polyrhiza respectively. The present study revealed that both Lemna minor and Spirodela polyrhiza was potential cadmium accumulator.  相似文献   

20.
Batch experiments were performed to determine the cadmium absorption capacity of two plant growth–promoting rhizobacteria at different pH levels and in different cadmium concentrations. Comparison of the mean metal removal from two species of bacteria studied showed that Pseudomonas florescence is the superior species for removing cadmium at all cadmium concentrations. The maximum cadmium absorption by P. florescence and P. putida were at 5 mg/L of cadmium concentration in pH 6 and 7, respectively. The applicability of the Langmuir and Freundlich isotherm models was surveyed. Comparison of two isotherm parameters (Q m and a) further confirmed that P. fluorescence was better at binding cadmium ions (52.6 and 7.7 mg/g, respectively). Adsorption reaction also was considered by Fourier transform infrared (FTIR) spectroscopy. The FTIR analysis implied that the principal functional sites in the bacterial cell walls were phosphoryl and hydroxyl, carboxyl, amide I, amide II, and amine groups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号