首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
The turnover of the adenine nucleotide pool, the pathway of the degradation of AMP and the occurrence of recycling of adenosine were investigated in isolated chicken hepatocytes, in which the adenylates had been labelled by prior incubation with [14C]adenine. Under physiological conditions, 85% of the IMP synthesized by the 'de novo' pathway (approx. 37 nmol/min per g of cells) was catabolized directly via inosine into uric acid, and 14% was converted into adenine nucleotides. The latter were found to turn over at the rate of approx. 5 nmol/min per g of tissue. Inhibition of adenosine deaminase by 1 microM-coformycin had no effect on the formation of labelled uric acid, indicating that the initial degradation of AMP proceeds by way of deamination rather than dephosphorylation. Inhibition of adenosine kinase by 100 microM-5-iodotubercidin resulted in a loss of labelled ATP, demonstrating that adenosine is normally formed from AMP but is recycled. Unexpectedly, 5-iodotubercidin did not decrease the total concentration of ATP, indicating that the loss of adenylates caused by inhibition of adenosine kinase was nearly completely compensated by formation of AMP de novo. Anoxia induced a greatly increased catabolism of the adenine nucleotide pool, which proceeded in part by dephosphorylation of AMP. On reoxygenation, the formation of AMP de novo was increased 8-fold as compared with normoxic conditions. The latter results indicate the existence of adaptive mechanisms in chick liver allowing, when required, channelling of the metabolic flux through the 'de novo' pathway, away from the uricotelic catabolic route, into the synthesis of adenine nucleotides.  相似文献   

2.
19F NMR was used to measure intracellular [H+] of hepatocytes before and after incubation with glucagon and adrenergic agonists at their concentrations which give maximal stimulation of both glucose and urea production. Intracellular and extracellular pH was determined from the chemical shifts in resonances of alpha-difluoromethylalanine. The alterations in intracellular [H+] with agonist treatment were, in all cases, found to be less than 0.1 pH unit in the pH range 6.7-7.8. It is concluded that changes in concentration of the intracellular [H+] do not play a significant role in the stimulation of urea and glucose production caused by these hormonal effectors.  相似文献   

3.
The digitonin method for the separation of cytosolic and mitochondrial fractions was applied to liver cells isolated from foetal rats. The cytosolic [ATP]/[ADP] ratio approximately doubles during the last 4 days of gestation, whereas the mitochondrial ratio remains constant. In the presence of oligomycin and added glucose, the cytosolic [ATP]/[ADP] ratio does not increase with age, but is still considerably higher than the mitochondrial ratio. Without added glucose, and when the glycogen content of foetal liver is still very low (more than 3 days before birth), the cytosolic [ATP]/[ADP] ratio in the presence of oligomycin becomes very low and equal to the mitochondrial ratio. It is concluded that the increasein the cytosolic [ATP]/[ADP] ratio during the last 4 days of gestation is solely due to enhanced mitochondrial activity in this period. Atractyloside and bongkrekic acid do not influence the O2 consumption, nor the [ATP]/[ADP] ratios in either compartment of foetal liver cells. Respiration of isolated foetal mitochondria, however, is strongly inhibited by both compounds. The implications of these findings are discussed.  相似文献   

4.
Addition of ATP to the incubation medium of freshly isolated rat hepatocytes causes a marked inhibition of the efflux of Ca2+ from the cells, and its accumulation in intracellular compartments. After an initial rise in cytosolic free Ca2+ concentration, as indicated by the activation of phosphorylase, Ca2+ is preferentially sequestered in the mitochondria, without any apparent contribution by the endoplasmic reticulum. Impairment of mitochondrial Ca2+ homeostasis by pyridine nucleotide oxidation associated with tert-butyl hydroperoxide metabolism, prevents the ATP-dependent cellular Ca2+ accumulation and causes a release of Ca2+ from the hepatocytes into the medium. Conversely, maintenance of the mitochondrial pyridine nucleotides in a more reduced state, e. g. in presence of 3-hydroxybutyrate in the medium, prevents this hydroperoxide-induced release of intracellular Ca2+. Under conditions of impaired mitochondrial Ca2+ sequestration, there appears to be a redistribution of a minor fraction of the intracellular Ca2+ from the mitochondria to the endoplasmic reticulum. Our results provide additional evidence for the critical involvement of the plasma membrane Ca2+-extruding system in the physiological regulation of the cytosolic free Ca2+ concentration in hepatocytes, and suggest that the mitochondria play a more important role than the endoplasmic reticulum in the regulation of the cytosolic free Ca2+ level when the plasma membrane Ca2+ pump is inhibited.  相似文献   

