首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The need to develop biomass-based domestic production of high-energy liquid fuels (biodiesel) for transportation can potentially be addressed by exploring microalgae with high lipid content. Selecting the strains with adequate oil yield and quality is of fundamental importance for a cost-efficient biofuel feedstock production based on microalgae. This work evaluated 29 strains of Chlorella isolated from Malaysia as feedstock for biodiesel based on volumetric lipid productivity and fatty acid profiles. Phylogenetic studies based on 18S rRNA gene revealed that majority of the strains belong to true Chlorella followed by Parachlorella. The strains were similarly separated into two groups based on fatty acid composition. Of the 18 true Chlorella strains, Chlorella UMACC187 had the highest palmitic acid (C16:0) content (71.3?±?4.2 % total fatty acids, TFA) followed by UMACC84 (70.1?±?0.7 %TFA), UMACC283 (63.8?±?0.7 %TFA), and UMACC001 (60.3?±?4.0 %TFA). Lipid productivity of the strains at exponential phase ranged from 34.53 to 230.38 mg L?1 day?1, with Chlorella UMACC050 attaining the highest lipid productivity. This study demonstrated that Chlorella UMACC050 is a promising candidate for biodiesel feedstock production.  相似文献   

2.
Evaluation of antioxidant capacities of green microalgae   总被引:2,自引:0,他引:2  
Three strains of green microalgae, Chlorococcum sp.C53, Chlorella sp. E53, and Chlorella sp.ED53 were studied for their antioxidant activities. Crude extracts of these microalgae in hot water and in ethanol were examined for their total phenolic contents and for their antioxidant capacities. In order to determine their phenolic contents, the Folin–Ciocalteu method was used. As for the determination of their antioxidant capacities, four different assays were used: (1) total antioxidant capacity determination; (2) DPPH radical scavenging assay; (3) ferrous ion chelating ability assay; and (4) inhibition of lipid peroxidation (using thiobarbituric acid reactive substance). For all the strains we have studied, their ethanolic extract showed more antioxidant activities than their hot water extract. Categorically, the ethanolic extract of Chlorella sp.E53 exhibited both the highest total phenolic content of 35.5?±?0.14 mg gallic acid equivalent (GAE) g?1 dry weight and the highest DPPH radical scavenging of 68.18?±?0.38 % at 1.4 mg mL?1 (IC50 0.81 mg mL?1), whereas Chlorella sp.ED53 showed both the highest ferrous ion chelation activity of 42.78?±?1.48 % at 1 mg mL?1 (IC50 1.23 mg mL?1) and the highest inhibition of lipid peroxidation of 87.96?±?0.59 % at 4 mg mL?1. This high level of inhibition is comparable to 94.42?±?1.39 % of butylated hydroxytoluene, a commercial synthetic antioxidant, at the same concentration.  相似文献   

3.
This study evaluated the bioremediation potential of two marine microalgae Chlorella sp. and Phormidium sp., both individually and in consortium, to reduce various pollutants in tannery wastewater (TW). The microalgae were grown in hazardous 100% TW for 20 days, and the reductions in biochemical oxygen demand (BOD), chemical oxygen demand (COD), total nitrogen (TN), total phosphorous (TP), chromium (Cr) and total dissolved solids (TDS) of the wastewater monitored periodically. Both marine isolates reduced the BOD and COD by ≥90% in the consortium and by over 80% individually. Concentrations of TN and TP were reduced by 91.16% and 88%, respectively, by the consortium. Removal/biosorption efficiencies for chromium ranged from 90.17–94.45%. Notably, the TDS, the most difficult to deal with, were reduced by >50% within 20 days by the consortium. The novel consortium developed in this study reduced most of the ecologically harmful components in the TW to within the permissible limits of discharge in about 5 to 15 days of treatment. Thus, both the tested marine strains of Chlorella and Phormidium sp. are promising for bioremediating/detoxifying TW and adequately improve the water quality for safe discharge into open water bodies, in particular when used as a consortium.  相似文献   

