首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Previous studies showed that repeated lung lavage leads to a severe lung injury with very poor gas exchange, a substantial protein leak into the alveoli with hyaline membrane formation, pulmonary hypertension, and migration of granulocytes (PMN) into the alveolar spaces. Depletion of PMN leads to a better gas exchange and a markedly decreased protein leak with only scanty hyaline membranes. In this study we show that there is sustained pulmonary hypertension after the lung lavage, but in PMN-depleted rabbits there is no postlavage increase in pulmonary arterial pressure. Changing the shunt fraction by manipulating mean airway pressure still leads to a hypoxic vasoconstriction with increase of pulmonary arterial pressure. Thus, after lung lavage, pulmonary reactivity to hypoxia is still preserved. Comparisons between high-frequency ventilation and conventional mechanical ventilation at the same mean airway pressures showed that equal mean airway pressure in these two very different modes of ventilation do not translate into the same mean functional lung volumes.  相似文献   

2.
Lung injury in a surfactant-deficient lung is modified by indomethacin   总被引:2,自引:0,他引:2  
Repetitive total lung lavage in adult rabbits leads to a reproducible severe surfactant-deficient lung injury. Hypoxemia requiring mechanical ventilation occurs, accompanied by a substantial pulmonary hypertension, a large intra-alveolar protein leak, peripheral neutropenia, and pathological features of marked neutrophil infiltration with extensive hyaline membrane formation. Pretreatment with indomethacin abolishes postlavage pulmonary hypertension, preserves a slightly better lung function with higher arterial PO2, and prevents the postlavage peripheral neutropenia found in untreated animals. Pretreatment with a thromboxane A2 receptor blocker (L 655,240, Merck Frosst, Canada) also completely attenuated pulmonary hypertension, providing evidence that thromboxane A2 mediates pulmonary arterial hypertension after lung lavage. However, specific thromboxane receptor blockade had no other long-lasting beneficial effects on the ongoing injury in this model.  相似文献   

