首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Non-expressor of pathogenesis-related genes 1 (NPR1) is a key regulator of plant innate immunity and systemic disease resistance. The model for NPR1 function is based on experimental evidence obtained largely from dicots; however, this model does not fit all aspects of Poaceae family, which includes major crops such as wheat, rice and barley. In addition, there is little scientific data on NPR1's role in mutualistic symbioses. We assessed barley (Hordeum vulgare) HvNPR1 requirement during the establishment of mutualistic symbiosis between barley and beneficial Alphaproteobacterium Rhizobium radiobacter F4 (RrF4). Upon RrF4 root-inoculation, barley NPR1-knockdown (KD-hvnpr1) plants lost the typical spatiotemporal colonization pattern and supported less bacterial multiplication. Following RrF4 colonization, expression of salicylic acid marker genes were strongly enhanced in wild-type roots; whereas in comparison, KD-hvnpr1 roots exhibited little to no induction. Both basal and RrF4-induced root-initiated systemic resistance against virulent Blumeria graminis were impaired in leaves of KD-hvnpr1. Besides these immune-related differences, KD-hvnpr1 plants displayed higher root and shoot biomass than WT. However, RrF4-mediated growth promotion was largely compromised in KD-hvnpr1. Our results demonstrate a critical role for HvNPR1 in establishing a mutualistic symbiosis between a beneficial bacterium and a cereal crop.  相似文献   

2.
Paenibacillus lentimorbus NRRL B-30488, a plant growth-promoting bacterium was isolated from Sahiwal cow's milk. The strain shows antagonism against phytopathogens, Fusarium oxysporum f. sp. ciceri and Alternaria solani. Its genome contains gene clusters involved in nonribosomal synthesis of secondary metabolites involved in antimicrobial activities. The genome sequence of P. lentimorbus NRRL B-30488 provides the genetic basis for application of this bacterial strain in plant growth promotion, plant protection and degradation of organic pollutants.  相似文献   

3.
Piriformospora indica is an endophytic fungus that colonizes roots of many plant species and promotes growth and resistance to certain plant pathogens. Despite its potential use in agriculture, little is known on the molecular basis of this beneficial plant-fungal interaction. In a genetic screen for plants, which do not show a P. indica- induced growth response, we isolated an Arabidopsis mutant in the OXI1 (Oxidative Signal Inducible1) gene. OXI1 has been characterized as a protein kinase which plays a role in pathogen response and is regulated by H2O2 and PDK1 (3-PHOSPHOINOSITIDE-DEPENDENT PROTEIN KINASE1). A genetic analysis showed that double mutants of the two closely related PDK1.1 and PDK1.2 genes are defective in the growth response to P. indica. While OXI1 and PDK1 gene expression is upregulated in P. indica-colonized roots, defense genes are downregulated, indicating that the fungus suppresses plant defense reactions. PDK1 is activated by phosphatidic acid (PA) and P. indica triggers PA synthesis in Arabidopsis plants. Under beneficial co-cultivation conditions, H2O2 formation is even reduced by the fungus. Importantly, phospholipase D (PLD)α1 or PLDδ mutants, which are impaired in PA synthesis do not show growth promotion in response to fungal infection. These data establish that the P. indica-stimulated growth response is mediated by a pathway consisting of the PLD-PDK1-OXI1 cascade.  相似文献   

4.
The plant growth-promoting bacterium (PGPB) Pseudomonas sp. UW4, previously isolated from the rhizosphere of common reeds growing on the campus of the University of Waterloo, promotes plant growth in the presence of different environmental stresses, such as flooding, high concentrations of salt, cold, heavy metals, drought and phytopathogens. In this work, the genome sequence of UW4 was obtained by pyrosequencing and the gaps between the contigs were closed by directed PCR. The P. sp. UW4 genome contains a single circular chromosome that is 6,183,388 bp with a 60.05% G+C content. The bacterial genome contains 5,423 predicted protein-coding sequences that occupy 87.2% of the genome. Nineteen genomic islands (GIs) were predicted and thirty one complete putative insertion sequences were identified. Genes potentially involved in plant growth promotion such as indole-3-acetic acid (IAA) biosynthesis, trehalose production, siderophore production, acetoin synthesis, and phosphate solubilization were determined. Moreover, genes that contribute to the environmental fitness of UW4 were also observed including genes responsible for heavy metal resistance such as nickel, copper, cadmium, zinc, molybdate, cobalt, arsenate, and chromate. Whole-genome comparison with other completely sequenced Pseudomonas strains and phylogeny of four concatenated “housekeeping” genes (16S rRNA, gyrB, rpoB and rpoD) of 128 Pseudomonas strains revealed that UW4 belongs to the fluorescens group, jessenii subgroup.  相似文献   