4.
Phycoremediation ability of microalgae namely Oscillatoria acuminate and Phormidium irrigum were validated against the heavy metals from tannery effluent of Ranipet industrial area. The microalgae species were cultured in media containing tannery effluent in two different volumes and the parameters like specific growth rate, protein content and antioxidant enzyme activities were estimated. FTIR spectroscopy was carried out to know the sorption sites interaction. The antioxidant enzymes namely superoxide dismutase (SOD), catalase (CAT) and glutathione (GSH) contents were increased in microalgae species indicating the free radical scavenging mechanism under heavy metal stress. SOD activity was 0.502 and 0.378 units/gram fresh weight, CAT activity was 1.36 and 0.256 units/gram fresh weight, GSH activity was 1.286 and 1.232 units/gram fresh weight respectively in the effluent treated microalgae species. Bio sorption efficiency for Oscillatoria acuminate and Phormidium irrigum was 90% and 80% respectively. FTIR analysis revealed the interaction of microalgae species with chemical groups present in the tannery effluent. From the results, the microalgae Oscillatoria acuminate possess high antioxidant activity and bio sorption efficiency when compared to Phormidium irrigum and hence considered useful in treating heavy metals contaminated effluents.  相似文献   

5.
There has been considerable interest in cultivation of green microalgae (Chlorophyta) as a source of lipid that can alternatively be converted to biodiesel. However, almost all mass cultures of algae are carbon-limited. Therefore, to reach a high biomass and oil productivities, the ideal selected microalgae will most likely need a source of inorganic carbon. Here, growth and lipid productivities of Tetraselmis suecica CS-187 and Chlorella sp were tested under various ranges of pH and different sources of inorganic carbon (untreated flue gas from coal-fired power plant, pure industrial CO2, pH-adjusted using HCl and sodium bicarbonate). Biomass and lipid productivities were highest at pH 7.5 (320?±?29.9 mg biomass L?1 day?1and 92?±?13.1 mg lipid L?1 day?1) and pH 7 (407?±?5.5 mg biomass L?1 day?1 and 99?±?17.2 mg lipid L?1 day?1) for T. suecica CS-187 and Chlorella sp, respectively. In general, biomass and lipid productivities were pH 7.5?>?pH 7?>?pH 8?>?pH 6.5 and pH 7?>?pH 7.5?=?pH 8?>?pH 6.5?>?pH 6?>?pH 5.5 for T. suecica CS-187 and Chlorella sp, respectively. The effect of various inorganic carbon on growth and productivities of T. suecica (regulated at pH?=?7.5) and Chlorella sp (regulated at pH?=?7) grown in bag photobioreactors was also examined outdoor at the International Power Hazelwood, Gippsland, Victoria, Australia. The highest biomass and lipid productivities of T. suecica (51.45?±?2.67 mg biomass L?1 day?1 and 14.8?±?2.46 mg lipid L?1 day?1) and Chlorella sp (60.00?±?2.4 mg biomass L?1 day?1 and 13.70?±?1.35 mg lipid L?1 day?1) were achieved when grown using CO2 as inorganic carbon source. No significant differences were found between CO2 and flue gas biomass and lipid productivities. While grown using CO2 and flue gas, biomass productivities were 10, 13 and 18 %, and 7, 14 and 19 % higher than NaHCO3, HCl and unregulated pH for T. suecica and Chlorella sp, respectively. Addition of inorganic carbon increased specific growth rate and lipid content but reduced biomass yield and cell weight of T. suecica. Addition of inorganic carbon increased yield but did not change specific growth rate, cell weight or content of the cell weight of Chlorella sp. Both strains showed significantly higher maximum quantum yield (Fv/Fm) when grown under optimum pH.  相似文献   

