首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
The dark ocean is one of the largest biomes on Earth, with critical roles in organic matter remineralization and global carbon sequestration. Despite its recognized importance, little is known about some key microbial players, such as the community of heterotrophic protists (HP), which are likely the main consumers of prokaryotic biomass. To investigate this microbial component at a global scale, we determined their abundance and biomass in deepwater column samples from the Malaspina 2010 circumnavigation using a combination of epifluorescence microscopy and flow cytometry. HP were ubiquitously found at all depths investigated down to 4000 m. HP abundances decreased with depth, from an average of 72±19 cells ml−1 in mesopelagic waters down to 11±1 cells ml−1 in bathypelagic waters, whereas their total biomass decreased from 280±46 to 50±14 pg C ml−1. The parameters that better explained the variance of HP abundance were depth and prokaryote abundance, and to lesser extent oxygen concentration. The generally good correlation with prokaryotic abundance suggested active grazing of HP on prokaryotes. On a finer scale, the prokaryote:HP abundance ratio varied at a regional scale, and sites with the highest ratios exhibited a larger contribution of fungi molecular signal. Our study is a step forward towards determining the relationship between HP and their environment, unveiling their importance as players in the dark ocean''s microbial food web.  相似文献   

3.
Here we describe, the longest microbial time-series analyzed to date using high-resolution 16S rRNA tag pyrosequencing of samples taken monthly over 6 years at a temperate marine coastal site off Plymouth, UK. Data treatment effected the estimation of community richness over a 6-year period, whereby 8794 operational taxonomic units (OTUs) were identified using single-linkage preclustering and 21 130 OTUs were identified by denoising the data. The Alphaproteobacteria were the most abundant Class, and the most frequently recorded OTUs were members of the Rickettsiales (SAR 11) and Rhodobacteriales. This near-surface ocean bacterial community showed strong repeatable seasonal patterns, which were defined by winter peaks in diversity across all years. Environmental variables explained far more variation in seasonally predictable bacteria than did data on protists or metazoan biomass. Change in day length alone explains >65% of the variance in community diversity. The results suggested that seasonal changes in environmental variables are more important than trophic interactions. Interestingly, microbial association network analysis showed that correlations in abundance were stronger within bacterial taxa rather than between bacteria and eukaryotes, or between bacteria and environmental variables.  相似文献   

4.
The free‐living (FL) and particle‐attached (PA) marine microbial communities have repeatedly been proved to differ in their diversity and composition in the photic ocean and also recently in the bathypelagic ocean at a global scale. However, although high taxonomic ranks exhibit preferences for a PA or FL mode of life, it remains poorly understood whether two clear lifestyles do exist and how these are distributed across the prokaryotic phylogeny. We studied the FL (<0.8 μm) and PA (0.8–20 μm) prokaryotes at 30 stations distributed worldwide within the bathypelagic oceanic realm (2150–4000 m depth) using high‐throughput sequencing of the small subunit ribosomal RNA gene (16S rRNA). A high proportion of the bathypelagic prokaryotes were mostly found either attached to particles or freely in the surrounding water but rarely in both types of environments. In particular, this trait was deeply conserved through their phylogeny, suggesting that the deep‐ocean particles and the surrounding water constitute two highly distinct niches and that transitions from one to the other have been rare at an evolutionary timescale. As a consequence, PA and FL communities had clear alpha‐ and beta‐diversity differences that exceeded the global‐scale geographical variation. Our study organizes the bathypelagic prokaryotic diversity into a reasonable number of ecologically coherent taxa regarding their association with particles, a first step for understanding which are the microbes responsible for the processing of the dissolved and particulate pools of organic matter that have a very different biogeochemical role in the deep ocean.  相似文献   

5.
Robust seasonal dynamics in microbial community composition have previously been observed in the English Channel L4 marine observatory. These could be explained either by seasonal changes in the taxa present at the L4 site, or by the continuous modulation of abundance of taxa within a persistent microbial community. To test these competing hypotheses, deep sequencing of 16S rRNA from one randomly selected time point to a depth of 10 729 927 reads was compared with an existing taxonomic survey data covering 6 years. When compared against the 6-year survey of 72 shallow sequenced time points, the deep sequenced time point maintained 95.4% of the combined shallow OTUs. Additionally, on average, 99.75%±0.06 (mean±s.d.) of the operational taxonomic units found in each shallow sequenced sample were also found in the single deep sequenced sample. This suggests that the vast majority of taxa identified in this ecosystem are always present, but just in different proportions that are predictable. Thus observed changes in community composition are actually variations in the relative abundance of taxa, not, as was previously believed, demonstrating extinction and recolonization of taxa in the ecosystem through time.  相似文献   

