首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Rice DNAs from a gall midge resistant variety, Abhaya, a susceptible variety, Tulsi and their F3 progeny were screened using 500 random primers in conjunction with bulked-segregant analysis in a polymerase chain reaction (PCR) with a view to detecting random amplified polymorphic DNAs (RAPDs) linked to the gene, Gm4t, which confers resistance to gall midge, a dipteran insect pest of rice. A total of 454 primers were able to produce a distinct amplification pattern, and 3695 bands/loci were amplified between the phenotypically different parents. Of these, 304 bands were polymorphic between the parents, with 19 being phenotypespecific. One of these primers, E20, amplified 2 bands, E20570 and E20583, which are tightly linked to resistance and susceptibility, respectively. These specific bands were cloned and sequenced, and a 94% sequence homology was found between the two fragments. Two specific 20-mer oligonucleotides were synthesized, based on the sequence information of E20583, for use in PCR amplification directly from genomic DNAs. These PCR primers were able to amplify phenotype-specific bands, a 583-bp fragment in susceptible F3 lines and a 570-bp fragment in resistant F3 lines that had been derived from a cross between the parents, indicating their potential and utility for marker-aided selection of the Gm4t gene in rice. Its use would facilitate the early and efficient selection of resistant genes in plant breeding programmes and even in those areas where the insect is not known to occur. These phenotype-specific bands are single-copy sequences and are being mapped to ascertain their chromosomal location in rice.  相似文献   

2.
 A PCR-based marker (E20570) linked to the gene Gm4t, which confers resistance to a dipteran pest gall midge (Orseolia oryzae), has been mapped using the restriction fragment length polymorphism (RFLP) technique in rice. Gm4t is a dominant resistance gene. We initially failed to detect useful polymorphism for this marker in a F3 mapping population derived from a cross between two indica parents, ‘Abhaya’בShyamala’, with as many as 35 restriction enzymes. ‘Abhaya’ carries the resistance gene Gm4t and ‘Shyamala’ is susceptible to gall midge. Subsequently, E20570 was mapped using another mapping population represented by a F2 progeny from a cross between ‘Nipponbare’, a japonica variety, and ‘Kasalath’, an indica variety, in which the gene Gm4t was not known to be present. Gm4t mapped onto chromosome 8 between markers R1813 and S1633B. Our method, thus, presents an alternative way of mapping genes which otherwise would be difficult to map because of a lack of polymorphism between closely related parents differing in desired agronomic traits. Received: 1 April 1997 / Accepted: 13 May 1997  相似文献   

3.
Gm2 is dominant gene conferring resistance to biotype 1 of gall midge (Orseolia oryzae Wood-Mason), the major dipteran pest of rice. The gene was mapped by restriction fragment length polymorphism (RFLP) analysis of a set of 40 recombinant inbred lines derived from a cross between the resistant variety Phalguna and the susceptible landrace ARC 6650. The gene is located on chromosome 4 at a position 1.3 cM from marker RG329 and 3.4 cM from RG476. Since the low (28%) polymorphism of this indica x indica cross hindered full coverage of the genome with RFLP markers, the mapping was checked by random amplified polymorphic DNA (RAPD)/bulked segregant analysis. Through the use of 160 RAPD primers, the number of polymorphic markers was increased from 43 to 231. Two RAPD primers amplified loci that co-segregated with resistance/susceptibility. RFLP mapping of these loci showed that they are located 0.7 cM and 2.0 cM from RG476, confirming the location of Gm2 in this region of chromosome 4. Use of these DNA markers will accelerate breeding for gall midge resistance by permitting selection of the Gm2 gene independently of the availability of the insect.  相似文献   

4.
The inheritance of resistance in the rice cultivars Phalguna, ARC5984, ARC 5158, Veluthacheera, and T1477 to the Asian rice gall midge biotype 2 was studied under both natural and artificial infestation conditions against the susceptible cultivars Jaya and IR20. A single recessive gene in Veluthacheera and two recessive complementary genes in T1477 control resistance. Phalguna and ARC5984 possess a single dominant gene while ARC5158 has a single dominant and a single recessive gene for resistance. Allelism studies showed that genes for resistance in Veluthacheera and T1477 are allelic but non-allelic to the resistance genes in Phalguna and ARC5984, which are allelic to each other. Genes for resistance in ARC5158 are allelic to resistance genes of the other four donors. There was no cytoplasmic inhibition of resistance by the susceptible parents.  相似文献   