5.
Beijerinckia indica subsp. indica is an aerobic, acidophilic, exopolysaccharide-producing, N2-fixing soil bacterium. It is a generalist chemoorganotroph that is phylogenetically closely related to facultative and obligate methanotrophs of the genera Methylocella and Methylocapsa. Here we report the full genome sequence of this bacterium.Beijerinckia indica subsp. indica ATCC 9039 is the type strain of the genus Beijerinckia (6), a member of the Rhizobiales order of the Alphaproteobacteria. Beijerinckia spp. are commonly found as free-living bacteria in acidic soils and also in plant rhizosphere and phyllosphere environments (4). Research on Beijerinckia has suffered from chronic taxonomic confusion, with some strains of Sphingomonas and Azotobacter being misidentified in the literature: e.g., a “Beijerinckia” reported to degrade PAH has been reclassified (3). However, some Beijerinckia spp. have received research attention due to their plant growth-promoting properties (7) and for their abundant production of exoheteropolysaccharide with potential biotechnological uses (5).Genomic DNA from Beijerinckia indica subsp. indica was used to create 3-kb, 8-kb, and 40-kb DNA libraries. Sequencing, assembly, and automated annotation were performed at the Joint Genome Institute using standard procedures (U.S. Department of Energy; http://www.jgi.doe.gov/sequencing/strategy.html). The total number of paired-end shotgun Sanger reads in the assembly was 33,870. In addition, Roche 454 sequence data were included into the final assembly. Large Newbler contigs of 454 reads were chopped into 4,975 overlapping fragments of 1,000 bp and entered into the assembly as pseudoreads.The genome of B. indica subsp. indica was 4,170,153 bp. In addition, two plasmids of 181,736 and 66,727 bp were present. There are a total of 3,982 open reading frames (ORFs) predicted using Glimmer, of which 3,784 are predicted protein-coding genes and 2,695 (70%) have been assigned a predicted function. There are 134 pseudogenes, 52 tRNA genes, and three operons each containing 16S, 23S, and 5S rRNA genes. The G+C content is 57.0% (56% and 54% in the plasmids).The bacterium lacks phosphofructokinase, the key enzyme of the Embden-Meyerhof pathway. Instead, it uses the Entner-Doudoroff or pentose phosphate pathway to catabolize sugars, which is typical of free-living Rhizobiales. The majority of the genes involved in N2 fixation are clustered in two genomic islands (10 kb and 51 kb), with the notable exception of the nifS gene encoding cysteine desulfurase.Beijerinckia indica is a metabolically versatile bacterium capable of growth on a variety of organic acids, sugars, and alcohols (4). In contrast, its close phylogenetic cousins Methylocella and Methylocapsa are highly specialized methanotrophs capable of growth on very few substrates (2). However, the genome size of Beijerinckia indica compared to that of Methylocella silvestris (4.17 versus 4.30 Mbp) and the numbers of predicted protein-encoding genes (3,788 versus 3,917) are remarkably similar. A BLAST analysis indicated that the 57% of the genes in the genome of B. indica have homologues in M. silvestris (stringency threshold expectation value [E] of 1e−50). Some key pathways of one-carbon metabolism (such as the tetrahydromethanopterin and serine pathways of formaldehyde metabolism) that are present in M. silvestris appear to be absent or incomplete in B. indica, which confirms previous experiments showing that the organism is incapable of methylotrophic growth (1). However, an operon encoding a putative propane monooxygenase homologous to soluble propane/methane monooxygenases of Methylocella silvestris BL2 was identified. More in-depth comparison of these genomes will help elucidate what defines their distinct lifestyles.  相似文献   

