首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
Zhang  Wen  Zhu  Xiaopeng  Fu  Yu  Tsuji  Junko  Weng  Zhiping 《BMC bioinformatics》2017,18(13):464-11

Background

Alternative splicing is the critical process in a single gene coding, which removes introns and joins exons, and splicing branchpoints are indicators for the alternative splicing. Wet experiments have identified a great number of human splicing branchpoints, but many branchpoints are still unknown. In order to guide wet experiments, we develop computational methods to predict human splicing branchpoints.

Results

Considering the fact that an intron may have multiple branchpoints, we transform the branchpoint prediction as the multi-label learning problem, and attempt to predict branchpoint sites from intron sequences. First, we investigate a variety of intron sequence-derived features, such as sparse profile, dinucleotide profile, position weight matrix profile, Markov motif profile and polypyrimidine tract profile. Second, we consider several multi-label learning methods: partial least squares regression, canonical correlation analysis and regularized canonical correlation analysis, and use them as the basic classification engines. Third, we propose two ensemble learning schemes which integrate different features and different classifiers to build ensemble learning systems for the branchpoint prediction. One is the genetic algorithm-based weighted average ensemble method; the other is the logistic regression-based ensemble method.

Conclusions

In the computational experiments, two ensemble learning methods outperform benchmark branchpoint prediction methods, and can produce high-accuracy results on the benchmark dataset.
  相似文献   

6.
7.
8.
9.

Background

Plant bioengineers require simple genetic devices for predictable localization of heterologous proteins to multiple subcellular compartments.

Results

We designed novel hybrid signal sequences for multiple-compartment localization and characterize their function when fused to GFP in Nicotiana benthamiana leaf tissue. TriTag-1 and TriTag-2 use alternative splicing to generate differentially localized GFP isoforms, localizing it to the chloroplasts, peroxisomes and cytosol. TriTag-1 shows a bias for targeting the chloroplast envelope while TriTag-2 preferentially targets the peroxisomes. TriTag-3 embeds a conserved peroxisomal targeting signal within a chloroplast transit peptide, directing GFP to the chloroplasts and peroxisomes.

Conclusions

Our novel signal sequences can reduce the number of cloning steps and the amount of genetic material required to target a heterologous protein to multiple locations in plant cells. This work harnesses alternative splicing and signal embedding for engineering plants to express multi-functional proteins from single genetic constructs.
  相似文献   

10.

Objective

To explore the impact of taurine on monoclonal antibody (mAb) basic charge variants in Chinese hamster ovary (CHO) cell culture.

Results

In fed-batch culture, adding taurine in the feed medium slightly increased the maximum viable cell density and mAb titers in CHO cells. What’s more, taurine significantly decreased the lysine variant and oxidized variant levels, which further decreased basic variant contents from 32 to 27%. The lysine variant content in the taurine culture was approximately 4% lower than that in control condition, which was the main reason for the decrease in basic variants. Real-time PCR and cell-free assay revealed that taurine played a critical role in the upregulation of relative basic carboxypeptidase and stimulating extracellular basic carboxypeptidase activities.

Conclusion

Taurine exhibits noticeable impact on lower basic charge variants, which are mainly due to the decrease of lysine variant and oxidized protein variants.
  相似文献   

11.
12.

Objective

To determine the efficacy of soluble pig tissue factor pathway inhibitor fusion immunoglobulin (TFPI-Ig) in blocking pig to human xenogeneic blood coagulation.

Results

To generate pig TFPI-Ig or human TFPI-Ig, expression vector containing cDNA encoding pig TFPIα or human TFPIα combined with human constant Ig heavy chain region was cloned and introduced into CHO cells. After purification of pig TFPI-Ig and human TFPI-Ig, the inhibition of each recombinant protein on pig tissue factor (TF)-mediated blood coagulation was examined in human plasma. Compared to human TFPI-Ig, pig TFPI-Ig inhibited pig TF activity and thrombin generation in human plasma more efficiently at certain concentrations.

Conclusions

Pig TFPI-Ig will be be useful as a therapeutic protein to treat pig to human xenogeneic blood coagulation.
  相似文献   

13.