6.
Thirty Chlorella and 30 Scenedesmus strains grown in nitrogen-stressed conditions (70 mg L?1 N) were analyzed for biomass accumulation, lipid productivity, protein, and fatty acid (FA) composition. Scenedesmus strains produced more biomass (4.02?±?0.73 g L?1) after 14 days in culture compared to Chlorella strains (2.57?±?0.12 g L?1). Protein content decreased and lipid content increased from days 8 to 14 with an increase in triacylglycerol (TAG) accumulation in most strains. By day 14, Scenedesmus strains generally had higher lipid productivity (53.5?±?3.7 mg lipid L?1 day?1) than Chlorella strains (35.1?±?2.8 mg lipid L?1 day?1) with the lipids consisting mainly of C16–18 TAGs. Scenedesmus strains generally had a more suitable FA profile with higher amounts of saturated fatty acids and monounsaturated fatty acids (MUFAs) and a smaller polyunsaturated fatty acid (PUFA) component. Chlorella strains had a larger PUFA component and smaller MUFA component. The general trend in the FA composition of Chlorella strains was oleic > palmitic > α-linolenic = linoleic > eicosenoic > heptadecenoic > stearic acid. For Scenedesmus strains, the general trend was oleic > palmitic > linoleic > α-linolenic > stearic > eicosenoic > palmitoleic > heptadecenoic acid. The most promising strains with the highest lipid productivity and most suitable FA profiles were Scenedesmus sp. MACC 401, Scenedesmus soli MACC 721, and Scenedesmus ecornis MACC 714. Although Chlorella sp. MACC 519 had lower lipid productivity, the FA profile was good with a lower PUFA component compared to the other Chlorella strains analyzed and a low linolenic acid concentration.  相似文献   

7.
Because of the decreasing fossil fuel supply and increasing greenhouse gas (GHG) emissions, microalgae have been identified as a viable and sustainable feedstock for biofuel production. The major effect of the release of wastewater rich in organic compounds has led to the eutrophication of freshwater ecosystems. A combined approach of freshwater diatom cultivation with urban sewage water treatment is a promising solution for nutrient removal and biofuel production. In this study, urban wastewater from eutrophic Hussain Sagar Lake was used to cultivate a diatom algae consortium, and the effects of silica and trace metal enrichment on growth, nutrient removal, and lipid production were evaluated. The nano-silica-based micronutrient mixture Nualgi containing Si, Fe, and metal ions was used to optimize diatom growth. Respectively, N and P reductions of 95.1% and 88.9%, COD and BOD reductions of 91% and 51% with a biomass yield of 122.5 mg L?1 day?1 and lipid productivity of 37 mg L?1 day?1 were observed for cultures grown in waste water using Nualgi. Fatty acid profiles revealed 13 different fatty acids with slight differences in their percentage of dry cell weight (DCW) depending on enrichment level. These results demonstrate the potential of diatom algae grown in wastewater to produce feedstock for renewable biodiesel production. Enhanced carbon and excess nutrient utilization makes diatoms ideal candidates for co-processes such as CO2 sequestration, biodiesel production, and wastewater phycoremediation.  相似文献   

8.
Microalgae biofuel production can be feasible when a second function is added, such as wastewater treatment. Microalgae differ in uptake of phosphorus (P) and growth, making top performer identification fundamental. The objective of this screen was to identify dual‐purpose candidates capable of high rates of P removal and growth. Three freshwater – Chlorella sp., Monoraphidium minutum sp., and Scenedesmus sp. – and three marine – Nannochloropsis sp., N. limnetica sp., and Tetraselmis suecica sp. – species were batch cultured in 250 mL flasks over 16 days to quantitate total phosphorus (TP) removal and growth as a function of P loads (control, and 5, 10, and 15 mg L?1 enrichment of control). Experimental design used 100 μmol m?2 s?1 of light, a light/dark cycle of 14/10 h, and no CO2 enrichment. Phosphorus uptake was dependent on species, duration of exposure, and treatment, with significant interaction effects. Growth was dependant on species and treatment. Not all species showed increased P removal with increasing P addition, and no species demonstrated higher growth. Nannochloropsis sp and N. limnetica sp. performed poorly across all treatments. Two dual‐purpose candidates were identified. At the 10 mg L?1 treatment Monoraphidium minutum sp. removed 67.1% (6.66 mg L?1 ± 0.60 SE) of TP at day 8, 79.3% (7.86 mg L?1 ± 0.28 SE) at day 16, and biomass accumulation of 0.63 g L?1 ± 0.06 SE at day 16. At the same treatment Tetraselmis suecica sp. removed 79.4% (6.98 mg L?1 ± 0.24 SE) TP at day 8, 83.0% (7.30 mg L?1 ± 0.60 SE) at day 16, and biomass of 0.55 g L?1 ± 0.02 SE at day 16. These species merit further study using high‐density wastewater cultures and lipid profiling to assess suitability for a nutrient removal and biomass/biofuel production scheme.  相似文献   