6.
Piriformospora indica is an endophytic fungus that colonized monocot as well as dicot. P. indica has been termed as plant probiotic because of its plant growth promoting activity and its role in enhancement of the tolerance of the host plants against abiotic and biotic stresses. In our recent study, we have characterized a high affinity phosphate transporter (PiPT) and by using RNAi approach, we have demonstrated the involvement of PiPT in P transfer to the host plant. When knockdown strains of PiPT-P. indica was colonized with the host plant, it resulted in the impaired growth of the host plants. Here we have analyzed and discussed whether the growth promoting activity of P. indica is its intrinsic property or it is dependent on P availability. Our data explain the correlation between the availability of P and growth-promoting activity of P. indica.Key words: Piriformospora indica, phosphate transport, plant growth promotionPhosphorous (P) is one of the most essential mineral nutrients for plant growth and development. In the soil P is present mainly in the form of sparingly soluble complexes that are not directly accessible to plants. Thus, it is the nutrient that limits crop production throughout the world.1 Plants have therefore evolved a range of strategies to increase the availability of soil P, which include both morphological and biochemical changes at the soil-root interface. For example, increased root growth and branching, proliferation of root hairs, and release of root exudates can increase plant access to inorganic phosphate (Pi) from otherwise poorly available sources.2,3 Plant root possess two distinct modes of phosphate uptake, direct uptake by its own transporters and indirect uptake through mycorrhizal associations. In plants several high affinity P transporters specifically associated with the uptake of Pi from soil solution. Expression of these transporters is induced in response to P deficiency and enables Pi to be effectively taken up against the large concentration gradient that occurs between the soil solution and internal plant tissues.4 However, in arbuscular mycorrhizal associations (indirect uptake), plants acquire Pi from the extensive network of fine extra radical hyphae of fungus, that extend beyond root depletion zones to mine new regions of the soil.5 In the case of arbuscular mycorrhizal fungi (AMF), including Glomus versiforme and G. intraradices, the regulation of phosphate transporters that are expressed, typically upregulated under P deficiency but their role in P transfer to the host plant have not been characterized.5,6P. indica was reported to be involved in high salt tolerance, disease resistance and strong growth-promoting activities leading to enhancement of host plant yield.79 Recently, we have shown the role of PiPT in the P transport to the host plant.10 Here we discuss the performance of P. indica (grown under P-rich and -deprived conditions and colonized with the host plant) and its involvement in the P transportation to, and the growth of the host plant.  相似文献   

7.
The basidiomycete fungus Piriformospora indica colonizes roots of a broad range of mono- and dicotyledonous plants. It confers enhanced growth, improves resistance against biotic and tolerance to abiotic stress, and enhances grain yield in barley. To analyze mechanisms underlying P. indica-induced improved grain yield in a crop plant, the influence of different soil nutrient levels and enhanced biotic stress were tested under outdoor conditions. Higher grain yield was induced by the fungus independent of different phosphate and nitrogen fertilization levels. In plants challenged with the root rot-causing fungus Fusarium graminearum, P. indica was able to induce a similar magnitude of yield increase as in unchallenged plants. In contrast to the arbuscular mycorrhiza fungus Glomus mosseae, total phosphate contents of host plant roots and shoots were not significantly affected by P. indica. On the other hand, barley plants colonised with the endophyte developed faster, and were characterized by a higher photosynthetic activity at low light intensities. Together with the increased root formation early in development these factors contribute to faster development of ears as well as the production of more tillers per plant. The results indicate that the positive effect of P. indica on grain yield is due to accelerated growth of barley plants early in development, while improved phosphate supply—a central mechanism of host plant fortification by arbuscular mycorrhizal fungi—was not observed in the P. indica-barley symbiosis.  相似文献   

8.
Elevation of intracellular calcium levels in a plant cell is an early signaling event in many mutualistic and pathogenic plant/microbe interactions. In pathogenic plant/fungus interactions, receptor-mediated cytoplasmic calcium elevations induce defense genes via the activation of ion fluxes at the plasma membrane, an oxidative burst and MAPK activation. Mycorrhizal and beneficial endophytic plant/fungus interactions result in a better plant performance through sequencial cytoplasmic and nuclear calcium elevations. The specificity of the calcium responses depends on the calcium signature, its amplitude, duration, frequency and location, a selective activation of calcium channels in the diverse cellular membranes and the stimulation of calcium-dependent signaling components. Arabidopsis contains more than 100 genes for calcium-binding proteins and channels and the response to pathogens and beneficial fungi relies on a highly specific activation of individual members of these protein families. Genetic tools are required to understand this complex response patterns and the cross talks between the individual calcium-dependent signaling pathways. The beneficial interaction of Arabidopsis with the growth-promoting endophyte Piriformospora indica provides a nice model system to unravel signaling events leading to mutualistic or pathogenic plant/fungus interactions.Key words: Piriformospora indica, calcium, calcium signature, plant/microbe interaction  相似文献   