Background

Alzheimer’s disease (AD) is one of the most common neurodegenerative diseases that causes problems related to brain function. To some extent it is understood on a molecular level how AD arises, however there are a lack of biomarkers that can be used for early diagnosis. Two popular methods to identify AD-related biomarkers use genetics and neuroimaging. Genes and neuroimaging phenotypes have provided some insights as to the potential for AD biomarkers. While the field of imaging-genomics has identified genetic features associated with structural and functional neuroimaging phenotypes, it remains unclear how variants that affect splicing could be important for understanding the genetic etiology of AD.

Methods

In this study, rare variants (minor allele frequency?<?0.01) in splicing regulatory element (SRE) loci from whole genome sequencing (WGS) in the Alzheimer’s Disease Neuroimaging Initiative (ADNI) cohort, were used to identify genes that are associated with global brain cortical glucose metabolism in AD measured by FDG PET-scans. Gene-based associated analyses of rare variants were performed using the program BioBin and the optimal Sequence Kernel Association Test (SKAT-O).

Results

The gene, EXOC3L4, was identified as significantly associated with global cortical glucose metabolism (FDR (false discovery rate) corrected p?<?0.05) using SRE coding variants only. Three loci that may affect splicing within EXOC3L4 contribute to the association.

Conclusion

Based on sequence homology, EXOC3L4 is likely a part of the exocyst complex. Our results suggest the possibility that variants which affect proper splicing of EXOC3L4 via SREs may impact vesicle transport, giving rise to AD related phenotypes. Overall, by utilizing WGS and functional neuroimaging we have identified a gene significantly associated with an AD related endophenotype, potentially through a mechanism that involves splicing.
  相似文献   

14.
15.
16.
17.
Tissue-specific spatial organization of genomes   总被引:2,自引:0,他引:2  

Background

Genomes are organized in vivo in the form of chromosomes. Each chromosome occupies a distinct nuclear subvolume in the form of a chromosome territory. The spatial positioning of chromosomes within the interphase nucleus is often nonrandom. It is unclear whether the nonrandom spatial arrangement of chromosomes is conserved among tissues or whether spatial genome organization is tissue-specific.

Results

Using two-dimensional and three-dimensional fluorescence in situ hybridization we have carried out a systematic analysis of the spatial positioning of a subset of mouse chromosomes in several tissues. We show that chromosomes exhibit tissue-specific organization. Chromosomes are distributed tissue-specifically with respect to their position relative to the center of the nucleus and also relative to each other. Subsets of chromosomes form distinct types of spatial clusters in different tissues and the relative distance between chromosome pairs varies among tissues. Consistent with the notion that nonrandom spatial proximity is functionally relevant in determining the outcome of chromosome translocation events, we find a correlation between tissue-specific spatial proximity and tissue-specific translocation prevalence.

Conclusions

Our results demonstrate that the spatial organization of genomes is tissue-specific and point to a role for tissue-specific spatial genome organization in the formation of recurrent chromosome arrangements among tissues.
  相似文献   

18.

Background

Altered expression of mRNA splicing factors occurs with ageing in vivo and is thought to be an ageing mechanism. The accumulation of senescent cells also occurs in vivo with advancing age and causes much degenerative age-related pathology. However, the relationship between these two processes is opaque. Accordingly we developed a novel panel of small molecules based on resveratrol, previously suggested to alter mRNA splicing, to determine whether altered splicing factor expression had potential to influence features of replicative senescence.

Results

Treatment with resveralogues was associated with altered splicing factor expression and rescue of multiple features of senescence. This rescue was independent of cell cycle traverse and also independent of SIRT1, SASP modulation or senolysis. Under growth permissive conditions, cells demonstrating restored splicing factor expression also demonstrated increased telomere length, re-entered cell cycle and resumed proliferation. These phenomena were also influenced by ERK antagonists and agonists.

Conclusions

This is the first demonstration that moderation of splicing factor levels is associated with reversal of cellular senescence in human primary fibroblasts. Small molecule modulators of such targets may therefore represent promising novel anti-degenerative therapies.
  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号