3.
To differentiate the effects of gas and liquid ventilation on cardiopulmonary function during early development, we compared the clinical, physiological, and histological profiles of gas- and liquid-ventilated preterm lambs (n = 16; 108-116 days gestation). Immediately after cesarean section delivery, ventilation commenced using gas delivered by a volume ventilator (n = 9) or liquid perfluorochemical (n = 7) delivered by a mechanically assisted liquid ventilation system. Pulmonary gas exchange, acid-base status, vital signs, and respiratory compliance were assessed during the 3-h protocol; sections of the lungs were obtained for histological analyses when the animals were killed. Six of nine gas-ventilated lambs expired from respiratory failure before 3 h, with the remaining animals experiencing severe respiratory insufficiency, pneumothoraces, and cardiovascular deterioration. Six of seven liquid-ventilated lambs survived with good gas exchange and cardiovascular stability and without fluorothorax; one experienced ventricular fibrillation before 1 h and expired despite pulmonary stability. Respiratory compliance was significantly greater in the liquid- than in the gas-ventilated lambs. Histological analyses of gas-ventilated lungs demonstrated nonhomogeneous lung expansion, with thick-walled gas exchange spaces containing proteinaceous exudate, hemorrhage, and hyaline membranes. In contrast, liquid-ventilated lungs appeared clear, with thin-walled and uniformly expanded gas exchange spaces that were free of hyaline membranes and luminal debris. Morphometric analyses demonstrated that surface area and gas exchange index were greater in the liquid- than in the gas-ventilated lambs. These results indicate that elimination of surface active forces by liquid ventilation during early development provides more effective gas exchange with less barotrauma compared with gas ventilation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
To test the hypothesis that hyaline membrane disease (HMD) has a multifactorial etiology in which barotrauma plays a major role, we compared the immediate institution of high-frequency oscillatory ventilation (HFOV; 15 Hz, n = 5) with positive-pressure ventilation with positive end-expiratory pressure (PPV; n = 7) in premature baboons (140-days gestation) with HMD. Measurements of ventilation settings and physiological parameters were obtained and arterial-to-alveolar O2 (PaO2-to-PAO2) ratio and oxygenation index [(PaO2/PAO2)-to-mean airway pressure ratio (IO2)] were calculated. At death (24 h), static pressure-volume (PV) curves were performed, and phospholipids (PL) and platelet-activating factor (PAF) were measured in lung lavage fluid. Morphological inflation patterns were analyzed using a panel of standards. By design, mean airway pressure was initially higher (19 vs. 13 cmH2O) in the HFOV animals. PaO2-to-PAO2 ratio and IO2 progressively deteriorated in the PPV animals and then stabilized at significantly lower levels than with HFOV. PV curves from HFOV animals had significant increases in lung volume at maximum distending pressure, deflation volume at 10 cmH2O, and hysteresis area compared with PPV, which showed no hysteresis. Seven of seven PPV and only one of five HFOV animals had morphological findings of HMD. PL amount and composition in both groups were consistent with immaturity, even though the quantity was significantly greater in the PPV group. PAF was present (greater than or equal to 0.10 pmol) in six of seven PPV and in the only HFOV animal with HMD. We conclude that HFOV protected PL-deficient premature baboons from changes in gas exchange, lung mechanics, and morphology typical of HMD in this model.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Twelve sets of twin lambs were delivered prematurely by cesarean section at 133-136 days gestational age and ventilated for 3 h with either high-frequency oscillation (HFO) or conventional mechanical ventilation (CMV). Blood gases and pH values were monitored at 30-min intervals, and ventilator settings were adjusted to maintain CO2 partial pressure (PCO2) values within the normal range. There were no differences in the sequential blood gas or pH values between the HFO or CMV lambs. Mean airway pressures (MAP) between 8.0 and 20.4 cmH2O were required, indicating lung disease of variable severity in the lambs. The bidirectional protein leak from the vascular space to the airways and alveoli and vice versa was measured with radiolabeled albumins given by intravascular injection and with fetal lung fluid at birth. The albumin leaks in both directions increased as MAP required to normalize PCO2 increased, but the degree of leak was independent of type of ventilation. Pathological findings of epithelial necrosis and hyaline membranes occurred to a similar extent in lung sections from both groups of lambs. In the HFO animals less phosphatidylcholine in the alveolar wash and more of a tracer dose of radiolabeled natural surfactant that had been given at birth became tissue associated. These results indicate a decrease in the initial secretion of surfactant and/or a stimulation of reuptake in the HFO animals. HFO did not protect the immature lung from the development of large protein leaks or the pathological changes of the respiratory distress syndrome.  相似文献   

6.
Based on a physicochemical property profile, we tested the hypothesis that different perfluorochemical (PFC) liquids may have distinct effects on intrapulmonary PFC distribution, lung function, and PFC elimination kinetics during partial liquid ventilation (PLV). Young rabbits were studied in five groups [healthy, PLV with perflubron (PFB) or with perfluorodecalin (DEC); saline lavage injury and conventional mechanical ventilation (CMV); saline lavage injury PLV with PFB or with DEC]. Arterial blood chemistry, respiratory compliance (Cr), quantitative computed tomography of PFC distribution, and PFC loss rate were assessed for 4 h. Initial distribution of PFB was more homogenous than that of DEC; over time, PFB redistributed to dependent regions whereas DEC distribution was relatively constant. PFC loss rate decreased over time in all groups, was higher with DEC than PFB, and was lower with injury. In healthy animals, arterial PO(2) (Pa(O(2))) and Cr decreased with either PFC; the decrease was greater and sustained with DEC. Lavaged animals treated with either PFC demonstrated increased Pa(O(2)), which was sustained with PFB but deteriorated with DEC. Lavaged animals treated with PFB demonstrated increased Cr, higher Pa(O(2)), and lower arterial PCO(2) than with CMV or PLV with DEC. The results indicate that 1) initial distribution and subsequent intrapulmonary redistribution of PFC are related to PFC properties; 2) PFC distribution influences PFC elimination, gas exchange, and Cr; and 3) PFC elimination, gas exchange, and Cr are influenced by PFC properties and lung condition.  相似文献   