5.
Alpha-1 adrenergic receptor number was defined by [3H]-prazosin binding in crude membrane preparations of hepatocytes and in intact hepatocytes isolated from foetal (day 22 of gestation), juvenile (12 days old), adult female and adult male (90-150 days old) rats and compared with the alpha-1 adrenergic response (measured by epinephrine stimulated glucose liberation in presence of the beta-antagonist propranolol). The alpha-1 receptor number (expressed as fmol bound [3H]-prazosin/mg membrane protein or as receptor number/cell) increases in an age-dependent fashion reaching the highest values in hepatocytes of adult female and male rats. Statistically significant differences could be found between foetal, juvenile and adult rat hepatocytes. No differences in [3H]-prazosin binding were observed between hepatocytes of adult female and adult male rats. The receptor density (expressed as receptor number/microns 2 cell surface), however, was found to be equal in juvenile and adult rats. There are no differences of alpha-1 adrenergic response in juvenile, adult female and adult male rat hepatocytes, whereas the values in foetal hepatocytes were significantly lower. So the biological response is closely correlated with the receptor density and not with the receptor number per cell.  相似文献   

6.
1. Adrenergic inhibition of lipogenesis was examined in vitro using hepatocytes isolated from chickens 2-9 weeks old. 2. Lipogenesis was inhibited by beta 1, beta 2 and alpha 1 agonists. Greatest inhibition occurred when more than one type of receptor was stimulated. 3. Clonidine (alpha 2-agonist) may have stimulated lipogenesis. 4. Responsiveness to the agonists decreased as the chickens got older.  相似文献   

7.
Palmitoyl CoA (PCoA) and the adenine translocase inhibitor atractyloside (ATR) appear to produce a similar effect in discharging accumulated calcium from cardiac mitochondria. Although mitochondrial respiration is stimulated upon addition of either PCoA or ATR to preparations preloaded with calcium, the effect is not the same as that produced by classical uncouplers. PCoA and ATR also do not interfere with respiration-supported calcium uptake by mitochondria. The presence of exogenous ATP can prevent the calcium discharging effects of PCoA or ATR. Carnitine will prevent the PCoA calcium discharging effect, but has no effect on ATR-induced discharge. It is suggested the PCoA may act at a site on or near the adenine translocase, perhaps through allosteric interaction, to produce an efflux of calcium from mitochondria. The results also suggest that the internal adenine nucleotide pool plays a significant role in mitochondrial calcium retention.  相似文献   

8.
Adenine nucleotides activate basal particulate guanylate cyclase in rat lung membranes. Activation is specific for adenine and not guanine, cytidine or uridine nucleotides. The concentration of adenine nucleotides yielding half-maximum activation of particulate guanylate cyclase is 0.1 mM and this nucleotide activates the enzyme by increasing maximum velocity 11-fold without altering affinity for substrate. Activation is specific for particulate guanylate cyclase, since soluble enzyme is inhibited by adenine nucleotides. Similarly, activation is specific for magnesium as the enzyme substrate cation cofactor, since adenine nucleotides inhibit particulate guanylate cyclase when manganese is used. Adenine nucleotide regulation of particulate guanylate cyclase may occur by a different molecular mechanism compared to other activators, since the effects of these nucleotides are synergistic with those of detergent, hemin and atrial natriuretic peptides. Cystamine inhibits adenine nucleotide activation of particulate guanylate cyclase at concentrations having minimal effects on basal enzyme activity suggesting a role for critical sulfhydryls in mechanisms underlying nucleotide regulation of particulate guanylate cyclase. Purification and quantitative recovery of particulate guanylate cyclase by substrate affinity chromatography results in the loss of adenine nucleotide regulation. These data suggest that adenine nucleotides may be important in the regulation of basal and activated particulate guanylate cyclase and may be mediated by an adenine nucleotide-binding protein which is separate from that enzyme.  相似文献   

