首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
High density lipoprotein (HDL) apoprotein catabolism was examined in male Sprague-Dawley rats deficient in dietary copper. Twenty-four rats were randomly divided into two groups: copper-adequate (control, 5 mg of copper/kg diet) and copper-deficient (0.6 mg of copper/kg diet). After 5 weeks, animals were administered a tracer dose of iodinated HDL protein previously isolated from donor rats that were subjected to the same dietary treatments as the test animals. Copper-deficient rats exhibited a 54% increase in plasma volume and a 26% increase in HDL protein concentration above controls. Consequently, the intravascular pool of total HDL protein was increased 2-fold. The fractional catabolic rate of total HDL protein was similar between groups. However, because of the increased intravascular HDL pool in copper-deficient animals, the absolute catabolic rate was greater (640 +/- 49 micrograms/hr vs 316 +/- 12 micrograms/hr in controls). Tissue uptake of total HDL protein in copper-deficient rats tended to be greater in the kidneys, spleen, and testes compared with controls; the heart exhibited a significant 2.3-fold increase. In contrast, the catabolic rate of HDL protein in the liver and adrenal gland were not different between treatment groups. That an obligatory increase in HDL protein uptake was not observed in the liver and adrenal gland (organs which are sensitive to and can further metabolize cholesterol) suggests that these organs may be regulated, possibly contributing to the observed hypercholesterolemia in this model. These data imply that total HDL apoprotein catabolism is increased in response to the increased intravascular pool of HDL in copper-deficient rats.  相似文献   

2.
The metabolic fate of [1-(14)C]glucosamine, of N-acetyl[1-(14)C]glucosamine and of glycoproteins labelled with [1-(14)C]glucosamine was studied in rats for a period of 24hr. after these materials were given orally or injected. When [1-(14)C]glucosamine was injected 26.3% of the label was excreted in the urine, 19.7% was expired as carbon dioxide and 12.7% was incorporated into plasma proteins. When the same compound was given orally, 49.2% of the label was expired as carbon dioxide, with little appearing in the urine or in the plasma. When N-acetyl[1-(14)C]glucosamine was injected, 51.3% of the label was excreted in the urine with 12.3% appearing in carbon dioxide, but there was little incorporation into plasma protein. When this compound was given orally, 46.5% of the label was expired as carbon dioxide, 7.4% was recovered in the urine and 1.7% was incorporated into plasma protein. After the injection of (14)C-labelled glycoprotein 21.0% of the label was expired as carbon dioxide, whereas when it was given orally 49.8% of the label was recovered in carbon dioxide. The differences observed between the metabolic fate of the amino sugars when they were given orally and their fate when injected could not be accounted for by the action of the intestinal microflora or by the rate of administration of the material. It is concluded that amino sugars undergo metabolic alteration or degradation during absorption.  相似文献   

3.
Three-month old germfree and conventional male rats were maintained on a complete steam-sterilized, semisynthetic diet. After intravenous injection of cholesterol-26-(14)C the animals were housed in a plastic metabolism chamber for 72 hr. Expired CO(2) was collected throughout the period. The conventional rats released 50% more (14)C as (14)CO(2) than the germfree animals. The total amount of the label recovered as (14)CO(2) during the 72 hr period amounted to 30% and 19% respectively, of the original dose. In both conventional and germfree rats the release of (14)CO(2) accounted for approximately 75% of the (14)C recovered in forms other than the original cholesterol-26-(14)C; 15-20% was found incorporated in water-soluble and fat-soluble fractions other than 3Beta-OH sterol of liver and carcass while the remainder was excreted with feces and urine. After the 72 hr period the specific activities of the cholesterol in plasma and liver were lower in conventional than in germfree animals. The data express the accelerating effect of the intestinal microflora on systemic cholesterol catabolism. They demonstrate that the release of (14)CO(2) from cholesterol-26-(14)C in the intact rat is a suitable and convenient indicator of the oxidative catabolism of cholesterol.  相似文献   