7.
Grossmann, Gertie, Yasuhiro Suzuki, Bengt Robertson, TsutomuKobayashi, Per Berggren, Wen-Zhi Li, Guo-Wei Song, and Bo Sun.Pathophysiology of neonatal lung injury induced by monoclonal antibody to surfactant protein B. J. Appl.Physiol. 82(6): 2003-2010, 1997.Near-termnewborn rabbits were exposed via the airways to a monoclonal antibodyto surfactant protein B and ventilated for 0-120 min. Controlanimals received nonspecific rabbit or mouse immunoglobulin G, saline,or no material via the airways. Administration of the antibody at 40mg/kg elicited an immediate, significant fall in lung-thorax complianceassociated with progressive intra-alveolar edema and/oralveolar collapse and necrosis and desquamation of airway epithelium,and hyaline membranes. The vascular-to-alveolar leak of human albuminand human immunoglobulin G, injected intravenously at birth anddetermined in lung lavage fluid 60-120 min after instillation ofthe antibody, was 1.8% for the left lung, with no difference betweenthe markers. The average leak in control animals ventilated for 120 minwas <0.3% (P < 0.05). Cytospin preparations of lung lavage fluid from animals exposed to the antibodyshowed significantly increased recruitment of neutrophilic granulocytes. The pathology and pathophysiology of neonatal lung injuryinduced by the monoclonal antibody to surfactant protein B probablyreflect a combination of direct inactivation of surfactant and aninflammatory response triggered by the immune reaction.

  相似文献   

8.
Mechanical ventilation has been demonstrated to exacerbate lung injury, and a sufficiently high tidal volume can induce injury in otherwise healthy lungs. However, it remains controversial whether injurious ventilation per se, without preceding lung injury, can initiate cytokine-mediated pulmonary inflammation. To address this, we developed an in vivo mouse model of acute lung injury produced by high tidal volume (Vt) ventilation. Anesthetized C57BL6 mice were ventilated at high Vt (34.5 +/- 2.9 ml/kg, mean +/- SD) for a duration of 156 +/- 17 min until mean blood pressure fell below 45 mmHg (series 1); high Vt for 120 min (series 2); or low Vt (8.8 +/- 0.5 ml/kg) for 120 or 180 min (series 3). High Vt produced progressive lung injury with a decrease in respiratory system compliance, increase in protein concentration in lung lavage fluid, and lung pathology showing hyaline membrane formation. High-Vt ventilation was associated with increased TNF-alpha in lung lavage fluid at the early stage of injury (series 2) but not the later stage (series 1). In contrast, lavage fluid macrophage inflammatory protein-2 (MIP-2) was increased in all high-Vt animals. Lavage fluid from high-Vt animals contained bioactive TNF-alpha by WEHI bioassay. Low-Vt ventilation induced minimal changes in physiology and pathology with negligible TNF-alpha and MIP-2 proteins and TNF-alpha bioactivity. These results demonstrate that high-Vt ventilation in the absence of underlying injury induces intrapulmonary TNF-alpha and MIP-2 expression in mice. The apparently transient nature of TNF-alpha upregulation may help explain previous controversy regarding the involvement of cytokines in ventilator-induced lung injury.  相似文献   