6.
A central challenge in ecology is to understand the relative importance of processes that shape diversity patterns. Compared with aboveground biota, little is known about spatial patterns and processes in soil organisms. Here we examine the spatial structure of communities of small soil eukaryotes to elucidate the underlying stochastic and deterministic processes in the absence of environmental gradients at a local scale. Specifically, we focus on the fine-scale spatial autocorrelation of prominent taxonomic and functional groups of eukaryotic microbes. We collected 123 soil samples in a nested design at distances ranging from 0.01 to 64 m from three boreal forest sites and used 454 pyrosequencing analysis of Internal Transcribed Spacer for detecting Operational Taxonomic Units of major eukaryotic groups simultaneously. Among the main taxonomic groups, we found significant but weak spatial variability only in the communities of Fungi and Rhizaria. Within Fungi, ectomycorrhizas and pathogens exhibited stronger spatial structure compared with saprotrophs and corresponded to vegetation. For the groups with significant spatial structure, autocorrelation occurred at a very fine scale (<2 m). Both dispersal limitation and environmental selection had a weak effect on communities as reflected in negative or null deviation of communities, which was also supported by multivariate analysis, that is, environment, spatial processes and their shared effects explained on average <10% of variance. Taken together, these results indicate a random distribution of soil eukaryotes with respect to space and environment in the absence of environmental gradients at the local scale, reflecting the dominant role of drift and homogenizing dispersal.  相似文献   

7.
The monthly, seasonal and interannual variability of microbial eukaryote assemblages were examined at 5 m, the deep chlorophyll maximum, 150 m and 500 m at the San Pedro Ocean Time-series station (eastern North Pacific). The depths spanned transitions in temperature, light, nutrients and oxygen, and included a persistently hypoxic environment at 500 m. Terminal restriction fragment length polymorphism was used for the analysis of 237 samples that were collected between September 2000 and December 2010. Spatiotemporal variability patterns of microeukaryote assemblages indicated the presence of distinct shallow and deep communities at the SPOT station, presumably reflecting taxa that were specifically adapted for the conditions in those environments. Community similarity values between assemblages collected 1 month apart at each depth ranged between ∼20% and ∼84% (averages were ∼50–59%). The assemblage at 5 m was temporally more dynamic than deeper assemblages and also displayed substantial interannual variability during the first ∼3 years of the study. Evidence of seasonality was detected for the microbial eukaryote assemblage at 5 m between January 2008 and December 2010 and at 150 m between September 2000 and December 2003. Seasonality was not detected for assemblages at the deep chlorophyll a maximum, which varied in depth seasonally, or at 500 m. Microbial eukaryote assemblages exhibited cyclical patterns in at least 1 year at each depth, implying an annual resetting of communities. Substantial interannual variability was detected for assemblages at all depths and represented the largest source of temporal variability in this temperate coastal ecosystem.  相似文献   

8.
Marine oxygen minimum zones (OMZs) support diverse microbial communities with roles in major elemental cycles. It is unclear how the taxonomic composition and metabolism of OMZ microorganisms vary between particle-associated and free-living size fractions. We used amplicon (16S rRNA gene) and shotgun metagenome sequencing to compare microbial communities from large (>1.6 μm) and small (0.2–1.6 μm) filter size fractions along a depth gradient in the OMZ off Chile. Despite steep vertical redox gradients, size fraction was a significantly stronger predictor of community composition compared to depth. Phylogenetic diversity showed contrasting patterns, decreasing towards the anoxic OMZ core in the small size fraction, but exhibiting maximal values at these depths within the larger size fraction. Fraction-specific distributions were evident for key OMZ taxa, including anammox planctomycetes, whose coding sequences were enriched up to threefold in the 0.2–1.6 μm community. Functional gene composition also differed between fractions, with the >1.6 μm community significantly enriched in genes mediating social interactions, including motility, adhesion, cell-to-cell transfer, antibiotic resistance and mobile element activity. Prokaryotic transposase genes were three to six fold more abundant in this fraction, comprising up to 2% of protein-coding sequences, suggesting that particle surfaces may act as hotbeds for transposition-based genome changes in marine microbes. Genes for nitric and nitrous oxide reduction were also more abundant (three to seven fold) in the larger size fraction, suggesting microniche partitioning of key denitrification steps. These results highlight an important role for surface attachment in shaping community metabolic potential and genome content in OMZ microorganisms.  相似文献   