5.
Rice blast, caused byPyricularia grisea, is a major production constraint in many parts of the world. The Korean rice variety Tongil showed high levels of resistance for about six years when widely planted under highly disease-conducive conditions, before becoming susceptible. Tongil was found to carry a single dominant gene, designatedPi-10t, conferring resistance to isolate 106 of the blast pathogen from the Philippines. We report here the use of bulked segregant RAPD analysis for rapid identification of DNA markers linked toPi-10t. Pooled DNA extracts from five homozygous blast-resistant (RR) and five susceptible (rr) BC3F2 plants, derived from a CO39 × Tongil cross, were analyzed by RFLP using 83 polymorphic probes and by RAPD using 468 random oligomers. We identified two RAPD markers linked to thePi-10t locus: RRF6 (3.8 ± 1.2 cM) and RRH18 (2.9 ± 0.9 cM). Linkage of these markers withPi-10t was verified using an F2 population segregating forPi-10t. The two linked RAPD markers mapped 7 cM apart on chromosome 5. Chromosomal regions surrounding thePi-10t gene were examined with additional RFLP markers to define the segment introgressed from the donor genome.Pi-10t is likely to be a new blast-resistance locus, because no other known resistance gene has been mapped on chromosome 5. These tightly linked RAPD markers could facilitate early selection of thePi-10t locus in rice breeding programmes.  相似文献   

6.
The Pi20(t) gene was determined to confer a broad-spectrum resistance against diverse blast pathotypes (races) in China based on inoculation experiments utilizing 160 Chinese Magnaporthe oryzae (formerly Magnaporthe grisea) isolates, among which isolate 98095 can specifically differentiate the Pi20(t) gene present in cv. IR24. Two flanking and three co-segregating simple sequence repeat (SSR) markers for Pi20(t), located near the centromere region of chromosome 12, were identified using 526 extremely susceptible F2 plants derived from a cross of Asominori, an extremely susceptible cultivar, with resistant cultivar IR24. The SSR OSR32 was mapped at a distance of 0.2 cM from Pi20(t), and the SSR RM28050 was mapped to the other side of Pi20(t) at a distance of 0.4 cM. The other three SSR markers, RM1337, RM5364 and RM7102, co-segregated with Pi20(t). RM1337 and RM5364 were found to be reliable markers of resistance conditioned by Pi20(t) in a wide range of elite rice germplasm in China. As such, they are useful tags in marker-assisted rice breeding programs aimed at incorporating Pi20(t) into advanced rice breeding lines and, ultimately, at obtaining a durable and broad spectrum of resistance to M. oryaze. Wei Li and Cailin Lei contributed equally to this work.  相似文献   

7.
Rice blast, caused by the fungal pathogen Pyricularia grisea, is a serious disease affecting rice-growing regions around the world. Current methods for identification of blast-resistant germplasm and progeny typically utilize phenotypic screening. However, phenotypic screens are influenced by environmental conditions and the presence of one resistance gene can sometimes phenotypically mask other genes conferring resistance to the same blast race. Pi-z is a dominant gene located on the short arm of chromosome 6 that confers complete resistance to five races of blast. Using sequence data found in public databases and degenerate primer pairs based on the P-loop, nucleotide binding sites and kinase domain motifs of previously cloned resistance genes, we have developed PCR-based DNA markers that cosegregate with the gene. These markers are polymorphic in a wide range of germplasm, including the narrow crosses characteristic of applied rice-breeding programs. They can now be used as a low cost, high-throughput alternative to conventional phenotypic screening for direct detection of blast resistance genes, allowing rapid introgression of genes into susceptible varieties as well as the incorporation of multiple genes into individual lines for more-durable blast resistance.Electronic Supplementary Material Supplementary material is available in the online version of this article at Communicated by D. Mackill  相似文献   

8.
RAPD and RFLP mapping of the bacterial blight resistance gene xa-13 in rice   总被引:12,自引:0,他引:12  
Bacterial blight (BB) caused by Xanthomonas oryzae pv oryzae (Xoo) is one of the most serious diseases of rice. The recessive gene xa-13 confers resistance to Philippine race 6 of Xoo. To tag xa-13 with molecular markers, RAPD analysis was conducted with the combined use of near-isogenic lines and bulked segregant analysis. From the survey of 260 arbitrary 10-nucleotide primers, one primer (OPAC05) was detected to amplify specifically a 0.9-kb band from the DNA of susceptible plants. The distance between the RAPD marker OPAC05-900 and xa-13 was estimated to be 5.3 cM. The RAPD marker was then mapped on chromosome 8 using a mapping population of doubled haploid lines derived from the cross of IR64/Azucena. The linkage between RFLP markers and the RAPD marker was analyzed using an F2 population of 135 plants derived from a cross between a near-isogenic line for xa-13, IR66699-5-5-4-2, and IR24. No recombinants were found between RZ28 and CDO116 and their distance from xa-13 was estimated to be 4.8 cM. RG136 was located at 3.7 cM on the other side of xa-13. The mapping of xa-13 with closely linked DNA markers provides the basis for marker-aided selection for rice improvement.Department of Agronomy, South China Agricultural University, Guangzhou, China  相似文献   