9.
To examine the hypothesis that combined treatment with tracheal gas insufflation (TGI) and partial liquid ventilation (PLV) may improve pulmonary outcome relative to either treatment alone in acute lung injury (ALI), saline lavage lung injury was induced in 24 anesthetized, ventilated juvenile rabbits that were then randomly assigned to receive (n = 6/group) 1) conventional mechanical ventilation (CMV) alone, 2) continuous TGI at 0.5 l/min, 3) PLV with perfluorochemical liquid, and 4) combined TGI and PLV (TGI + PLV), and subsequently ventilated with minimized pressures and tidal volume (Vt) to keep arterial Po(2) (Pa(O(2))) >100 Torr and arterial Pco(2) (Pa(CO(2))) at 45-60 Torr for 4 h. Gas exchange, lung mechanics, myeloperoxidase, IL-8, and histomorphometry [including expansion index (EI)] were assessed. The CMV group showed no improvement in lung mechanics and gas exchange; all treated groups had significant increases in compliance, Pa(O(2)), ventilation efficacy index (VEI), and EI, and decreases in PaCO(2), oxygenation index, physiological dead space-to-Vt ratio (Vd/Vt), myeloperoxidase, and IL-8, relative to the CMV group. TGI resulted in lower peak inspiratory pressure, Vt, Vd/Vt, and greater VEI vs. PLV group; PLV resulted in greater compliance, Pa(O(2)), and EI vs. TGI. TGI + PLV resulted in decreased peak inspiratory pressure, Vt, Vd/Vt, and increased VEI compared with TGI, improved compliance and EI compared with PLV, and a further increase in Pa(O(2)) and oxygenation index and a decrease in PaCO(2) vs. either treatment alone. These results indicate that combined treatment of TGI and PLV results in improved pulmonary outcome than either treatment alone in this animal model of ALI.  相似文献   

10.
A pressure limited, time controlled ventilator has been designed especially for studies on experimental animals with severe respiratory distress syndrome (SRDS). Inspiration: Expiration (I:E) ratio (1:99-99:1) and frequency can be changed independently. Frequency ranged from 1 to 199/min in conventional ventilation (CV), while in high-frequency jet ventilation (HFJV) from 1 to 30 Hz. The gas delivery system consists of 3 magnetic valves (inspiration, expiration and HFJV, respectively) to ensure superposition of CV with HFJ or to use them separately. A monitoring unit switches off inspiration gas sources during HFJV if intratracheal pressure exceeds the alarm threshold. The device has been used in the following animal models: premature newborn rabbits with surfactant deficient lungs, emphysematous rats and guinea pigs as well as dogs and rabbits with SRDS due to lung lavage. Ventilation was most effective with an I:E ratio of 4:1 during pressure controlled CV, whereas during HFJV optimum gas exchange could be maintained with an I:E ratio of 1:4 and a frequency of 15 Hz in beagle dogs and 10 Hz in rabbits, respectively.  相似文献   

11.
Interleukin-1-induced granulocytopenia and pulmonary leukostasis in rabbits   总被引:6,自引:0,他引:6  
Pulmonary leukostasis is a postulated prerequisite lesion for acute lung injury. Interleukin-1 (IL-1) mediates components of the acute-phase response, stimulates granulocyte metabolism and secretion, and augments endothelial adhesiveness. We studied the effects of murine IL-1 infusion on circulating granulocytes, their sequestration within the pulmonary microvasculature, lung water, and bronchoalveolar lavage fluid (BALF) protein concentration in rabbits at 3 and 24 h after infusion. IL-1 administration induced significant (P less than 0.01) granulocytopenia compared with saline-injected controls and at 3 h induced significant increases in both mean alveolar septal wall granulocytes per high power field (HPF) (P less than 0.001) and mean myeloperoxidase (MPO) activity per gram lung tissue (P less than 0.001). At 24 h, IL-1 induced a marked granulocytosis and again significantly increased both mean alveolar septal wall granulocytes per HPF (P less than 0.001) and lung MPO (P less than 0.01). Increased lung water or BALF protein concentration could not be demonstrated in animals killed at either 3 or 24 h after IL-1 administration. Therefore, IL-1 can induce an early profound granulocytopenia followed by later granulocytosis, as well as sustained pulmonary leukostasis in the absence of detectable pulmonary edema formation or an alveolar-capillary leak.  相似文献   

