首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background  

The entomopathogenic anamorphic fungus Metarhizum anisopliae is currently used as a biocontrol agent (BCA) of insects. In the present work, we analyzed the sequence data obtained from group I introns in the large subunit (LSU) of rDNA genes with a view to determining the genetic diversity present in an autochthonous collection of twenty-six M. anisopliae isolates selected as BCAs.  相似文献   

2.

Background  

Filamentous fungi are the most widely used eukaryotic biocatalysts in industrial and chemical applications. Consequently, there is tremendous interest in methodology that can use the power of genetics to develop strains with improved performance. For example, Metarhizium anisopliae is a broad host range entomopathogenic fungus currently under intensive investigation as a biologically based alternative to chemical pesticides. However, it use is limited by the relatively low tolerance of this species to abiotic stresses such as heat, with most strains displaying little to no growth between 35–37°C. In this study, we used a newly developed automated continuous culture method called the Evolugator™, which takes advantage of a natural selection-adaptation strategy, to select for thermotolerant variants of M. anisopliae strain 2575 displaying robust growth at 37°C.  相似文献   

3.

Background  

Ecological factors play an important role in the evolution of parasite exploitation strategies. A common prediction is that, as shorter host life span reduces future opportunities of transmission, parasites compensate with an evolutionary shift towards earlier transmission. They may grow more rapidly within the host, have a shorter latency time and, consequently, be more virulent. Thus, increased extrinsic (i.e., not caused by the parasite) host mortality leads to the evolution of more virulent parasites. To test these predictions, we performed a serial transfer experiment, using the protozoan Paramecium caudatum and its bacterial parasite Holospora undulata. We simulated variation in host life span by killing hosts after 11 (early killing) or 14 (late killing) days post inoculation; after killing, parasite transmission stages were collected and used for a new infection cycle.  相似文献   

4.

Background  

The malarial parasite, Plasmodium falciparum (Pf), is responsible for nearly 2 million deaths worldwide. However, the mechanisms of cellular signaling in the parasite remain largely unknown. Recent discovery of a few protein kinases and phosphatases point to a thriving reversible phosphorylation system in the parasite, although their function and regulation need to be determined.  相似文献   

5.

Background  

Costs of adaptation play an important role in host-parasite coevolution. For parasites, evolving the ability to circumvent host resistance may trade off with subsequent growth or transmission. Such costs of virulence (sensu plant pathology) limit the spread of all-infectious genotypes and thus facilitate the maintenance of genetic polymorphism in both host and parasite. We investigated costs of three virulence factors in Puccinia striiformis f.sp. tritici, a fungal pathogen of wheat (Triticum aestivum).  相似文献   

6.

Background  

Giardia duodenalis is a ubiquitous protozoan parasite that has emerged as a significant opportunistic human pathogen. G. duodenalis may have a deleterious effect on animal growth and performance, therefore its potential as a production limiting organism should not be discounted. We therefore undertook this study to determine management and environmental factors in feedlots that influence the prevalence and environmental load of G. duodenalis cysts in fecal material deposited by feedlot cattle in the central and western United States.  相似文献   

7.
8.

Background  

Evolution of parasite traits is inextricably linked to their hosts. For instance one common definition of parasite virulence is the reduction in host fitness due to infection. Thus, traits of infection must be viewed in both protagonists and may be under shared genetic and physiological control. We investigated these questions on the oomycete Hyaloperonospora arabidopsis (= parasitica), a natural pathogen of the Brassicaceae Arabidopsis thaliana.  相似文献   

9.

Background  

In host erythrocytes, the malaria parasite must contend with ion and drug transport across three membranes; its own plasma membrane, the parasitophorous membrane and the host plasma membrane. Isolation of pure and intact Plasmodium falciparum plasma membrane would provide a suitable model to elucidate the possible role played by the parasite plasma membrane in ion balance and drug transport.  相似文献   

10.

Background  

The main vector for transmission of malaria in India is the Anopheles culicifacies mosquito species, a naturally selected subgroup of which is completely refractory (R) to transmission of the malaria parasite, Plasmodium vivax;  相似文献   

11.
Entomopathogenic fungi are potential candidates for use in integrated vector management. However, efficient delivery systems for these fungi need to be investigated. It is known that adult mosquitoes are attracted to dark surfaces, and therefore, black cotton cloths impregnated with Metarhizium anisopliae alone or in combination with the insecticide imidacloprid (IMI) were tested under laboratory conditions. Black cloths impregnated with fungus were also tested in large‐cage trials under natural extradomicile conditions. Blood‐fed Rockefeller and wild‐type strain Aedes aegypti had higher levels of survival when compared with sucrose‐fed counterparts following exposure to fungus‐impregnated cloths. However, when blood‐fed A. aegypti were exposed to a combination of M. anisopliae + IMI, the survival rates were statistically equal to those of sucrose‐fed females. Large‐cage trials showed significant decreases in A. aegypti survival following a minimum 12 h exposure of the mosquitoes to fungus‐impregnated cloths. Increased exposure times results in further reductions in survival. The synergism between M. anisopliae and IMI resulted in reduced survival rates independent of feeding regime under laboratory conditions. Fungus‐impregnated cloths tested under simulated field conditions, considered to be unfavourable for fungal infection, resulted in significant reductions in adult A. aegypti survival. We are currently testing the combined use of fungi and insecticides against blood‐fed insects under simulated field conditions.

Significance and Impact of the Study

The use of fungus‐impregnated cotton cloths is a promising point source application method for the control of adult Aedes aegypti, and this strategy could be incorporated into an integrated vector management programme aiming to reduce the incidence of dengue fever.  相似文献   

12.