9.
Characterizing ecological relationships between viruses, bacteria and protists in the ocean are critical to understanding ecosystem function, yet these relationships are infrequently investigated together. We evaluated these relationships through microbial association network analysis of samples collected approximately monthly from March 2008 to January 2011 in the surface ocean (0–5 m) at the San Pedro Ocean Time series station. Bacterial, T4-like myoviral and protistan communities were described by Automated Ribosomal Intergenic Spacer Analysis and terminal restriction fragment length polymorphism of the gene encoding the major capsid protein (g23) and 18S ribosomal DNA, respectively. Concurrent shifts in community structure suggested similar timing of responses to environmental and biological parameters. We linked T4-like myoviral, bacterial and protistan operational taxonomic units by local similarity correlations, which were then visualized as association networks. Network links (correlations) potentially represent synergistic and antagonistic relationships such as viral lysis, grazing, competition or other interactions. We found that virus–bacteria relationships were more cross-linked than protist–bacteria relationships, suggestive of increased taxonomic specificity in virus–bacteria relationships. We also found that 80% of bacterial–protist and 74% of bacterial–viral correlations were positive, with the latter suggesting that at monthly and seasonal timescales, viruses may be following their hosts more often than controlling host abundance.  相似文献   

10.
Fungi are ubiquitous in outdoor air, and their concentration, aerodynamic diameters and taxonomic composition have potentially important implications for human health. Although exposure to fungal allergens is considered a strong risk factor for asthma prevalence and severity, limitations in tracking fungal diversity in air have thus far prevented a clear understanding of their human pathogenic properties. This study used a cascade impactor for sampling, and quantitative real-time PCR plus 454 pyrosequencing for analysis to investigate seasonal, size-resolved fungal communities in outdoor air in an urban setting in the northeastern United States. From the 20 libraries produced with an average of ∼800 internal transcribed spacer (ITS) sequences (total 15 326 reads), 12 864 and 11 280 sequences were determined to the genus and species levels, respectively, and 558 different genera and 1172 different species were identified, including allergens and infectious pathogens. These analyses revealed strong relationships between fungal aerodynamic diameters and features of taxonomic compositions. The relative abundance of airborne allergenic fungi ranged from 2.8% to 10.7% of total airborne fungal taxa, peaked in the fall, and increased with increasing aerodynamic diameter. Fungi that can cause invasive fungal infections peaked in the spring, comprised 0.1–1.6% of fungal taxa and typically increased in relative abundance with decreasing aerodynamic diameter. Atmospheric fungal ecology is a strong function of aerodynamic diameter, whereby through physical processes, the size influences the diversity of airborne fungi that deposit in human airways and the efficiencies with which specific groups of fungi partition from outdoor air to indoor environments.  相似文献   

11.
Whether fungal community structure depends more on historical factors or on contemporary factors is controversial. This study used culture-dependent and -independent (polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE)) methods to assess the influence of historical and contemporary factors on the distributions of fungi in the wetland sediments at 10 locations along the Changjiang River and at 10 other locations in China. The culture-dependent approach detected greater species diversity (177 operational taxonomic units (OTUs)) than PCR-DGGE analysis (145 OTUs), and the species in the genera of Penicillium (relative frequency=16.8%), Fusarium (15.4%), Aspergillus (7.6%), Trichoderma (5.8%) and Talaromyces (4.2%) were dominant. On the basis of DGGE data, fungal diversity along the Changjiang River increased from upstream to downstream; altitude explained 44.8% of this variation in diversity. And based on the data from all 20 locations, the fungal communities were geographically clustered into three groups: Southern China, Northern China and the Qinghai-Tibetan Plateau. Multivariate regression tree analysis for data from the 20 locations indicated that the fungal community was influenced primarily by location (which explained 61.8% of the variation at a large scale), followed by total potassium (9.4%) and total nitrogen (3.5%) at a local scale. These results are consistent with the concept that geographic distance is the dominant factor driving variation in fungal diversity at a regional scale (1000–4000 km), whereas environmental factors (total potassium and total nitrogen) explain variation in fungal diversity at a local scale (<1000 km).  相似文献   