4.
Weanling rats were fed a casein-based diet supplemented to give dietary methionine (Met) concentrations of 0.41, 0.61, and 1.50%. After 2 weeks of feeding, the rats received intraperitoneally 800 nCi of 2-14C-labeled and/or methyl-3H-labeled L-Met. The animals were killed 20 min, 1 hr, or 2 hr after the isotope injection and the specific radioactivity of adenosylmethionine (AdoMet) as well as the total acid-soluble radioactivity was analyzed in the liver and skeletal muscle. Met concentrations of the liver and skeletal muscle were increased 20-fold by the diet containing 1.50% of Met. In the liver, but not in skeletal muscle, accumulation of AdoMet closely followed changes in Met concentration. Within 2 hr after intraperitoneal injection, the rate of disappearance of 3H label from the acid-soluble fraction was slow in both tissues; increasing in the liver and decreasing in skeletal muscle with increasing dietary Met concentration. At the same time, disappearance of 14C label was slow in both tissues in the rats fed the toxic Met diet, and also in the liver of the rats fed the Met-deficient diet. Decline of the specific radioactivity of the AdoMet pool with respect to 3H label was similar to that of 14C label in the skeletal muscle at all dietary Met concentrations. In the liver, the rate of disappearance of 14C label from the AdoMet pool was markedly increased and that of the 3H label slightly decreased with increasing dietary Met supply. Met deprivation resulted in rapid disappearance of 3H label from the hepatic AdoMet pool, whereas the disappearance of the 14C label was very slow. The results indicate that hepatic Met recycling is very effective with deficient or adequate dietary Met concentrations. In skeletal muscle, the capacity to catabolize extra Met is very limited and continuous flow of Met to liver takes place. Unlike in the liver, in skeletal muscle the transsulfuration route is not adaptable to changes in Met supply and plays a minor role in Met catabolism. The approach used to determine the efficacy and adaptation of methionine salvage pathways by following simultaneously the decline of the specific radioactivities of the methyl group and the methionyl carbon chain of AdoMet following intraperitoneal injection of double-labeled Met has several advantages over that used in literature reports. It offers a reliable means of observing these metabolic pathways in whole animals without disruption of metabolite fluxes.  相似文献   

5.
Isolated rat livers were perfused for four hours in a recirculating system containing washed rat erythrocytes. Biologically screened radioiodinated rat high density lipoproteins (1.090 < d < 1.21 g/ml) were added to the perfusate with different amounts of whole serum to supply unlabeled rat high density lipoproteins. The protein moiety of the lipoprotein contained more than 95% of the radioiodine. The fraction of apolipoprotein mass degraded during the perfusion was quantified by the linear increment of non-protein-bound radioiodine in the perfusate, corrected for the increment observed during recirculation of the perfusate in the absence of a liver. The small amount of (131)I secreted into bile was added to calculate the fractional catabolic rate. The fractional catabolic rate ranged from 0.22 to 0.63% per hour in 12 experiments and was inversely related to the size of the perfusate pool of high density apolipoprotein. The absolute catabolic rate of high density apolipoprotein (fractional catabolic rate x pool size) in three livers in which the concentration of rat HDL in the perfusate approximated that in intact rats was 69.5 +/- 10.4 micro g hr(-1) (mean +/- SD). The rate of disappearance of cholesteryl esters of rat high density lipoproteins (labeled biologically by injecting donor rats with [5-(3)H]mevalonic acid) from the liver perfusate did not exceed that of the apoprotein component. These rates were compared with catabolic rates for rat high density lipoproteins in intact rats. Fractional catabolic rate in vivo, obtained by multicompartmental analysis of the disappearance curve of (131)I-high density apolipoprotein from blood plasma, was 11.9 +/- 1.3% hr(-1) (mean +/- SD). Total catabolic rate in vivo (fractional catabolic rate x intravascular pool of high density apolipoprotein) was 986 +/- 145 micro g hr(-1) (mean +/- SD). The results suggest that only a small fraction of high density lipoproteins in blood plasma of rats is degraded directly by the liver.-Sigurdsson, G., S-P. Noel, and R. J. Havel. Quantification of the hepatic contribution to the catabolism of high density lipoproteins in rats.  相似文献   