9.
Tagging genes for blast resistance in rice via linkage to RFLP markers   总被引:24,自引:0,他引:24  
Summary Both Pi-2(t) and Pi-4(t) genes of rice confer complete resistance to the blast fungal pathogen Pyricularia oryzae Cav. As economically important plant genes, they have been recently characterized phenotypically, yet nothing is known about their classical linkage associations and gene products. We report here the isolation of DNA markers closely linked to these blast resistance genes in rice. The DNA markers were identified by testing 142 mapped rice genomic clones as hybridization probes against Southern blots, consisting of DNA from pairs of nearly isogenic lines (NILs) with or without the target genes. Chromosomal segments introgressed from donor genomes were distinguished by restriction fragment length polymorphisms (RFLPs) between the NILs. Linkage associations of the clones with Pi-2(t) and Pi4(t) were verified using F3 segregating populations of known blast reaction. Cosegregation of the resistant genotype and donor-derived allele indicated the presence of linkage between the DNA marker and a blast resistance gene. RFLP analysis showed that Pi-2(t) is closely linked to a single-copy DNA clone RG64 on chromosome 6, with a distance of 2.8+1.4(SE) cMorgans. Another blast resistance gene, Pi-4(t), is 15.3+4.2(SE) cMorgans away from a DNA clone RG869 on chromosome 12. These chromosomal regions can now be examined with additional markers to define the precise locations of Pi-2(t) and Pi-4(t). Tightly linked DNA markers may facilitate early selection for blast resistance genes in breeding programs. These markers may also be useful to map new genes for resistance to blast isolates. They may ultimately lead to the cloning of those genes via chromosome walking. The gene tagging approach demonstrated in this paper may apply to other genes of interest for both monogenic and polygenic traits.  相似文献   

10.
The gall midge, Orseolia oryzae, is a major dipteran pest of rice affecting most rice growing regions in Asia, Southeast Asia and Africa. Chemical and other cultural methods for control of this pest are neither very effective nor environmentally safe. The gall midge problem is further compounded by the fact that there are many biotypes of this insect and new biotypes are continuously evolving. However, resistance to this pest is found in the rice germ plasm. Resistance is generally governed by single dominant genes and a number of non-allelic resistance genes that confer resistance to different biotypes have been identified. Genetic studies have revealed that there is a gene-for-gene interaction between the different biotypes of gall midge and the various resistance genes found in rice. This review discusses different aspects of the process of infestation by the rice gall midge and its interaction with its host. Identification of the gall midge biotypes by conventional methods is a long and tedious process. The review discusses the PCR-based molecular markers that have been developed recently to speed up the identification process. Similarly, molecular markers have been developed for two gall midge resistance genes in rice – Gm2 and Gm4t – and these markers are now being used for marker-assisted selection. The mapping, tagging and map-based gene cloning of one of these genes – Gm2 – has also been discussed. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

11.
12.
13.
The use of genetically diverse resistance sources is important in breeding for durable disease resistance. Detection and evaluation of resistance genes by conventional inheritance experiments, however, often require laborious screening and genetic testing. In the present study, a marker-assisted screening for resistance sources was initiated in soybean [Glycine max (L.) Merr] using one DNA microsatellite and two RFLP markers tightly linked to a soybean mosaic virus (SMV) resistance gene (Rsv1). The three marker loci were used to screen 67 diverse soybean cultivars, breeding lines, and plant introductions. Five variants were found at the microsatellite locus (HSP176L), and the two RFLP loci (pA186 and pK644a) near Rsv1 show a remarkably higher level of restriction polymorphism than Rsv1-independent RFLP loci. Several specific variants at the three marker loci were found to be correlated with virus resistance, among which HSP176L-2 can be detected by PCR, thus may be useful for germplasm screening. The grouping of the 67 accessions according to their multilocus marker variants agrees with the available pedigree information. When all, or most, of the cultivars within a given group with the same Rsv1-linked marker variant are resistant, their SMV resistance is most likely conferred by Rsv1. These putatively Rsv1-carrying groups contain a total of 38 SMV-resistant lines including six differential cultivars that are known to carry Rsv1. The remaining seven resistant accessions (Columbia, Holladay, Peking, Virginia, FFR-471, PI 507403, and PI 556949) do not carry resistance marker variants, and at least some of them could be sources of resistance genes independent of Rsv1.  相似文献   