9.
Aims: To compare effective cell disruption methods for lipid extraction from fresh water microalgae. Methods and Results: Chlorella sp., Nostoc sp. and Tolypothrix sp. were isolated from fresh water ponds in and around Gandhigram, Dindigul District, Tamilnadu, India, and used for lipid extraction. Different methods, including autoclaving, bead beating, microwave, sonication and a 10% NaCl solution treatments, were tested to identify the most effective cell disruption method. The total lipids from three microalgal species were extracted using a mixture of chloroform and methanol. Fatty acid composition was detected by gas chromatography (GC). Nostoc sp. and Tolypothrix sp. showed higher oleic acid content of 13·27 mg g?1 dw and 17·75 mg g?1 dw, respectively, whereas Chlorella sp. had high linoleic acid content of 17·61 mg g?1 dw when the cells were disrupted using the sonication method. Conclusions: Finally, the sonication method was found to be the most applicable and efficient method of lipid extraction from microalgae. The highest lipid content was extracted from Chlorella sp. Significance and Impact of the Study: In biodiesel production from microalgae, lipid extraction is a crucial step and important as cell disruption comes in this step. Therefore, the appropriate cell disruption method and device is a key to increase the lipid extraction efficiency.  相似文献   

10.
A microalgal strain was established from Cepsa's refinery wastewater treatment plant in Huelva (southwest of Spain). Genetic analysis of the chloroplastic rbcL gene encoding for the large subunit of the ribulose bisphosphate carboxylase enzyme (Rubisco) showed the strain had high homology with other known rbcL sequences of the genus Chlorella. The strain grows well autotrophically in minimum mineral medium, with a growth rate of 0.28 ± 0.012 day?1 and a biomass productivity of 138.9 ± 6.7 mg L?1 day?1. N‐starvation and/or over illumination with 650 µmol photons m?2 s?1 of PAR light on the cultures induced a significant increase in the intracellular content of lipids in this microalga. Total lipids were extracted from the strain biomass with 2:1 chloroform‐methanol, and they accounted for approximately 50% of the dry biomass. Polyunsaturated fatty acids (PUFAs) represented 60.4% of the total fatty acids found in the strain, thus making this biomass attractive as a high added‐value product source. The strain was able to grow efficiently in the refinery treated wastewater from which it was isolated, providing an attractive advantage for further development of more sustainable algal biomass production processes at reduced costs close to a petrol refinery area.  相似文献   

11.
Chlorella vulgaris (C. vulgaris) microalga was investigated as a new potential feedstock for the production of biodegradable lubricant. In order to enhance microalgae lipid for biolubricant production, mixotrophic growth of C. vulgaris was optimized using statistical analysis of Plackett–Burman (P-B) and response surface methodology (RSM). A cheap substrate-based medium of molasses and corn steep liquor (CSL) was used instead of expensive mineral salts to reduce the total cost of microalgae production. The effects of molasses and CSL concentration (cheap substrates) and light intensity on the growth of microalgae and their lipid content were analyzed and modeled. Designed models by RSM showed good compatibility with a 95% confidence level when compared to the cultivation system. According to the models, optimal cultivation conditions were obtained with biomass productivity of 0.123 g L?1 day?1 and lipid dry weight of 0.64 g L?1 as 35% of dry weight of C. vulgaris. The extracted microalgae lipid presented useful fatty acid for biolubricant production with viscosities of 42.00 cSt at 40°C and 8.500 cSt at 100°C, viscosity index of 185, flash point of 185°C, and pour point of ?6°C. These properties showed that microalgae lipid could be used as potential feedstock for biolubricant production.  相似文献   