6.
Albumin synthesis and catabolism were respectively measured by McFarlane's (1963) sodium [(14)C]carbonate method and I-labelled albumin in hypophysectomized rats, both untreated and treated with growth hormone. Hypophysectomy resulted in a decrease in both albumin synthesis and catabolic rates. These changes as shown by pair-feeding experiments could not be ascribed to decreased food intake alone. Growth hormone was shown to partially restore both albumin synthesis and catabolic rates. It is proposed that growth hormone stimulates albumin synthesis and that its effect on albumin catabolism is secondary to changes in the mass of the intravascular albumin pool.  相似文献   

7.
Isolated rat livers were perfused for 4 hours in a recirculating system containing washed rat erythrocytes. Biologically screened, radioiodinated low density lipoproteins (1.030 < d < 1.055 g/ml) were added to the perfusate with different amounts of whole serum to supply unlabeled rat low density lipoproteins. Apolipoprotein B contained 90% of the bound (131)I, other apolipoproteins contained 4%, and lipids contained the remainder. The fraction of apolipoprotein mass degraded during the perfusion was quantified by the linear increment of non-protein-bound radioiodine in the perfusate, corrected for the increment observed during recirculation of the perfusate in the absence of a liver. The fractional catabolic rate ranged from 0.3 to 1.7%/hr in seven experiments and was inversely related to the size of perfusate pool of low density apolipoprotein. The catabolic rate of low density apolipoprotein (fractional catabolic rate x pool size) in four livers, in which the concentration of rat low density lipoproteins was 50-100% of that present in intact rats, was 5.3 +/- 2.7 micro g hr(-1) (mean +/- SD). Similar results were obtained with human low density lipoproteins. These rates were compared with catabolic rates for the apoprotein of rat low density lipoproteins in intact animals. Fractional catabolic rate in vivo, obtained by multi-compartmental analysis of the disappearance curve of (131)I-labeled low density apolipoprotein from blood plasma, was 15.2 +/- 3.1% hr(-1) (mean +/- SD). Total catabolic rate in vivo (fractional catabolic rate x intravascular pool of low density apolipoprotein) was 76 +/- 14 micro g hr(-1) (mean +/- SD). The results suggest that only a small fraction of low density apolipoprotein mass in rats is degraded by the liver.  相似文献   

8.
Compartmentation and control of arginine metabolism in Neurospora.   总被引:15,自引:13,他引:2       下载免费PDF全文
The fate of [14-C]arginine derived from the medium or from biosynthesis has been examined in Neurospora growing in arginine-supplemented medium. In both cases the label enters the cytosol, where it is used efficiently for both protein synthesis and catabolism before mixing with the majority of the endogenous [12C]arginine pool. Both metabolic processes appear to use the same cytosolic arginine pool. It is calculated that the nonorganellar cytoplasm contains approximately 20% of the intracellular arginine pool when the cells are growing in arginine-supplemented medium. The results suggest that compartmentation of arginine is a significant factor in controlling arginine metabolism in Neurospora. The significance of these results for studies of amino acid metabolism in other eukaryotic systems is discussed.  相似文献   

9.
1. The incorporation of L-[U-14C]leucine, L[U-14C]histidine and L-[U-14C]phenylalanine into casein secreted during perfusion of isolated guinea-pig mammary glands was demonstrated. 2. The extent of incorporation of label into casein residues was consistent with their being derived from free amino acids of the perfusate plasma. 3. The mean transit time of the amino acids from perfusate into secreted casein was approx. 100 min. 4. Whereas radioactive histidine and phenylalanine were incorporated solely into milk protein, radioactivity from [U-14C]valine was also transferred to CO2 and to an unidentified plasma component, and from [U-14C]leucine to plasma glutamic acid. 5. Evidence from experiments with [U-14C]phenylalanine suggests that, as in rats, but in contrast with ruminant species, guinea-pig mammary tissue does not possess phenyl alanine hydroxylase activity. 6. The results are discussed in relation to the possible role of essential amino acid catabolism in the control of milk-protein synthesis.  相似文献   