14.
The CNA-IRAT 5 upland rice population has been improved for 4 years by recurrent selection for blast resistance in Brazil. In order to predict the efficiency of recurrent selection in different test systems and to compare the relative advantage of hybrids versus pure line breeding, a combined genetic analysis of partial blast resistance in the CNA-IRAT 5 population was undertaken. A three-level hierarchical design in inbreeding and a factorial design were derived from the base population. Partial blast resistance of lines and hybrids was evaluated in the greenhouse and in the field by inoculation with one virulent blast isolate. The means and genetic variances of the hybrids and lines were estimated. Genetic advance by recurrent selection was predicted from estimates of variance components. The inheritance of partial blast resistance was mainly additive but non-additive effects were detected at both levels of means and variances. Mean heterosis ranged from 4%–8% for lesion size and lesion density to 10–12% for leaf and panicle resistance. High dominance or homozygous dominance variances relative to additive variance and negative covariance between additive and homozygous dominance effects were estimated. A low frequency of favourable alleles for partial resistance would explain the observed organisation of genetic variability in the base population. Recurrent selection will efficiently improve partial blast resistance of the CNA-IRAT 5 population. Genetic advance for line or hybrid values was expected to be higher testing doubled haploid lines than S1 lines, or than general combining ability. Two components of partial resistance assessed in the greenhouse, lesion size and lesion density, could be used as indirect selection criteria to improve field resistance. On the whole, hybrid breeding for partial blast resistance appeared to be slightly more advantageous than pure line breeding.  相似文献   

15.
A PCR-based codominant marker has been developed which is tightly linked to Mi, a dominant genetic locus in tomato that confers resistance to several species of root-knot nematode. DNA from tomato lines differing in nematode resistance was screened for random amplified polymorphic DNA markers linked to Mi using decamer primers. Several markers were identified. One amplified product, REX-1, obtained using a pair of decamer primers, was present as a dominant marker in all nematode-resistant tomato lines tested. REX-1 was cloned and the DNA sequences of its ends were determined and used to develop 20-mer primers. PCR amplification with the 20-mer primers produced a single amplified band in both susceptible and resistant tomato lines. The amplified bands from susceptible and resistant lines were distinguishable after cleavage with the restriction enzyme Taq I. The linkage of REX-1 to Mi was verified in an F2 population. This marker is more tightly linked to Mi than is Aps-1, the currently-used isozyme marker, and allows screening of germplasm where the linkage between Mi and Aps-1 has been lost. Homozygous and heterozygous individuals can be distinguished and the procedure can be used for rapid, routine screening. The strategy used to obtain REX-1 is applicable to obtaining tightly-linked markers to other genetic loci. Such markers would allow rapid, concurrent screening for the segregation of several loci of interest.  相似文献   

16.
Ferredoxin-dependent glutamate synthase (Fd-Gogat; EC 1.4.7.1) in leaf and root plastids is the last enzyme involved in the pathway of nitrate assimilation in higher plants. Arabidopsis thaliana expresses two different genes: the first, light regulated, specific of green tissues and the second expressed in other tissues. In this work, we investigated whether in our clone, OsGog2 AC Y12595, this gene is up-regulated by light or it is expressed under darkness. Fd-Gogat specific activity, protein and mRNA increased after light treatment in rice shoots. In roots, the activity and the protein content remained constant, whereas the mRNA is repressed by light treatment. The results obtained using a specific probe, situated in the 3′ untranslated region of the OsGog2 cDNA, indicated that OsGog2 gene is up-regulated by light and that its expression is tissue specific and suggested that a dark expressed Fd-Gogat gene could be present in rice similarly as in Arabidopsis.  相似文献   