12.
The biochemical contents and biodiesel production ability of three microalgal strains grown under different sodium nitrate, sodium carbonate, and ferric ammonium citrate (iron) levels were investigated. The highest biomass and lipid contents were found in Scenedesmus sp., Chlorella sp., and Chlamydomonas sp. when grown in normal BG‐11 containing sodium carbonate concentration at 0.03 g · L?1, and in normal BG‐11 containing iron concentration (IC) at 0.009 or 0.012 g · L?1. Increasing the sodium nitrate level increased the biomass content, but decreased the lipid content in all three microalgae. Among the three microalgae, Scenedesmus sp. showed the highest total lipid yield of 0.69 g · L?1 under the IC of 0.012 g · L?1. Palmitic and oleic acids were the major fatty acids of Scenedesmus sp. and Chlamydomonas sp. lipids. On the other hand, Chlorella sp. lipids were rich in palmitic, oleic, and linolenic acids, and henceforth contributing to poor biodiesel properties below the standard limits. The three isolated strains had a potential for biodiesel production. Nevertheless, Scenedesmus sp. from stone quarry pond water was the most suitable source for biodiesel production with tolerance toward the high concentration of sodium carbonate without the loss of its biodiesel properties.  相似文献   

13.
A natural assemblage of microalgae from a facultative lagoon system treating municipal wastewater was enriched for growth in the effluents of an anaerobic digester processing dairy waste. A green microalga with close resemblance to Chlorella sp. was found to be dominant after multiple cycles of sub‐culturing. Subsequently, the strain (designated as LLAI) was isolated and cultivated in 20× diluted digester effluents under various incident light intensities (255–1,100 µmoles m?2 s?1) to systematically assess growth and nutrient utilization. Our results showed that LLAI production increased with increasing incident light and a maximum productivity of 0.34 g L?1 d?1 was attained when the incident irradiance was 1,100 µmoles m?2 s?1. Lack of growth in the absence of light indicated that the cultures did not grow heterotrophically on the organic compounds present in the medium. However, the cultures were able to uptake organic N and P under phototrophic conditions and our calculations suggest that the carbon associated with these organic nutrients contributed significantly to the production of biomass. Overall, under high light conditions, LLAI cultures utilized half of the soluble organic nitrogen and >90% of the ammonium, orthophosphate, and dissolved organic phosphorus present in the diluted waste. Strain LLAI was also found to accumulate triacylglycerides (TAG) even before the onset of nutrient limitation and a lipid productivity of 37 mg‐TAG L?1 d?1 was measured in cultures incubated at an incident irradiance of 1,100 µmoles m?2 s?1. The results of this study suggest that microalgae isolates from natural environments are well‐suited for nutrient remediation and biomass production from wastewater containing diverse inorganic and organic nutrient species. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1336–1342, 2016  相似文献   

14.
The growth and total lipid content of four green microalgae (Chlorella sp., Chlorella vulgaris CCAP211/11B, Botryococcus braunii FC124 and Scenedesmus obliquus R8) were investigated under different culture conditions. Among the various carbon sources tested, glucose produced the largest biomass or microalgae grown heterotrophically. It was found that 1 % (w/v) glucose was actively utilized by Chlorella sp., C. vulgaris CCAP211/11B and B. braunii FC124, whereas S. obliquus R8 preferred 2 % (w/v) glucose. No significant difference in biomass production was noted between heterotrophic and mixotrophic (heterotrophic with light illumination/exposure) growth conditions, however, less production was observed for autotrophic cultivation. Total lipid content in cells increased by approximately two-fold under mixotrophic cultivation with respect to heterotrophic and autotrophic cultivation. In addition, light intensity had an impact on microalgal growth and total lipid content. The highest total lipid content was observed at 100 μmol m?2s?1 for Chlorella sp. (22.5 %) and S. obliquus R8 (23.7 %) and 80 μmol m?2s?1 for C. vulgaris CCAP211/11B (20.1 %) and B. braunii FC124 (34.9 %).  相似文献   