12.
The deep-sea is the largest biome of the biosphere, and contains more than half of the whole ocean''s microbes. Uncovering their general patterns of diversity and community structure at a global scale remains a great challenge, as only fragmentary information of deep-sea microbial diversity exists based on regional-scale studies. Here we report the first globally comprehensive survey of the prokaryotic communities inhabiting the bathypelagic ocean using high-throughput sequencing of the 16S rRNA gene. This work identifies the dominant prokaryotes in the pelagic deep ocean and reveals that 50% of the operational taxonomic units (OTUs) belong to previously unknown prokaryotic taxa, most of which are rare and appear in just a few samples. We show that whereas the local richness of communities is comparable to that observed in previous regional studies, the global pool of prokaryotic taxa detected is modest (~3600 OTUs), as a high proportion of OTUs are shared among samples. The water masses appear to act as clear drivers of the geographical distribution of both particle-attached and free-living prokaryotes. In addition, we show that the deep-oceanic basins in which the bathypelagic realm is divided contain different particle-attached (but not free-living) microbial communities. The combination of the aging of the water masses and a lack of complete dispersal are identified as the main drivers for this biogeographical pattern. All together, we identify the potential of the deep ocean as a reservoir of still unknown biological diversity with a higher degree of spatial complexity than hitherto considered.  相似文献   

13.
Effect of warming and drought on grassland microbial communities   总被引:1,自引:0,他引:1  
The soil microbiome is responsible for mediating key ecological processes; however, little is known about its sensitivity to climate change. Observed increases in global temperatures and alteration to rainfall patterns, due to anthropogenic release of greenhouse gases, will likely have a strong influence on soil microbial communities and ultimately the ecosystem services they provide. Therefore, it is vital to understand how soil microbial communities will respond to future climate change scenarios. To this end, we surveyed the abundance, diversity and structure of microbial communities over a 2-year period from a long-term in situ warming experiment that experienced a moderate natural drought. We found the warming treatment and soil water budgets strongly influence bacterial population size and diversity. In normal precipitation years, the warming treatment significantly increased microbial population size 40–150% but decreased diversity and significantly changed the composition of the community when compared with the unwarmed controls. However during drought conditions, the warming treatment significantly reduced soil moisture thereby creating unfavorable growth conditions that led to a 50–80% reduction in the microbial population size when compared with the control. Warmed plots also saw an increase in species richness, diversity and evenness; however, community composition was unaffected suggesting that few phylotypes may be active under these stressful conditions. Our results indicate that under warmed conditions, ecosystem water budget regulates the abundance and diversity of microbial populations and that rainfall timing is critical at the onset of drought for sustaining microbial populations.  相似文献   

14.
Small eukaryotes have key roles in aquatic ecosystems, influencing their local environment, global biogeochemical cycles and climate. Their impact depends on community structure, which varies along time. However, very few studies take into account temporal variation. This is especially true for small, shallow freshwater systems, which remain largely understudied despite their wide variety, global surface and intense microbial activity. We have monthly followed changes in the community structure of small microbial eukaryotes (0.2–5 μm cell diameter) for 2 years in four ponds and one brook located in North-Western France based on massive 18S rDNA amplicon 454 pyrosequencing. We detected a total of 3742 stringently defined operational taxonomic units (OTUs) encompassing all recognized eukaryotic supergroups and lineages of uncertain affiliation. Although geographically close, protist communities in the five ecosystems were contrasting, with very few shared OTUs, suggesting that environmental selection mainly drives community structure. The temporal dynamics of different high-rank taxa appeared complex and rapid at monthly scales. Despite this, a clear and reproducible seasonality was observed. As expected, low-abundance OTUs dominated the community. Although some of them appeared sporadically or remained at low frequencies during the survey, others occasionally reached relatively high abundances, sometimes recurrently. This shows that at least a fraction of low-abundance eukaryotes constitutes a seed bank. The annual proportion of primary producers, free-living heterotrophs and parasites appeared remarkably constant among the different ecosystems, suggesting underlying trends of ecosystem carrying capacity for these functional groups.  相似文献   