10.
Low density lipoprotein (LDL) catabolism was studied using WHHL rabbits, an inbred strain deficient in LDL receptor activity and, thus, an animal model for homozygous familial hypercholesterolemia. WHHL and normal rabbits were injected with [14C]sucrose-LDL and the tissue sites of LDL degradation were determined 24 h later. On degradation of [14C]sucrose-LDL, the [14C]sucrose ligand remains trapped within tissues as a cumulative measure of degradation. The fractional catabolic rate of [14C]sucrose-LDL in Watanabe heritable hyperlipidemic (WHHL) rabbits was reduced (0.024 +/- 0.010 versus 0.063 +/- 0.026 h-1) but, by virtue of the increased plasma pool, total LDL flux was increased (33.5 +/- 9.6 versus 10.6 +/- 4.4 mg of LDL protein/kg/day). Liver was the predominant site of catabolism in both WHHL and normal rabbits (52.7 +/- 6.9 and 56.6 +/- 6.2% of total degradation). About 90% of hepatic catabolism was attributable to parenchymal cells in both cases. Thus, Kupffer cells, a major component of the reticuloendothelial system, do not play a major role in LDL catabolism in WHHL rabbits. Despite receptor deficiency, the relative contribution of various tissues to overall LDL degradation was not greatly altered and the absolute rate of delivery of LDL to all tissues was increased with the exception of the adrenal. Thus, there was no evidence that the increased degradation occurred in any special subset of "scavenger" cells. Nevertheless, local scavenger cell uptake may be critically important, especially in atherogenesis. If it is assumed that receptor-independent degradation occurs at the same rate in the tissues of WHHL and normal rabbits and that catabolism in the absence of receptors is a linear function of concentration, then one can estimate the fraction of uptake in normal tissues mediated by receptors. The difference in the fraction of the plasma LDL pool cleared per unit of time in normal and WHHL rabbits would reflect the contribution of receptors to fractional clearance. By this calculation, receptor-mediated degradation in normal rabbits was 62% overall, 63% in liver, 92% in adrenal, and 83% in gut.  相似文献   

11.
Partitioning of exogenously supplied U-14C-saccharose into primary metabolic pool as sugars, amino acids, and organic acids was analyzed and simultaneous utilization for production of alkaloid by leaf, stem, and root in twigs and rooted plants of Catharanthus roseus grown in hydroponic culture medium was determined. Twigs revealed comparable distribution of total 14C label in leaf and stem. Stems contained significantly higher 14C label in sugar fraction and in alkaloids [47 kBq kg−1(DM)] than leaf. In rooted plants, label in 14C in metabolic fractions in root such as ethanol-soluble, ethanol-insoluble, and chloroform-soluble fractions and in components such as sugars, amino acids, and organic acids were significantly higher than in stems and leaves. This was related with significantly higher content of 14C in alkaloids in stems and leaves. 14C contents in sugars, amino acids, and organic acids increased from leaf to stem and roots. Roots are the major accumulators of metabolites accompanied by higher biosynthetic utilization for alkaloid accumulation.  相似文献   