15.
There has been considerable interest on cultivation of green microalgae (Chlorophyta) as a source of lipid that can alternatively be converted to biodiesel. The ideal microalga characteristics are that it must grow well even under high cell density and under varying outdoor environmental conditions and be able to have a high biomass productivity and contain a high oil content (~25–30 %). The main advantage of Chlorophyta is that their fatty acid profile is suitable for biodiesel conversion. Tetraselmis suecica CS-187 and Chlorella sp. were grown semi-continuously in bag photobioreactors (120 L, W?×?L?=?40?×?380 cm) over a period of 11 months in Melbourne, Victoria, Australia. Monthly biomass productivity of T. suecica CS-187 and Chlorella sp. was strongly correlated to available solar irradiance. The total dry weight productivity of T. suecica and Chlorella sp. was 110 and 140 mg L?1 d?1, respectively, with minimum 25 % lipid content for both strains. Both strains were able to tolerate a wide range of shear produced by mixing. Operating cultures at lower cell density resulted in increasing specific growth rates of T. suecica and Chlorella sp. but did not affect their overall biomass productivity. On the other hand, self shading sets the upper limit of operational maximum cell density. Several attempts in cultivating Dunaliella tertiolecta CS-175 under the same climatic conditions were unsuccessful.  相似文献   

16.
The fatty acid composition, the effect of different concentrations of nitrogen (16.5-344 mg ?L?1), phosphorus (9–45 mg? L?1), iron (9–45 mg? L?1) and salinity levels (0–20 psu) on lipid production in the green microalga Scenedesmus dimorphus KMITL, a new strain isolated from a tropical country, Thailand, were studied. The alga was isolated from a freshwater fish pond, and cultured in Chlorella medium by varying one parameter at a time. The main fatty acid composition of this strain was C16–C18 (97.52 %) fatty acids. A high lipid content was observed in conditions of 16.5 mg? L?1-N, or 22 mg ?L?1-P, or 45 mg ?L?1-Fe, or 5 psu salinity, which accumulated lipids to 20.3?±?0.4, 19.4?±?0.2, 24.7?±?0.5, and 14.3?±?0.2 % of algal biomass, respectively. Increasing lipid content and lipid productivity was noted when the alga was cultured under high iron concentration and high salinity, as well as under reduced phosphorus conditions, whereas nitrogen limitation only resulted in an increased lipid content.  相似文献   

17.
Particulate fractions (10,000g) from pupae of Stomoxys calcitrans transfer [14C]-mannose from GDP-[14C]-mannose to dolichol monophosphate and proteins. Production of the mannosyl lipid was inhibited by Mn2+, UDP, GMP, GDP, and EDTA. The insect growth regulator diflubenzuron had no effect on mannosyl transferase activity. Dolichol monophosphate and Mg2+ stimulated mannosyl transferase activity. The mannosyl lipid product was identified as mannosyl-phosphoryl-dolichol (Man-P-Dol). The apparent Km and Vmax values for the formation of Man-P-Dol using GDP-[14C]-Man while holding dolichol phosphate constant were 2.4 ± 0.9 μM and 9.4 ± 2.3 pmol Man-P-Dol·min?1·mg?1 protein, respectively. The apparent Km and Vmax values using dólichol phosphate while holding GDP-Man constant were 2.2 ± 1.2 μM and 18.5 ± 1.7 pmol Man-P-Dol·min?1·mg?1 protein.  相似文献   