15.
Sea ice, a characteristic feature of polar waters, is home to diverse microbial communities. Sea-ice picoeukaryotes (unicellular eukaryotes with cell size <3 μm) have received little attention compared with diatoms that dominate the spring bloom in Arctic first-year sea ice. Here, we investigated the abundance of all picoeukaryotes, and of 11 groups (chlorophytes, cryptophytes, bolidophytes, haptophytes, Pavlovaphyceae, Phaeocystis spp., pedinellales, stramenopiles groups MAST-1, MAST-2 and MAST-6 and Syndiniales Group II) at 13 first-year sea-ice stations localized in Barrow Strait and in the vicinity of Cornwallis Island, Canadian Arctic Archipelago. We applied Catalyzed Reporter Deposition–Fluorescence In Situ Hybridization to identify selected groups at a single cell level. Pavlovaphyceae and stramenopiles from groups MAST-2 and MAST-6 were for the first time reported from sea ice. Total numbers of picoeukaryotes were significantly higher in the vicinity of Cornwallis Island than in Barrow Strait. Similar trend was observed for all the groups except for haptophytes. Chlorophytes and cryptophytes were the dominant plastidic, and MAST-2 most numerous aplastidic of all the groups investigated. Numbers of total picoeukaryotes, chlorophytes and MAST-2 stramenopiles were positively correlated with the thickness of snow cover. All studied algal and MAST groups fed on bacteria. Presence of picoeukaryotes from various trophic groups (mixotrophs, phagotrophic and parasitic heterotrophs) indicates the diverse ecological roles picoeukaryotes have in sea ice. Yet, >50% of total sea-ice picoeukaryote cells remained unidentified, highlighting the need for further study of functional and phylogenetic sea-ice diversity, to elucidate the risks posed by ongoing Arctic changes.  相似文献   

16.
Herbivorous reptiles depend on complex gut microbial communities to effectively degrade dietary polysaccharides. The composition of these fermentative communities may vary based on dietary differences. To explore the role of diet in shaping gut microbial communities, we evaluated the fecal samples from two related host species—the algae-consuming marine iguana (Amblyrhynchus cristatus) and land iguanas (LI) (genus Conolophus) that consume terrestrial vegetation. Marine and LI fecal samples were collected from different islands in the Galápagos archipelago. High-throughput 16S rRNA-based pyrosequencing was used to provide a comparative analysis of fecal microbial diversity. At the phylum level, the fecal microbial community in iguanas was predominated by Firmicutes (69.5±7.9%) and Bacteroidetes (6.2±2.8%), as well as unclassified Bacteria (20.6±8.6%), suggesting that a large portion of iguana fecal microbiota is novel and could be involved in currently unknown functions. Host species differed in the abundance of specific bacterial groups. Bacteroides spp., Lachnospiraceae and Clostridiaceae were significantly more abundant in the marine iguanas (MI) (P-value>1E−9). In contrast, Ruminococcaceae were present at >5-fold higher abundance in the LI than MI (P-value>6E−14). Archaea were only detected in the LI. The number of operational taxonomic units (OTUs) in the LI (356–896 OTUs) was >2-fold higher than in the MI (112–567 OTUs), and this increase in OTU diversity could be related to the complexity of the resident bacterial population and their gene repertoire required to breakdown the recalcitrant polysaccharides prevalent in terrestrial plants. Our findings suggest that dietary differences contribute to gut microbial community differentiation in herbivorous lizards. Most importantly, this study provides a better understanding of the microbial diversity in the iguana gut; therefore facilitating future efforts to discover novel bacterial-associated enzymes that can effectively breakdown a wide variety of complex polysaccharides.  相似文献   

17.
Over 200 years ago Alexander von Humboldt (1808) observed that plant and animal diversity peaks at tropical latitudes and decreases toward the poles, a trend he attributed to more favorable temperatures in the tropics. Studies to date suggest that this temperature–diversity gradient is weak or nonexistent for Bacteria and Archaea. To test the impacts of temperature as well as pH on bacterial and archaeal diversity, we performed pyrotag sequencing of 16S rRNA genes retrieved from 165 soil, sediment and biomat samples of 36 geothermal areas in Canada and New Zealand, covering a temperature range of 7.5–99 °C and a pH range of 1.8–9.0. This represents the widest ranges of temperature and pH yet examined in a single microbial diversity study. Species richness and diversity indices were strongly correlated to temperature, with R2 values up to 0.62 for neutral–alkaline springs. The distributions were unimodal, with peak diversity at 24 °C and decreasing diversity at higher and lower temperature extremes. There was also a significant pH effect on diversity; however, in contrast to previous studies of soil microbial diversity, pH explained less of the variability (13–20%) than temperature in the geothermal samples. No correlation was observed between diversity values and latitude from the equator, and we therefore infer a direct temperature effect in our data set. These results demonstrate that temperature exerts a strong control on microbial diversity when considered over most of the temperature range within which life is possible.  相似文献   