Background  

Several types of selective forces can act to promote parasite specialization. Parasites might specialize on some suitable hosts at the cost of decreasing effectiveness when exploiting other species of hosts, and specialization can be more easily selected for in hosts that the parasites will easily find. Thus demographic characteristics of suitable hosts such as population density and its spatial consistency could be key factors predicting probability of parasite specialization and speciation. Here, we explore this hypothesis by studying the relationship between occurence of specialized races of the European cuckoo (Cuculus canorus) (i.e. gentes) and mean and coefficient of variation in population density estimated for 12 different European regions.  相似文献   

13.

Background  

Exposure of Leishmania promastigotes to the temperature of their mammalian hosts results in the induction of a typical heat shock response. It has been suggested that heat shock proteins play an important role in parasite survival and differentiation.  相似文献   

14.
Combined use of the entomopathogenic nematodes (EPNs), Heterorhabditis bacteriophora Poinar (Heterorhabditidae), Steinernema feltiae Bovien, and Steinernema kraussei Steiner (Steinernematidae) and the insect‐pathogenic fungus, Metarhizium anisopliae (Metsch.) Sorokin (Clavicipitaceae) was evaluated for control of third‐instar black vine weevil, Otiorhynchus sulcatus Fabricius (Coleoptera: Curculionidae). Black vine weevil larvae were exposed to various concentrations of M. anisopliae and EPNs and mortality was assessed weekly or at 3‐day intervals under laboratory and greenhouse conditions. The EPNs were added simultaneously, or 1 or 2 weeks after application of M. anisopliae. Throughout the experiments, the combined application of EPNs with M. anisopliae resulted in increased efficacy against black vine weevil. When the EPNs were applied 1 or 2 weeks after application of the fungus, 100% larval mortality was obtained, even when the biocontrol agents were used at reduced rates. The interactions observed suggest that EPN and M. anisopliae work together synergistically in potted Euonymus fortunei Blondy (Celastraceae) under greenhouse conditions and may provide a powerful and economically feasible approach for black vine weevil larval control.  相似文献   

15.

Background

Metarhizium anisopliae is an important fungal biocontrol agent of insect pests of agricultural crops. Genomics can aid the successful commercialization of biopesticides by identification of key genes differentiating closely related species, selection of virulent microbial isolates which are amenable to industrial scale production and formulation and through the reduction of phenotypic variability. The genome of Metarhizium isolate ARSEF23 was recently published as a model for M. anisopliae, however phylogenetic analysis has since re-classified this isolate as M. robertsii. We present a new annotated genome sequence of M. anisopliae (isolate Ma69) and whole genome comparison to M. robertsii (ARSEF23) and M. acridum (CQMa 102).

Results

Whole genome analysis of M. anisopliae indicates significant macrosynteny with M. robertsii but with some large genomic inversions. In comparison to M. acridum, the genome of M. anisopliae shares lower sequence homology. While alignments overall are co-linear, the genome of M. acridum is not contiguous enough to conclusively observe macrosynteny. Mating type gene analysis revealed both MAT1-1 and MAT1-2 genes present in M. anisopliae suggesting putative homothallism, despite having no known teleomorph, in contrast with the putatively heterothallic M. acridum isolate CQMa 102 (MAT1-2) and M. robertsii isolate ARSEF23 (altered MAT1-1). Repetitive DNA and RIP analysis revealed M. acridum to have twice the repetitive content of the other two species and M. anisopliae to be five times more RIP affected than M. robertsii. We also present an initial bioinformatic survey of candidate pathogenicity genes in M. anisopliae.

Conclusions

The annotated genome of M. anisopliae is an important resource for the identification of virulence genes specific to M. anisopliae and development of species- and strain- specific assays. New insight into the possibility of homothallism and RIP affectedness has important implications for the development of M. anisopliae as a biopesticide as it may indicate the potential for greater inherent diversity in this species than the other species. This could present opportunities to select isolates with unique combinations of pathogenicity factors, or it may point to instability in the species, a negative attribute in a biopesticide.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-660) contains supplementary material, which is available to authorized users.  相似文献   

16.

Background  

Purine nucleoside phosphorylase (PNP) is central to purine salvage mechanisms in Plasmodium parasites, the causative agents of malaria. Most human malaria results from infection either by Plasmodium falciparum (Pf), the deadliest form of the parasite, or by the widespread Plasmodium vivax (Pv). Whereas the PNP enzyme from Pf has previously been studied in detail, despite the prevalence of Pv little is known about many of the key metabolic enzymes from this parasite, including PvPNP.  相似文献   

17.

Background  

Human African trypanosomiasis is a lethal disease caused by the extracellular parasite Trypanosoma brucei. The proteins secreted by T. brucei inhibit the maturation of dendritic cells and their ability to induce lymphocytic allogenic responses. To better understand the pathogenic process, we combined different approaches to characterize these secreted proteins.  相似文献   

18.

Background  

Mosquitoes are intermediate hosts for numerous disease causing organisms. Vector control is one of the most investigated strategy for the suppression of mosquito-borne diseases. Anopheles stephensi is one of the vectors of malaria parasite Plasmodium vivax. The parasite undergoes major developmental and maturation steps within the mosquito midgut and little is known about Anopheles-associated midgut microbiota. Identification and characterization of the mosquito midgut flora is likely to contribute towards better understanding of mosquito biology including longevity, reproduction and mosquito-pathogen interactions that are important to evolve strategies for vector control mechanisms.  相似文献   

19.

Background  

Only one spliceosomal-type intron has previously been identified in the unicellular eukaryotic parasite, Giardia lamblia (a diplomonad). This intron is only 35 nucleotides in length and is unusual in possessing a non-canonical 5' intron boundary sequence, CT, instead of GT.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号