18.
Cultivation temperature is one of the major factors affecting the growth and lipid accumulation of microalgae. In this study, the effects of temperature on the growth, lipid content, fatty acid composition and biodiesel properties of the marine microalgae Chaetoceros sp. FIKU035, Tetraselmis suecica FIKU032 and Nannochloropsis sp. FIKU036 were investigated. These species were cultured at different temperatures (25, 30, 35 and 40 °C). The results showed that the specific growth rate, biomass and lipid content of all microalgae decreased with increasing temperature. With regards to fatty acids, the presence of saturated fatty acids (SFAs) in T. suecica FIKU032 and Nannochloropsis sp. FIKU036 decreased with increasing temperature, in contrast with polyunsaturated fatty acids (PUFAs). Moreover, Chaetoceros sp. FIKU035 was the only species that could grow at 40 °C. The highest lipid productivity was observed in Chaetoceros sp. FIKU035 when cultivated at 25 °C (66.73 ± 1.34 mg L?1 day?1) and 30 °C (61.35 ± 2.89 mg L?1 day?1). Moreover, the biodiesel properties (cetane number, cold filter plugging point, kinematic viscosity and density) of the lipids obtained from this species were in accordance with biodiesel standards. This study indicated that Chaetoceros sp. FIKU035 can be considered as a suitable species for biodiesel production in outdoor cultivation.  相似文献   

19.
The effect of various macroalgal diets on the growth of grow-out (>20 mm shell length) South African abalone Haliotis midae was investigated on a commercial abalone farm. The experiment consisted of four treatments: fresh kelp blades (Ecklonia maxima (Osbeck) Papenfuss) (c. 10% protein); farmed, protein-enriched Ulva lactuca Linnaeus (c. 26% protein) grown in aquaculture effluent; wild U. lactuca (c. 20% protein); and a combination diet of kelp blades + farmed U. lactuca. Abalone grew best on the combination diet (0.423 ± 0.02% weight d?1 SGR [specific growth rate]; 59.593 ± 0.02 ?m d?1 DISL [daily increment in shell length]; 1.093 final CF [condition factor]) followed by the kelp only diet (0.367 ± 0.02% weight d?1 SGR; 53.148 ± 0.02 ?m d?1 DISL; 1.047 final CF), then the farmed, protein-enriched U. lactuca only diet (0.290 ± 0.02% weight d?1 SGR; 42.988 ± 0.03 um d”1 DISL; 1.013 final CF) that in turn outperformed the wild U. lactuca only diet (-0.079 ± 0.01% weight d?1 SGR; 3.745 ± 0.02 ?m d”?1 DISL; 0.812 final CF). The results suggest that protein alone could not have accounted for the differences produced by the varieties of U. lactuca and that the gross energy content is probably important.  相似文献   

20.
Hydroxytyrosol‐rich extract (HRE) and hydroxytyrosol‐rich olive mill wastewater (HROMW) were used as exogenous growth enhancers to stimulate tomato seedling vigor. The tomato seeds soaking in 10% w/v HROMW or HRE solutions were optimum in maximally enhancing seedling performance according to biochemical seed vigor parameters. Biochemical parameters as the average glucose‐6‐phosphate dehydrogenase (G6PDH) activity in HRE‐treated seeds (915.11 nmoles min?1 mg?1 protein) was higher than control (629.58 nmoles min?1 mg?1 protein) and correlated with the increased phenolic content (3530 μg g?1 fw) and 1,1‐diphenyl‐2‐picrylhydrazyl (DPPH)‐based antioxidant activity (70.60%), respectively. Some key enzymes, guaiacol peroxidase (GPX) (6100.65 nmoles min?1 mg?1 protein) and catalase (2.04 μmoles min?1 mg?1 protein), were also higher in response to treatments and correlated with enhanced phenolic content and antioxidant activity. This study supports the hypothesis that the exogenous phenolic application stimulates the pentose phosphate pathway through an over‐expression of endogenous phenolic synthesis and an increase in free‐radical scavenging antioxidant activity. Therefore, the current study indicates the enhancement of seed vigor by HRE especially and HROMW as reflected by the stimulation of biochemical responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号