9.
【背景】植物根际促生细菌是一类位于植物根际并能对植物生长产生促进作用的有益菌,在微生物肥料领域具有重要的应用价值。【目的】对濒危植物连香树根际的植物根际促生细菌进行分离筛选和连香树接种效应评价,挑选对连香树生长促进作用最为显著的菌种进行促生特性分析、菌种鉴定及全基因组序列测定与促生相关基因分析。【方法】利用相应筛选培养基对连香树根际土壤中解有机磷、溶无机磷和解钾细菌进行分离筛选,通过根际接种验证各菌株对连香树实生苗的促生能力。从中选取促生作用最为显著的细菌,进行解钾能力、产吲哚乙酸(indole-3-acetic acid,IAA)和1-氨基环丙烷-1-羧酸(1-aminocyclopropane-1-carboxylate,ACC)脱氨酶能力测定。利用菌体形态观察、16S rRNA基因序列分析及全基因组序列的平均核苷酸一致性比对进行菌种鉴定。最后利用基因组功能注释和比较基因组学分析对该菌株中的植物促生及重金属抗性相关基因进行解析。【结果】从连香树根际土壤中共筛选得到3株解有机磷细菌、2株溶无机磷细菌和2株解钾细菌,其中解钾细菌LWK2对连香树实生苗的生长促进作用最为显著。该菌株能够产...  相似文献   

10.
Root colonization by the basidiomycete fungus Piriformospora indica induces host plant tolerance against abiotic and biotic stress, and enhances growth and yield. As P. indica has a broad host range, it has been established as a model system to study beneficial plant-microbe interactions. Moreover, its properties led to the assumption that P. indica shows potential for application in crop plant production. Therefore, possible mechanisms of P. indica improving host plant yield were tested in outdoor experiments: Induction of higher grain yield in barley was independent of elevated pathogen levels and independent of different phosphate fertilization levels. In contrast to the arbuscular mycorrhiza fungus Glomus mosseae total phosphate contents of host plant roots and shoots were not significantly affected by P. indica. Analysis of plant development and yield parameters indicated that positive effects of P. indica on grain yield are due to accelerated growth of barley plants early in development.Key words: mycorrhiza, barley development, Piriformospora indica, phosphate uptake, grain yield, pathogen resistanceThe wide majority of plant roots in natural ecosystems is associated with fungi, which very often play an important role for the host plants'' fitness.1 The widespread arbuscular mycorrhizal (AM) symbiosis formed by fungi of the phylum Glomeromycota is mainly characterized by providing phosphate to their host plant in exchange for carbohydrates.2,3 Fungi of the order Sebacinales also form beneficial interactions with plant roots and Piriformospora indica is the best-studied example of this group.4 This endophyte was originally identified in the rhizosphere of shrubs in the Indian Thar desert,5 but it turned out that the fungus colonizes roots of a very broad range of mono- and dicotyledonous plants,6 including major crop plants.79 Like other mutualistic endophytes, P. indica colonizes roots in an asymptomatic manner10 and promotes growth in several tested plant species.6,11,12 The root endophyte, moreover, enhances yield in barley and tomato and increases in both plants resistance against biotic stresses,7,9 suggesting that application in agri- and horticulture could be successful.  相似文献   

11.
Soil salinity is the major cause limiting plant productivity worldwide. Nitrogen-fixing bacteria were enriched and characterised from roots of Salicornia brachiata, an extreme halophyte which has substantial economic value as a bioresource of diverse and valuable products. Nitrogen-free semisolid NFb medium with malate as carbon source and up to 4% NaCl were used for enrichment and isolation of diazotrophic bacteria. The isolates were tested for plant growth-promoting traits and 16S rRNA, nifH and acdS genes were analysed. For selected strains, plant growth-promoting activities were tested in axenically grown Salicornia seedlings at different NaCl concentrations (0–0.5M). New halotolerant diazotrophic bacteria were isolated from roots of S. brachiata. The isolates were identified as Brachybacterium saurashtrense sp. nov., Zhihengliuella sp., Brevibacterium casei, Haererehalobacter sp., Halomonas sp., Vibrio sp., Cronobacter sakazakii, Pseudomonas spp., Rhizobium radiobacter, and Mesorhizobium sp. Nitrogen fixation as well as plant growth-promoting traits such as indole acetic acid (IAA) production, phosphate solubilisation, and 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase activity were demonstrated. For Brachybacterium saurashtrense and Pseudomonas sp., significant plant growth-promoting activities were observed in Salicornia in salt stress conditions. Salicornia brachiata is a useful source of new halotolerant diazotrophic bacteria with plant growth-promoting potential.  相似文献   