9.
To study the mechanisms by which catecholamines regulate hepatocyte proliferation after partial hepatectomy (PHX), hepatocytes were isolated from adult male rats 24 h after sham operation or two-thirds PHX and treated with catecholamines and other agonists. In freshly isolated sham cells, p42 mitogen-activated protein (MAP) kinase activity was stimulated by the alpha1-adrenergic agonist phenylephrine (PHE). Activation of p42 MAP kinase by growth factors was blunted by pretreatment of sham hepatocytes with glucagon but not by that with the beta2-adrenergic agonist isoproterenol (ISO). In PHX cells, the ability of PHE to activate p42 MAP kinase was dramatically reduced, whereas ISO became competent to inhibit p42 MAP kinase activation. PHE treatment of sham but not PHX and ISO treatment of PHX but not sham hepatocytes also activated the stress-activated protein (SAP) kinases p46/54 SAP kinase and p38 SAP kinase. These data demonstrate that an alpha1- to beta2-adrenergic receptor switch occurs upon PHX and results in an increase in SAP kinase versus MAP kinase signaling by catecholamines. In primary cultures of hepatocytes, ISO treatment of PHX but not sham cells inhibited [3H]thymidine incorporation. In contrast, PHE treatment of sham but not PHX cells stimulated [3H]thymidine incorporation, which was reduced by approximately 25 and approximately 95% with specific inhibitors of p42 MAP kinase and p38 SAP kinase function, respectively. Inhibition of the p38 SAP kinase also dramatically reduced basal [3H]thymidine incorporation. These data suggest that p38 SAP kinase plays a permissive role in liver regeneration. Alterations in the abilities of catecholamines to modulate the activities of protein kinase A and the MAP and SAP kinase pathways may represent one physiological mechanism by which these agonists can regulate hepatocyte proliferation after PHX.  相似文献   

10.
11.
1. The effects on phosphatidylinositol metabolism of three Ca(2+)-mobilizing glycogenolytic hormones, namely angiotensin, vasopressin and adrenaline, have been investigated by using rat hepatocytes. 2. All three hormones stimulate both phosphatidylinositol breakdown and the labelling of this lipid with (32)P. 3. The response to angiotensin occurs quickly, requires a high concentration of the hormone and is prevented by [1-sarcosine, 8-isoleucine]angiotensin, a specific angiotensin antagonist that does not prevent the responses to vasopressin and to adrenaline. This response therefore seems to be mediated by angiotensin-specific receptors. 4. [1-Deaminocysteine,2-phenylalanine,7-(3,4-didehydroproline),8-arginine] vasopressin, a vasopressin analogue with enhanced antidiuretic potency, is relatively ineffective at stimulating phosphatidylinositol metabolism. This suggests that the hepatic vasopressin receptors that stimulate phosphatidylinositol breakdown are different in their ligand selectivity from the antidiuretic vasopressin receptors that activate renal adenylate cyclase. 5. Incubation of hepatocytes with ionophore A23187, a bivalent-cation ionophore, neither mimicked nor appreciably changed the effects of vasopressin on phosphatidylinositol metabolism, suggesting that phosphatidylinositol breakdown is not controlled by changes in the cytosol Ca(2+) concentration. This conclusion was supported by the observation that hormonal stimulation of phosphatidylinositol breakdown and resynthesis persists in cells incubated for a substantial period in EGTA, although this treatment somewhat decreased the phosphatidylinositol response of the hepatocyte. The phosphatidylinositol response of the hepatocyte therefore appears not to be controlled by changes in cytosol [Ca(2+)], despite the fact that this ion is thought to be the second messenger by which the same hormones control glycogenolysis. 6. These results may be an indication that phosphatidylinositol breakdown is an integral reaction in the stimulus-response coupling sequence(s) that link(s) activation of alpha-adrenergic, vasopressin and angiotensin receptors to mobilization of Ca(2+) in the rat hepatocyte.  相似文献   