12.
Isotopic studies of urea metabolism in rabbits   总被引:4,自引:2,他引:2       下载免费PDF全文
1. The half-life of [15N]urea was found to be significantly longer than that of [14C]urea injected at the same time, the differences being due to endogenous catabolism of urea, which is accompanied by little or no reutilization of 14C but is approx. 20% for 15N. [15N]Urea therefore appears to be valueless as an indicator of nitrogen metabolism unless the extents of endogenous catabolism of urea and of fractional reutilization of 15N can be separately estimated. 2. Though measurements of the radioactivity of expired 14CO2 confirmed the existence of considerable urea catabolism these could not be used for quantitative assessments. 3. Alternative graphical methods based on [14C]urea specific activities in plasma and urine samples were used to calculate the fraction of urea production that is excreted. Values by the two methods were in good agreement and showed that some animals excrete less than half the urea that they produce. 4. Specific activity differences between simultaneous samples of urinary and plasma urea reflect the presence of a pool of urea in the kidney that is not in equilibrium with the body urea pool. Calculations indicate the presence of urea in the kidney that in some cases may represent as much as 15% of the body pool, and in two animals in which post-mortem renal analyses were performed the masses of urea found agreed closely with the calculated values. 5. A model for urea metabolism is proposed that includes this pool in the excretory pathway. The related theory is shown to be adequate to explain the shape of the specific activity curves of urinary urea from the time of injection and the constant delay of the specific activity of urinary urea, relative to that of plasma urea, that is observed after a short preliminary equilibration period. 6. The body urea pool was calculated from the activity retained at 1·5hr. by excluding renal activity and the corrected specific activity of plasma urea at the same time. The urea pool was calculated to be distributed at the plasma concentration in a substantially smaller water volume than that found by injecting tritiated water in five animals. Reasons for this are discussed. 7. Urea synthesis rates calculated from the pool values are in close agreement with rates calculated from the mass of urea recovered in the urine and the fraction of newly synthesized urea that is excreted.  相似文献   

13.
Low density lipoprotein (LDL) is catabolized by both receptor-dependent and receptor-independent pathways; methylated LDL (MeLDL) is catabolized only by receptor-independent mechanisms. Rats were injected with either LDL or MeLDL labeled with [14C]sucrose and the tissue sites of degradation were determined 24 h later. On degradation, the 14C-labeled ligand remains trapped intracellularly as a cumulative measure of degradation. The fractional catabolic rate (FCR) of [14C]sucrose-MeLDL was lower than that of [14C]sucrose-LDL (0.056 +/- 0.015 versus 0.118 +/- 0.025 h-1, p less than 0.01). Liver was the predominant site of catabolism of both LDL and MeLDL; more than 85% of catabolism was attributable to parenchymal cells in both cases. The fraction of the plasma LDL pool "cleared" per tissue weight per unit of time was determined for individual tissues. The differences in these rates for LDL and MeLDL are an approximation of receptor-mediated uptake of LDL. According to this method, 67.4% of hepatic uptake was attributable to receptors, as was 69.5% of adrenal, 65.4% of ovarian, 52.4% of intestinal, and 44.2% of renal uptake. In other studies, rats were continuously infused with LDL to down-regulate and saturate receptor prior to injection of labeled LDL or MeLDL. Rats infused with LDL exhibited a lower FCR for [14C]sucrose-LDL compared to controls (0.077 versus 0.120 h-1); the FCR for sucrose-MeLDL was unchanged by LDL infusion. The fractional degradation rate of [14C]sucrose-LDL by individual tissues was lowered by LDL infusion in liver, adrenal, ovary, and intestine (41.4, 57.3, 23.1, and 32.4% lower than controls, respectively). The determination of receptor dependency by this independent approach supports the conclusions reached using [14C]sucrose-LDL and [14C]sucrose-MeLDL in normolipemic animals.  相似文献   