12.
Influence of temperature and soil moisture on the biological control of the potato-cyst nematode Globodera pallida using the plant plant-health-promoting rhizobacterium Agrobacterium radiobacter Treatment of potato tubers with the plant-health-promoting rhizobacterium A. radiobacter (G 12) resulted in significant (P ≤ 0.05) reductions in G. pallida penetration (25%) in green-house studies conducted in a non-sterilized sandy-loam soil. Significant reductions (P ≤ 0.05) in nematode infection were obtained when soil moisture was maintained between 60 and 90% of field capacity. When moisture levels were held at 30% of field capacity, nematode infection was also reduced, but not significantly. A. radiobacter repeatedly reduced nematode root-infection levels but did not affect the final population density. A. radiobacter reduced the hatch of G. pallida significantly (P ≤ 0.01) in vitro up to 70%. The bacterium effectively reduced nematode hatch at both 20 and 25°C.  相似文献   

13.
Paenibacillus polymyxa Invades Plant Roots and Forms Biofilms   总被引:3,自引:0,他引:3       下载免费PDF全文
Paenibacillus polymyxa is a plant growth-promoting rhizobacterium with a broad host range, but so far the use of this organism as a biocontrol agent has not been very efficient. In previous work we showed that this bacterium protects Arabidopsis thaliana against pathogens and abiotic stress (S. Timmusk and E. G. H. Wagner, Mol. Plant-Microbe Interact. 12:951-959, 1999; S. Timmusk, P. van West, N. A. R. Gow, and E. G. H. Wagner, p. 1-28, in Mechanism of action of the plant growth promoting bacterium Paenibacillus polymyxa, 2003). Here, we studied colonization of plant roots by a natural isolate of P. polymyxa which had been tagged with a plasmid-borne gfp gene. Fluorescence microscopy and electron scanning microscopy indicated that the bacteria colonized predominantly the root tip, where they formed biofilms. Accumulation of bacteria was observed in the intercellular spaces outside the vascular cylinder. Systemic spreading did not occur, as indicated by the absence of bacteria in aerial tissues. Studies were performed in both a gnotobiotic system and a soil system. The fact that similar observations were made in both systems suggests that colonization by this bacterium can be studied in a more defined system. Problems associated with green fluorescent protein tagging of natural isolates and deleterious effects of the plant growth-promoting bacteria are discussed.  相似文献   

14.
15.

Background  

Plant growth-promoting bacteria can alleviate the inhibitory effects of various heavy metals on plant growth, via decreasing levels of stress-induced ethylene. However, little has been done to detect any mechanisms specific for heavy metal resistance of this kind of bacteria. Here, we investigate the response of the wild-type plant growth-promoting bacterium Pseudomonas putida UW4 to nickel stress using proteomic approaches. The mutant strain P. putida UW4/AcdS-, lacking a functional 1-aminocyclopropane-1-carboxylic acid deaminase gene, was also assessed for its response to nickel stress.  相似文献   

16.
Pseudomonas fluorescens PCL1751 is a rod-shaped Gram-negative bacterium isolated from the rhizosphere of a greenhouse-grown tomato plant in Uzbekistan. It controls several plant root diseases caused by Fusarium fungi through the mechanism of competition for nutrients and niches (CNN). This mechanism does not rely on the production of antibiotics, so it avoids the concerns of resistance development and is environmentally safe. Additionally, this bacterium promotes plant growth by alleviating salt stress for its plant host. To investigate the genetic mechanisms that may explain these observations, we determined the complete genome sequence of this bacterium, examined its gene content, and performed comparative genomics analysis with other Pseudomonas strains. The genome of P. fluorescens PCL1751 consisted of one circular chromosome that is 6,143,950 base-pairs (bp) in size; no plasmid was found. The annotation included 19 rRNA, 70 tRNA, and 5,534 protein-coding genes. The gene content analysis identified a large number of genes involved in chemotaxis and motility, colonization of the rhizosphere, siderophore biosynthesis, and osmoprotectant production. In contrast, the pathways involved in the biosynthesis of phytohormones or antibiotics were not found. Comparison with other Pseudomonas genomes revealed extensive variations in their genome size and gene content. The presence and absence of secretion system genes were highly variable. As expected, the synteny conservation among strains decreased as a function of phylogenetic divergence. The integration of prophages appeared to be an important driver for genome rearrangements. The whole-genome gene content analysis of this plant growth-promoting rhizobacterium (PGPR) provided some genetic explanations to its phenotypic characteristics. The extensive and versatile substrate utilization pathways, together with the presence of many genes involved in competitive root colonization, provided further support for the finding that this strain achieves biological control of pathogens through effective competition for nutrients and niches.  相似文献   