17.
Rust in bean (Phaseolus vulgaris L.), caused byUromyces appendiculatus (Pers.) Unger var.appendiculatus [ =U. phaseoli (Reben) Wint.], is a major disease problem and production constraint in many parts of the world. The predominant form of genetic control of the pathogen is a series of major genes which necessitate the development of efficient selection strategies. Our objective was focused on the identification of RAPD (random amplified polymorphic DNA) markers linked to a major bean rust resistance gene block enabling marker-based selection and facilitating resistance gene pyramiding into susceptible bean germplasm. Using pooled DNA samples of genotyped individuals from two segregating populations, we identified two RAPD markers linked to the gene block of interest. One such RAPD, OF10970 (generated by a 5-GGAAGCTTGG-3 decamer), was found to be closely linked (2.15±1.50 centi Morgans) in coupling with the resistance gene block. The other identified RAPD, OI19460 (generated by a 5-AATGCGGGAG-3 decamer), was shown to be more tightly linked (also in coupling) than OF10970 as no recombinants were detected among 97 BC6F2 segregating individuals in the mapping population. Analysis of a collection of resistant and susceptible cultivars and experimental lines, of both Mesoamerican and Andean origin, revealed that: (1) recombination between OF10970 and the gene block has occurred as evidenced by the presence of the DNA fragment in several susceptible genotypes, (2) recombination between OI19460 and the gene block has also occurred indicating that the marker is not located within the gene block itself, and (3) marker-facilitated selection using these RAPD markers, and another previously identified, will enable gene pyramiding in Andean germplasm and certain Mesoamerican bean races in which the resistance gene block does not traditionally exist. Observations of variable recombination among Mesoamerican bean races suggested suppression of recombination between introgressed segments and divergent recurrent backgrounds.Research supported by the Michigan Agricultural Research Station and the USDA-ARS. Mention of a trademark or a proprietary product does not constitute a guarantee or warranty of the product by the USDA and does not imply its approval to the exclusion of other products that may also be suitable  相似文献   

18.
 Ten yeast artificial chromosomes (YACs) spanning the Gm2 locus have been isolated by screening high-density filters containing a total of approximately 7000 YAC (representing six genome equivalents) clones derived from a japonica rice, Nipponbare. The screening was done with five RFLP markers flanking a gall midge resistance gene, Gm2, which was previously mapped onto chromosome 4 of rice. This gene confers resistance to biotype 1 and 2 of gall midge (Orseolia oryzae), a major insect pest of rice in South and Southeast Asia. The RFLP markers RG214, RG329 and F8 hybridized with YAC Y2165. Two overlapping YAC clones (Y5212 and Y2165) were identified by Southern hybridization, with Gm2-flanking RFLP markers, and their inserts isolated. The purified YACs and RFLP markers flanking Gm2 were labeled and physically mapped by the fluorescence in situ hybridization (FISH) technique. All of them mapped to the long arm of chromosome 4 of the resistant variety of rice, ‘Phalguna’, confirming the previous RFLP mapping data. Received: 15 December 1997 / Accepted: 5 March 1998  相似文献   

19.
RAPD markers linked to the Vf gene for scab resistance in apple   总被引:14,自引:0,他引:14  
Scab (Venturia inaequalis) is one of the most harmful diseases of apple, significantly affecting world apple production. The identification and early selection of resistant genotypes by molecular markers would greatly improve breeding strategies. Bulked segregant analysis was chosen for the identification of RAPD markers linked to the Vf scab resistant gene. Five different RAPD markers, derived from the wild species Malus floribunda. 821, were identified, and their genetic distance from Vf gene was estimated. The markers OPAM192200 and OPAL07580 were found to be very closely linked to the Vf gene. This result was indirectly confirmed by the analysis of resistant genotypes collected from various breeding programmes. Except for cv Murray, which carries the Vm gene, all these resistant genotypes showed the markers OPAM192200 and OPAL07580.  相似文献   

20.
Linkage of RAPD markers to a single dominant gene for resistance to pine needle gall midge was investigated in Japanese black pine (Pinus thunbergii). Three primers that generated linked markers were found after 1160 primers were screened by bulked segregant analysis. The distances between the resistance gene, R, and the marker genes OPC06580, OPD01700, and OPAX192100 were 5.1 cM, 6.7 cM and 13.6 cM, respectively. OPC06580 was in coupling phase to R, whereas OPD01700 and OPAX192100 were in repulsion phase to R. A linkage map for a resistant tree was constructed using 96 macrogametophytes. In linkage analysis, 98 out of 127 polymorphic markers were assigned to 17 linkage groups and six linked pairs. The total length of this map was 1469.8 cM, with an average marker density of 15.6 cM. The genome length was estimated to be 2138.3 cM, and the derived linkage map covered 67.5% of the genome. Although the linked markers OPC06580, OPAX192100, and OPD01700, belonged to the same linkage group, no precise positions were found for OPC06580 or OPD01700. Received: 15 May 1999 / Accepted: 29 July 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号