14.
Metabolism of [14C]adenosine in a dose of 100 mg per 1 kg of mass and [14C]ATP in the equimolar quantity was studied in rats after intraperitoneal administration. Adenosine is shown to enter tissues of the liver, spleen, thymus, heart and erythrocytes where it phosphorylates into adenine nucleotides (mainly ATP) and deaminates into inosine. The content of adenosine increases for a short period in the above tissues, except for erythrocytes and plasma. The latter accumulates a considerable amount of inosine and hypoxanthine, but only traces of uric acid, xanthine and adenine nucleotides. ATP administered to rats catabolizes through the adenosine formation. The exogenic adenosine and ATP replace in tissues and erythrocytes only a slight part (1-12%) of their total adenine nucleotide pool. The content of these metabolites and ADP in the blood plasma does not change essentially under the effect of adenosine, ATP and AMP. It is shown on rats whose adenine nucleotide pool of cells is marked by the previous administration of [14C]adenine that injections of adenosine, ATP and inosine do not accelerate catabolism of adenine nucleotides in tissues and erythrocytes as well as do not increase the level of catabolism products in the blood plasma. Adenosine enhances and ATP lowers the content of cAMP in spleen and myocardium, respectively.  相似文献   

15.
The capacity of the isolated perfused rat lung to metabolize the protein moieties of serum lipoproteins was assessed using homologous (rat) and heterologous (human) plasma lipoproteins. The protein and lipid moieties of the plasma lipoproteins were labeled in vivo with Na[125I]. In selected cases the lipoprotein peptides were labeled in vivo with 14C- or 3H-labeled amino acids. Uptake of lipoprotein label during perfusion was monitored by measure of losses in perfusate label and by rises in pulmonary tissue labeling as shown by radioassay and by light and electron microscope radioautography. Lipoprotein degradation was assessed by fractionation of perfusate and lung tissue radioactive material into trichloroacetic acid (TCA)-isoluble, TCA-soluble, and ether-ethanol-soluble fractions. When heparin was included in the perfusion medium, there was selective degradation of the protein portion of very low density lipoprotein (VLDL) in the perfusate and concomitant uptake of radioactive label by the lungs. Low density lipoprotein (LDL)) was neither taken up nor catabolized by the isolated rat lung in the absence or presence of heparin. By light and electron microscopy, the label was localized over the interalveolar septa, predominantly the capillary endothelium. Disappearance of TCA-insoluble radioactivity from the perfusate was associated with the generation of both TCA-soluble iodide and noniodide radioactivity. Greater than 50% of the radioactive label taken up by the lungs was found in the delipidated TCA-insoluble fraction. This study provides in vitro evidence for pulmonary catabolism of VLDL apolipoproteins and uptake of peptide catabolic products of VLDL by the lung.  相似文献   

16.
(1) Neonatal hypothyroidism resulted in a 40% increase in the incorporation of [14C]leucine into protein by cerebral cortical slices from 25-day-old rats. The uptake of the [14C]-labelled amino acid into the acid-soluble free amino acid pool was similar in hypothyroid and control groups which excluded the possibility that transport differences contributed to the observed differences in incorporation. (2) The conversion of [14C]leucine in the free amino acid pool to other metabolites was substantially greater in the hypothyroid state compared to euthyroid controls. (3) The correction of the incorporation data for radioactivity associated with [14C]leucine in the precursor pool, provided an estimate of cerebral protein synthetic rate which was markedly higher in thyroid hormone-deficient-rats compared to litter mate controls. (4) The administration of L-thyroxine to hypothyroid animals for two successive days essentially returned the accelerated metabolism of the precursor pool leucine to normal but failed to ameliorate the increased incorporation into protein. (5) Incubations conducted in the presence of high exogenous leucine levels, to eliminate possible differences in intracellular free amino acid pool size, provided additional evidence for an increased rate of cerebral protein synthesis in 25-day-old hypothyroid rats compared to controls. (6) The results are compatible with a retardation in the normal developmental decline in the rate of cerebral protein synthesis associated with hypothyroidism.  相似文献   