17.
The mutualistic interaction between the endophytic and root-colonizing fungus Piriformospora indica and Arabidopsis thaliana is a nice model system to study beneficial and non-benefical traits in a symbiosis. Colonized Arabidopsis plants are taller, produce more seeds and are more resistant against biotic and abiotic stress. Based on genetic, molecular and cellular analyses, Arabidopsis mutants were identified which are impaired in their beneficial response to the fungus. Several mutants are smaller rather than bigger in the presence of the fungus and are defective in defense responses. This includes mutants with defects in defense-signaling components, defense proteins and enzymes, and defense metabolites. The mutants cannot control root colonization and are often over-colonized by P. indica. As a consequence, the benefits for the plants are lost and they try to restrict root colonization by activating unspecific defense responses against P. indica. These observations raise the question as to how the plants balance defense gene activation or development and what signaling molecules are involved. P. indica promotes the synthesis of phosphatidic acid (PA), which binds to the 3-PHOSPHOINOSITIDE-DEPENDENT-KINASE1 (PDK1). This activates a kinase pathway which might be crucial for balancing defense and growth responses. The review describes plant defense compounds which are necessary for the mutualistic interaction between the two symbionts. Furthermore, it is proposed that the PA/PDK1 pathway may be crucial for balancing defense responses and growth stimulation during the interaction with P. indica.  相似文献   

18.
《Genomics》2021,113(3):1448-1457
The medicinal herb, Picrorhiza kurroa Royle ex Benth has become endangered because of indiscriminate over-harvesting. Although micropropagation has been attempted for mass propagation of the plant, survival of in vitro plantlets under green house/open field poses a major challenge. Biopriming of micropropagated plantlets with plant growth-promoting rhizobacteria (PGPR) are among the successful methods to combat this problem. Serratia quinivorans PKL:12 was the best-characterized PGPR from rhizospheric soil of P. kurroa as it increased the vegetative growth and survival of the micropropagated plantlets most effectively. Complete genome (5.29 Mb) predicted genes encoding proteins for cold adaptation and plant growth-promoting traits in PKL:12. Antibiotic and biosynthetic gene cluster prediction supported PKL:12 as a potential biocontrol agent. Comparative genomics revealed 226 unique genes with few genes associated with plant growth-promoting potential. Physiological and genomic evidence supports S. quinivorans PKL:12 as a potential agent for bio-hardening of micropropagated P. kurroa plantlets in cold regions.  相似文献   

19.
《Genomics》2019,111(6):1423-1430
Although many Agrobacterium radiobacter strains have already been identified, only a few genomes of strains belonging to genomovar G4 have been sequenced so far. In this study, we report the first virulent genome sequence of Agrobacterium radiobacter strain tun 183, which is highly virulent to almond specie. The genome size was estimated to be 5.53 Mb, with 57.9%GC content. In total, 6486 genes encoding proteins and 61 genes encoding RNAs were identified in this genome. Comparisons with the available sequenced genomes of genomovar G4 as well as with other A. sp. were conducted, revealing a hexapartite genome containing circular and linear chromosomes in addition to two accessory plasmids and a tumor inducing plasmid (pTi) in strain tun 183. The phylogenetic analysis of recA gene clearly showed the clustering of tun 183 strain within genomovar G4, supporting the monophyly within this genomovar.  相似文献   

20.
Bacillus licheniformis BFP011 isolated from papaya (Thailand) could produce extracellular antimicrobial substances which were active against some important phytopathogens, pathogenics and spoilage microorganisms such as Colletotrichum capsici, Escherichia coli O157: H7 and Salmonella typhi ATCC 5784. The antimicrobial substances of this bacterium showed resistance to pronase enzyme and high temperature at 100 and 121°C for 15 min. They were purified by TLC on silica gel plates F254 using the different solvent mixtures. The best solvent mixture was revealed as n-butanol: ethanol: acetic acid: water (30: 60: 5: 30, v/v). The spots F4, F5 and F6 from TLC were able to inhibit growth of S. typhi ATCC 5784 assayed in vitro by the disc diffusion method. The characterization of the active fractions F4, F5 and F6 from TLC and reversedphase HPLC indicated that the antimicrobial substances of B. licheniformis BFP011 contain peptides and unsaturated fatty acids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号