12.
We studied the effect of mean airway pressure (Paw) on gas exchange during high-frequency oscillatory ventilation in 14 adult rabbits before and after pulmonary saline lavage. Sinusoidal volume changes were delivered through a tracheostomy at 16 Hz, a tidal volume of 1 or 2 ml/kg, and inspired O2 fraction of 0.5. Arterial PO2 and PCO2 (PaO2, PaCO2), lung volume change, and venous admixture were measured at Paw from 5 to 25 cmH2O after either deflation from total lung capacity or inflation from relaxation volume (Vr). The rabbits were lavaged with saline until PaO2 was less than 70 Torr, and all measurements were repeated. Lung volume change was measured in a pressure plethysmograph. Raising Paw from 5 to 25 cmH2O increased lung volume by 48-50 ml above Vr in both healthy and lavaged rabbits. Before lavage, PaO2 was relatively insensitive to changes in Paw, but after lavage PaO2 increased with Paw from 42.8 +/- 7.8 to 137.3 +/- 18.3 (SE) Torr (P less than 0.001). PaCO2 was insensitive to Paw change before and after lavage. At each Paw after lavage, lung volume was larger, venous admixture smaller, and PaO2 higher after deflation from total lung capacity than after inflation from Vr. This study shows that the effect of increased Paw on PaO2 is mediated through an increase in lung volume. In saline-lavaged lungs, equal distending pressures do not necessarily imply equal lung volumes and thus do not imply equal PaO2.  相似文献   

13.
Preterm delivery is frequently preceded by chorioamnionitis, resulting in exposure of the fetal lung to inflammation. We hypothesized that ventilation of the antenatally inflamed lung would result in amplification of the lung injury. Therefore, we induced fetal lung inflammation with intra-amniotic endotoxin (10 mg of Escherichia coli 055:B5) 4 days before premature delivery at 130 days of gestation. Lung function and lung inflammation after surfactant treatment and 4 h of mechanical ventilation were evaluated. Inflammatory cell numbers in amniotic fluid were increased >10-fold by antenatal endotoxin exposure. Antenatal endotoxin exposure had minimal effects on blood pressure, heart rate, lung compliance, and blood gas values. The endotoxin-exposed lungs required higher ventilation pressures. Ventilation did not increase the number of inflammatory cells or the protein in bronchoalveolar lavage fluid of the endotoxin-exposed animals above that measured in endotoxin-exposed fetuses that were not ventilated. IL-1beta, IL-6, and IL-8 mRNA in cells from bronchoalveolar lavage fluid were increased by antenatal endotoxin exposure but not changed by ventilation. IL-1beta and IL-8 protein was increased in lung tissue by 4 h of ventilation. Very little inflammation was induced by ventilation in this premature lamb model of surfactant treatment and gentle ventilation. After lung inflammation was induced by intra-amniotic endotoxin injection, ventilation did not increase lung injury.  相似文献   

14.
In the chicken embryo, pulmonary ventilation and pulmonary gas exchange begin approximately one day before the completion of hatching. We asked to what extent the posture inside the egg, and the presence of the eggshell and membranes, may alter the mechanical behaviour of the respiratory system. The passive mechanical properties of the respiratory system were studied in chicken embryos during the internal pipping phase (rupture of the air cell) or the external pipping phase (hole in the eggshell). Tracheal pressure and changes in lung volume were recorded during mechanical ventilation, first, with the embryo curled up inside the egg, then again after exteriorization from the eggshell. In the internal pippers, respiratory system compliance increased and expiratory resistance decreased after exteriorization, whereas the mean inspiratory impedance did not change. In the external pippers, exteriorization had no significant effects on respiratory compliance, resistance, or impedance, and the values were similar to those of newly hatched chicks. We conclude that, in the chicken embryo, at a time when pulmonary ventilation becomes an important mechanism for gas exchange, the curled up posture inside the egg does not provide any significant mechanical constraint to breathing.  相似文献   