12.
13.
We have studied the effect of a calcium ionophore, A23187, and the purported calmodulin inhibitors, calmidazolium and chlorpromazine, on direct intercellular communication between smooth muscle cells in the myometrium of delivering rats. The extent of cell-to-cell coupling was determined by exposing one portion of small strips of longitudinal myometrium to 2-[3H] deoxy-D-glucose (2-DG) and determining the distribution and apparent diffusion coefficient (Da) for this tracer after a 5-h period for diffusion. The distribution and Da for 2-DG were significantly (p less than 0.05) reduced by exposure to A23187 in Krebs-Ringer solution with 2.5 mM Ca++, partially reduced in Krebs solution with A23187 and low Ca++ (1-10 microM), but the drug had no effect when used with Ca++-free solutions with [ethylenebis (oxyethylene-nitrilo)] tetraacetic acid (EGTA). The calmodulin inhibitors blocked the effects of A23187 in a dose-dependent fashion, and at higher concentrations, the extent of 2-DG diffusion was not different from that in control tissues. Surprisingly, however, a dose-dependent reduction in coupling was also observed in tissues exposed to the calmodulin inhibitors alone. Structural studies failed to reveal any change in the area of gap junctions between the myometrial cells following the above treatments, suggesting that the reduced exchange of 2-DG resulted from a decrease in the permeability of gap junctions between the muscle fibers.  相似文献   

14.
The adrenergic amines noradrenaline and adrenaline increased flux through phenylalanine hydroxylase by approx. 50%. This effect, which appears to be mediated by an alpha-adrenergic mechanism, was accompanied by a rapid increase in the phosphorylation of phenylalanine hydroxylase. Although ionophore A23187 mimicked the effects of the adrenergic amines, vasopressin was completely without effect on either phenylalanine hydroxylation or enzyme phosphorylation. Flux through phenylalanine hydroxylase in young rats (80 g) was insensitive to alpha-adrenergic, but sensitive to beta-adrenergic, agents. Consistent with previous observations [Fisher & Pogson (1984) Biochem. J. 219, 79-85] the present data indicate a close correlation between phosphorylation state and flux rate (i.e. enzyme activity).  相似文献   

15.
H Sies  P Graf    D Crane 《The Biochemical journal》1983,212(2):271-278
Vasopressin or alpha-adrenergic agents such as phenylephrine or adrenaline, but not glucagon, elicited an initial decrease in flux through pyruvate dehydrogenase assayed by 14CO2 production from [1-14C]pyruvate in perfused rat liver. This rapid decrease in 14CO2 production was maximal within 1-2 min of exposure, concomitant with a rise in effluent pyruvate concentration: a subsequent return towards initial values in both parameters was completed well before 5 min. This time course was superposed with Ca2+ efflux from perfused liver, maximal (at 116 nmol/min per g wet wt. of liver) at 1-2 min of exposure. The percentage of the active (dephospho) form of pyruvate dehydrogenase was not decreased at 2 min of exposure. The effect on flux through pyruvate dehydrogenase by phenylephrine was abolished by prazosine, phentolamine or phenoxybenzamine. Ionophore A23187 also caused a depression in 14CO2 production from [1-14C]pyruvate and a rise in effluent pyruvate concentration, but this effect was stable for longer times, and it was delayed when Ca2+ was omitted from the perfusion medium. Responses of phenylephrine and A23187 were not additive. The results demonstrate that under the experimental conditions employed in intact perfused liver, the mitochondrial multienzyme system of pyruvate dehydrogenase is sensitive to vasopressin, alpha-adrenergic agents and A23187. The similar time course in Ca2+ efflux may be indicative of the involvement of Ca2+ in mediating this effect.  相似文献   

16.
Interaction between the de novo and salvage pathways of pyrimidine metabolism was studied in a line of rat hepatoma cells by co-labelling with [14C]-uridine and [3H]orotate. A difference in the ratio of 14C/3H between CTP and UTP in acid-soluble nucleotide pool was reflected in the corresponding ratios in CMP and UMP in RNA, with uridine labelling cytidine nucleotides relatively more effectively than orotate. These results are not compatible with the concept of a single UTP pool, and a new model for pyrimidine anabolic pathways, based on compartmentation of de novo from salvage pathways, is proposed.  相似文献   