18.
Grazing rate estimates indicate that approximately half of the bacterivory in oligotrophic oceans is due to mixotrophic flagellates (MFs). However, most estimations have considered algae as a single group. Here we aimed at opening the black-box of the phytoflagellates (PFs) <20 μm. Haptophytes, chlorophytes, cryptophytes and pigmented dinoflagellates were identified using fluorescent in situ hybridization or by standard 4′,6-diamidino-2-phenylindole staining. Their fluctuations in abundance, cell size, biomass and bacterivory rates were measured through an annual cycle in an oligotrophic coastal system. On average, we were able to assign to these groups: 37% of the total pico-PFs and 65% of the nano-PFs composition. Chlorophytes were mostly picoplanktonic and they never ingested fluorescently labeled bacteria. About 50% of the PF <20 μm biomass was represented by mixotrophic algae. Pigmented dinoflagellates were the least abundant group with little impact on bacterioplankton. Cryptophytes were quantitatively important during the coldest periods and explained about 4% of total bacterivory. Haptophytes were the most important mixotrophic group: (i) they were mostly represented by cells 3–5 μm in size present year-round; (ii) cell-specific grazing rates were comparable to those of other bacterivorous non-photosynthetic organisms, regardless of the in situ nutrient availability conditions; (iii) these organisms could acquire a significant portion of their carbon by ingesting bacteria; and (iv) haptophytes explained on average 40% of the bacterivory exerted by MFs and were responsible for 9–27% of total bacterivory at this site. Our results, when considered alongside the widespread distribution of haptophytes in the ocean, indicate that they have a key role as bacterivores in marine ecosystems.  相似文献   

19.
Microbial activities that affect global oceanographic and atmospheric processes happen throughout the water column, yet the long-term ecological dynamics of microbes have been studied largely in the euphotic zone and adjacent seasonally mixed depths. We investigated temporal patterns in the community structure of free-living bacteria, by sampling approximately monthly from 5 m, the deep chlorophyll maximum (∼15–40 m), 150, 500 and 890 m, in San Pedro Channel (maximum depth 900 m, hypoxic below ∼500 m), off the coast of Southern California. Community structure and biodiversity (inverse Simpson index) showed seasonal patterns near the surface and bottom of the water column, but not at intermediate depths. Inverse Simpson''s index was highest in the winter in surface waters and in the spring at 890 m, and varied interannually at all depths. Biodiversity appeared to be driven partially by exchange of microbes between depths and was highest when communities were changing slowly over time. Meanwhile, communities from the surface through 500 m varied interannually. After accounting for seasonality, several environmental parameters co-varied with community structure at the surface and 890 m, but not at the intermediate depths. Abundant and seasonally variable groups included, at 890 m, Nitrospina, Flavobacteria and Marine Group A. Seasonality at 890 m is likely driven by variability in sinking particles, which originate in surface waters, pass transiently through the middle water column and accumulate on the seafloor where they alter the chemical environment. Seasonal subeuphotic groups are likely those whose ecology is strongly influenced by these particles. This surface-to-bottom, decade-long, study identifies seasonality and interannual variability not only of overall community structure, but also of numerous taxonomic groups and near-species level operational taxonomic units.  相似文献   

20.
Interactions among microbes and stratification across depths are both believed to be important drivers of microbial communities, though little is known about how microbial associations differ between and across depths. We have monitored the free-living microbial community at the San Pedro Ocean Time-series station, monthly, for a decade, at five different depths: 5 m, the deep chlorophyll maximum layer, 150 m, 500 m and 890 m (just above the sea floor). Here, we introduce microbial association networks that combine data from multiple ocean depths to investigate both within- and between-depth relationships, sometimes time-lagged, among microbes and environmental parameters. The euphotic zone, deep chlorophyll maximum and 890 m depth each contain two negatively correlated ‘modules'' (groups of many inter-correlated bacteria and environmental conditions) suggesting regular transitions between two contrasting environmental states. Two-thirds of pairwise correlations of bacterial taxa between depths lagged such that changes in the abundance of deeper organisms followed changes in shallower organisms. Taken in conjunction with previous observations of seasonality at 890 m, these trends suggest that planktonic microbial communities throughout the water column are linked to environmental conditions and/or microbial communities in overlying waters. Poorly understood groups including Marine Group A, Nitrospina and AEGEAN-169 clades contained taxa that showed diverse association patterns, suggesting these groups contain multiple ecological species, each shaped by different factors, which we have started to delineate. These observations build upon previous work at this location, lending further credence to the hypothesis that sinking particles and vertically migrating animals transport materials that significantly shape the time-varying patterns of microbial community composition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号