15.
Phorbol myristate acetate (PMA) and endotoxin cause pulmonary granulocyte sequestration and alteration in lung fluid and solute exchange in awake sheep that are felt to be analogous to the adult respiratory distress syndrome in humans. The basic hypothesis that PMA causes lung injury by activating circulating granulocytes has never been tested. The effects of infused PMA on lung mechanics and the cellular constituents of lung lymph have also not been reported. We therefore characterized the effects of intravenous PMA, 5 micrograms/kg, on lung mechanics, pulmonary hemodynamics, lung fluid and solute exchange, pulmonary gas exchange, blood and lymph leukocyte counts, and plasma and lymph cyclooxygenase products of arachidonate metabolism in 10 awake sheep with normal granulocyte counts and after granulocyte depletion with hydroxyurea. PMA significantly altered lung mechanics from base line in both nongranulocyte depleted and granulocyte-depleted sheep. Dynamic compliance decreased by over 50% and resistance to airflow across the lungs increased over threefold acutely following PMA infusion in both sets of experiments. Changes in lung mechanics, pulmonary hemodynamics, lung fluid and solute exchange, pulmonary gas exchange, and plasma and lymph arachidonate metabolites were not significantly affected by greater than 99% depletion of circulating granulocytes. We conclude that the lung injury caused by PMA in chronically instrumented awake sheep probably is not a result of activation of circulating granulocytes.  相似文献   

16.
A respiration-gated synchrotron radiation computed tomography (SRCT) technique, which allows visualization and direct quantification of inhaled stable xenon gas, was used to study the effect of tidal volume (Vt) on regional lung ventilation. High-resolution maps (pixel size 0.35 x 0.35 mm) of local washin time constants (tau) and regional specific ventilation were obtained in five anesthetized, paralyzed, and mechanically ventilated rabbits in upright body position at the fourth, sixth, and eighth dorsal vertebral levels with a Vt from 4.9 +/- 0.3 to 7.9 +/- 0.4 ml/kg (means +/- SE). Increasing Vt without an increase in minute ventilation resulted in a proportional increase of mean specific ventilation up to 65% in all studied lung levels and reduced the scattering of washin tau values. The tau values had log-normal distributions. The results indicate that an increase in Vt decreases nonuniformity of intraregional ventilatory gas exchange. The findings suggest that (SRCT) provides a new quantitative tool with high spatial discrimination ability for assessment of changes in peripheral pulmonary gas distribution during mechanical ventilation.  相似文献   

17.
To evaluate the role of tumor necrosis factor (TNF)-alpha in the pathogenesis of ventilator-induced lung injury, we 1) measured TNF-alpha production in the lung caused by conventional mechanical ventilation (CMV) and 2) evaluated the protective effect of anti-TNF-alpha antibody (Ab) in saline-lavaged rabbit lungs. After they received saline lung lavage, rabbits were intratracheally instilled with 1 mg/kg of polyclonal anti-TNF-alpha Ab in the high-dose group (n = 6), 0.2 mg/kg of anti-TNF-alpha Ab in the low-dose group (n = 6), serum IgG fraction in the Ab control group (n = 6), and saline in the saline control group (n = 7). Animals then underwent CMV for 4 h. Levels of TNF-alpha in lung lavage fluid were significantly higher after CMV than before in both control groups. Pretreatment with intratracheal instillation of high and low doses of anti-TNF-alpha Ab improved oxygenation and respiratory compliance, reduced the infiltration of leukocytes, and ameliorated pathological findings. CMV led to TNF-alpha production in the lungs, and intratracheal instillation of anti-TNF-alpha Ab attenuated CMV-induced lung injury in this model.  相似文献   

18.