17.
Metabolism of arginine by aging and 7 day old pumpkin seedlings   总被引:4,自引:3,他引:1       下载免费PDF全文
The metabolism of arginine by etiolated pumpkin (Cucurbita moschata) seedlings was studied over various time and age intervals by injecting arginine-U-14C into the cotyledons. At most, 25% of the 14C was transported from the cotyledon to the axis tissue and the amount of this transport decreased with increasing age of the seedlings. The cotyledons of 25 day old plants contained 60% of the administered 14C as unmetabolized arginine. Little 14C was in sugars and it appeared that arginine was the primary translocation product. Time course studies showed that arginine was extensively metabolized and the labeling patterns suggest that different pathways were in operation in the axis and cotyledons. The amount of arginine incorporated into cotyledonary protein show that synthesis and turnover were occurring at rapid rate. Only 25% of the label incorporated into protein by 1.5 hr remained after 96 hr. The label in protein was stable in the axis tissue. By 96 hr 50% of the administered label occurred as 14CO2 and it appeared that arginine was metabolized, through glutamate, by the citrio acid cycle in the cotyledons. The experiments showed that an extensive conversion of arginine carbon into other amino acids did not occur.  相似文献   

18.
The influence of a single meal on the rates of catabolism of 3,5,3'-triiodothyronine (T3) and thyroxine (T4) was investigated in young pigs. Plasma hormone concentrations, fractional disappearance rates (K), distribution volumes and catabolic rates were estimated during three periods after a meal. For T3, plasma concentration and K were greatest immediately after the meal and decreased progressively. Catabolic rate decreased from 0.45 nmol.hr-1.kg-1 immediately after the meal to 0.28 nmol.hr-1.kg-1 after 24 hr. In a separate investigation, a meal was found to cause an increase in plasma [125I] T4, indicating a shift in the distribution of the hormone pool. Catabolic rate of T4 appeared to be greatest in the period immediately after the meal and decreased to 0.43 nmol.hr-1.kg-1 nearly 24 hr later.  相似文献   

19.
The in vivo experiments have established that the rapid decrease in the glycogen content in the liver of piglets during the first 24 hours after birth is associated with the reduction of the degree of label inclusion from [1-14C]glucose into polysaccharide. The level of label inclusion from [1-14C]pyruvate and [1-14C]lactate into the liver glycogen in new-born piglets is higher than from [1-14C]alanine and [1-14C]glutamic acid. During the days immediately after birth the extension of the pool of glucogenic substrates occurs at the expense of alanine and other amino acids during catabolism of which pyruvate is formed. The degree of label inclusion from the investigated substrates into the liver glycogen of piglets of early age decreases in the series: [1-14C]glucose greater than [1-14C]lactate greater than [1-14C]pyruvate greater than [1-14C]alanine. Glutamic acid in the liver of piglets of early age is not a glucogenic substrate.  相似文献   

20.
Although alveolar surfactant is rapidly catabolized in adult rabbit lungs, the pathways have not been characterized. Pathways of surfactant secretion and recycling involve lamellar bodies and multivesicular bodies, organelles shown to be related to lysosomes by cytochemistry and autoradiography. Since lysosomes are central to intracellular catabolic events, it is possible that lysosomes are involved in intrapulmonary surfactant catabolism. Lysosomes relatively free of contaminating organelles (as determined morphologically and by marker enzymes for mitochondria, endoplasmic reticulum, peroxisomes, and plasma membranes) were obtained from post-lavage lung homogenates of 1-kg rabbits by differential centrifugation in buffered sucrose and gradient separation in percoll (density, 1.075-1.165). The role of lung lysosomes in catabolism of dipalmitoylphosphatidylcholine (DPC) was then studied in rabbits killed 4, 12, and 24 h following intratracheal injection of [3H]DPC and [14C] dihexadecyl phosphatidylcholine (DPC-ether). While equal amounts of label were in the lamellar body containing fractions at 4 h, nearly 6-fold more DPC-ether label than DPC label was recovered in the lysosomal fractions. By 24 h, there was 15-fold more DPC-ether in the lysosomes. This is the first report of successful isolation of lysosomes relatively free of other organelles from rabbit lungs. The tracer studies indicate DPC and DPC-ether follow similar intracellular processing after alveolar uptake. The subsequent accumulation of the ether analog in the lysosomal fractions supports a role for these organelles in surfactant DPC catabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号