17.
The adenine nucleotide content of rat liver mitochondria was shown to increase significantly after birth. On the other hand, it was found that the ligand-binding properties of the adenine nucleotide translocator were essentially the same in foetal, suckling and adult rat liver mitochondria. These results are compatible with the proposal that the accumulation of adenine nucleotides which occurs during mitochondrial biogenesis and maturation is effected by a pathway different from the adenine nucleotide translocator.  相似文献   

18.
Adenine nucleotide and lysine transport in Chlamydia psittaci.   总被引:13,自引:12,他引:13       下载免费PDF全文
Isolated reticulate bodies of Chlamydia psittaci were found to transport ATP and ADP by an ATP-ADP exchange mechanism. ATP uptake activity was not detected in elementary bodies. The apparent Km of transport for both ATP and ADP was approximately 5 microM, and the calculated Vmax for both was about 1 nmol of nucleotide transported per min per mg of protein. ADP competitively inhibited ATP transport with a Ki of 4.5 microM. Other nucleotides tested had no effect on the uptake of ATP. A magnesium-dependent, oligomycin-sensitive ATPase (ATP phosphohydrolase, EC 3.6.1.3) was associated with reticulate bodies, and most of the transported ATP was hydrolyzed to ADP, which was exchanged for additional, extracellular nucleotide. Some ADP was hydrolyzed to AMP, which exited the cells slowly. Lysine was transported against the electrochemical gradient by reticulate bodies in the presence of ATP. Oligomycin and carbonyl cyanide p-trifluoromethoxyphenylhydrazone inhibited ATP-dependent lysine transport. Lysine exited reticulate bodies when the reticulate bodies were incubated in the presence of ADP, carbonyl cyanide p-trifluoromethoxyphenylhydrazone, or a reduced concentration of ATP. The results support the concept that chlamydiae are energy parasites which are capable of drawing upon the adenine nucleotides of their hosts, hydrolyzing ATP, and establishing an energized membrane.  相似文献   

19.
In the pineal gland numbers of synaptic ribbons (SR) undergo day/night changes which parallel the rhythm of melatonin synthesis. Since pineal biosynthetic activity is controlled by activation of adrenoreceptors, we investigated the effects of adrenergic agonists and antagonists on pineal synaptic ribbon numbers and N-acetyltransferase (NAT) activity, the key enzyme of melatonin synthesis in rats. In vivo application of the beta-adrenergic antagonist propranolol decreased melatonin synthesis when given during the dark phase but did not affect SR numbers. Treatment during daytime with the beta-adrenergic agonist isoproterenol increased pineal NAT activity whereas SR numbers did not change. Norepinephrine stimulated NAT activity in vitro in a dose-dependent manner, but did not elevate SR numbers. Incubation with an analog of the second messenger cyclic adenosine monophosphate increased both NAT activity and SR numbers. These results suggest that the beta-adrenergic system does not play a decisive role in the regulation of the nocturnal increase in SR numbers observed in the rat pineal gland.  相似文献   

20.
In isolated rat hepatocytes, noradrenaline (NA) 50 nM induced intracellular calcium ([Ca(2+)](c)) increase as (i) oscillations with each down-stroke of the spike reaching baseline, (ii) phasic increase with gradual decay, and (iii) phasic increase transforming into oscillations. At 25 nM and 50 nM, NA predominantly induced oscillatory increases; at 100 nM and 1 microM, phasic increases were predominant. Photodynamic action (30 s) with photosensitizer sulphonated aluminium phthalocyanine (SALPC, 5 microM) induced [Ca(2+)](c) increase as (i) no change, (ii) a single spike, or (iii) phasic increase. [Ca(2+)](c) oscillations induced by NA 50 nM were obliterated by photodynamic action (30 s), but when NA 200 nM, which normally induced plateau increases, was added to the now quiescent cells, [Ca(2+)](c) oscillations reemerged. These data indicate that photodynamic action could efficiently desensitize adrenergic receptors in hepatocytes. Photodynamic action may do so by crosslinking neighboring receptors or neighboring transmembrane domains of the same receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号