Background

Several concepts of treatment in neonatal ARDS have been proposed in the last years. The present study compared the effects of open lung concept positive pressure ventilation (PPVOLC) with a conventional ventilation strategy combined with administration of two different surfactant preparations on lung function and surfactant homoeostasis.

Methods

After repeated whole-lung saline lavage, 16 newborn piglets were assigned to either PPVOLC (n = 5) or surfactant treatment under conventional PPV using a natural bovine (n = 5) or a monomeric protein B based surfactant (n = 6).

Results

Comprehensive monitoring showed each treatment strategy to improve gas exchange and lung function, although the effect on PaO2 and pulmonary compliance declined over the study period in the surfactant groups. The overall improvement of the ventilation efficiency index (VEI) was significantly greater in the PPVOLC group. Phospholipid and protein analyses of the bronchoalveolar lavage fluid showed significant alterations to surfactant homoeostasis in the PPVOLC group, whereas IL-10 and SP-C mRNA expression was tendentially increased in the surfactant groups.

Conclusion

The different treatment strategies applied could be shown to improve gas exchange and lung function in neonatal ARDS. To which extent differences in maintenance of lung function and surfactant homeostasis may lead to long-term consequences needs to be studied further.  相似文献   

19.
Lung mechanics, exhaled NO (NOe), and TNF-alpha in serum and bronchoalveolar lavage fluid were assessed in eight closed and eight open chest, normal anesthetized rabbits undergoing prolonged (3-4 h) mechanical ventilation (MV) at low volume with physiological tidal volumes (10 ml/kg). Relative to initial MV on positive end-expiratory pressure (PEEP), MV at low volume increased lung quasi-static elastance (+267 and +281%), airway (+471 and +382%) and viscolelastic resistance (+480 and +294%), and decreased NOe (-42 and -25%) in closed and open chest rabbits, respectively. After restoration of PEEP, viscoelastic resistance returned to control, whereas airway resistance remained elevated (+120 and +31%) and NOe low (-25 and -20%) in both groups of rabbits. Elastance remained elevated (+23%) only in closed-chest animals, being associated with interstitial pulmonary edema, as reflected by increased lung wet-to-dry weight ratio with normal albumin concentration in bronchoalveolar lavage fluid. In contrast, in 16 additional closed- and open-chest rabbits, there were no changes of lung mechanics or NOe after prolonged MV on PEEP only. At the end of prolonged MV, TNF-alpha was practically undetectable in serum, whereas its concentration in bronchoalveolar lavage fluid was low and similar in animals subjected or not subjected to ventilation at low volume (62 vs. 43 pg/ml). These results indicate that mechanical injury of peripheral airways due to their cyclic opening and closing during ventilation at low volume results in changes in lung mechanics and reduction in NOe and that these alterations are not mediated by a proinflammatory process, since this is expressed by TNF-alpha levels.  相似文献   

20.
During a severe local or systemic inflammatory response, immune mediators target lung tissue. This process may lead to acute lung injury and impaired diffusion of gas molecules. Although several mathematical models of gas exchange have been described, none simulate acute lung injury following inflammatory stress. In view of recent laboratory and clinical progress in the understanding of the pathophysiology of acute lung injury, such a mathematical model would be useful. We first derived a partial differential equations model of gas exchange on a small physiological unit of the lung (≈25 alveoli), which we refer to as a respiratory unit (RU). We next developed a simple model of the acute inflammatory response and implemented its effects within a RU, creating a single RU model. Linking multiple RUs with various ventilation/perfusion ratios and taking into account pulmonary venous blood remixing yielded our lung-scale model. Using the lung-scale model, we explored the predicted effects of inflammation on ventilation/perfusion distribution and the resulting pulmonary venous partial pressure oxygen level during systemic inflammatory stresses. This model represents a first step towards the development of anatomically faithful models of gas exchange and ventilation under a broad range of local and systemic inflammatory stimuli resulting in acute lung injury, such as infection and mechanical strain of lung tissue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号