首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Storjohann L  Holst B  Schwartz TW 《Biochemistry》2008,47(35):9198-9207
A highly conserved feature across all families of 7TM receptors is a disulfide bridge between a Cys residue located at the extracellular end of transmembrane segment III (TM-III) and one in extracellular loop 2 (ECL-2). The zinc sensor GPR39 contains four Cys residues in the extracellular domains. By using mutagenesis, treatment with the reducing agent TCEP, and a labeling procedure for free sulfhydryl groups, we identify the pairing of these Cys residues in two disulfide bridges: the prototypical bridge between Cys (108) in TM-III and Cys (210) in ECL-2 and a second disulfide bridge connecting Cys (11) in the N-terminal domain with Cys (191) in ECL-2. Disruption of the conserved disulfide bond by mutagenesis greatly reduced the level of cell surface expression and eliminated agonist-induced increases in inositol phosphate production but surprisingly enhanced constitutive signaling. Disruption of the nonconserved disulfide bridge by mutagenesis led to an increase in the Zn (2+) potency. This phenotype, with an approximate 10-fold increase in agonist potency and a slight increase in E max, was mimicked by treatment of the wild-type receptor with TCEP at low concentrations, which had no effect on the receptor already lacking the second disulfide bridge and already displaying a high Zn (2+) potency. We conclude that the second disulfide bridge, which according to the beta2-adrenergic structure will form a covalent link across the entrance to the main ligand binding pocket, serves to dampen GPR39 activation. We suggest that formation of extra disulfide bridges may be an important general mechanism for regulating the activity of 7TM receptors.  相似文献   

2.
In order to investigate structure and function of beta-subunit extracellular portion, four polyclonal antibodies (AP1, AP2, AP3 and AP4) toward peptides comprised in this region were generated. None of them recognizes native human and rat insulin receptor both in vitro and in whole cells. Two antibodies, AP1 and AP2, immunoprecipitate isolated (DTT-reduced) human beta-subunits and bind to human IM-9 cell after alpha-subunit tryptic cleavage. Only AP1 recognizes rat beta-subunit both in vitro and in trypsin treated rat FAD cells. These findings suggest that: (i) the extracellular portion of the insulin receptor beta-subunit is partially covered by the alpha-subunit in human and rat native insulin receptors; (ii) human and rat beta-subunit extracellular domains are different, at least in the amino acid sequence corresponding to residues 785-796 of the human insulin receptor.  相似文献   

3.
Mutations of the insulin receptor gene have been shown to cause insulin-resistant diabetes in patients with genetic forms of insulin resistance. We have previously reported that a mutation substituting valine for Phe382 in the alpha-subunit of the insulin receptor is associated with impaired transport of the mutant receptor to the plasma membrane (Accili, D., Frapier, C., Mosthaf, L., McKeon, C., Elbein, S. C., Permutt, M. A., Ramos, E., Lander, E. S., Ullrich, A., and Taylor, S. I. (1989) EMBO J. 8, 2509-2517). In this study, we demonstrate that the Val382 mutation impairs the ability of insulin to activate receptor autophosphorylation. Furthermore, the Val382 receptor has reduced activity to phosphorylate other peptide substrates in the presence of insulin. Nevertheless, when the Val382 mutant and wild-type receptors are mixed together, the wild-type human insulin receptor is able to phosphorylate the Val382 mutant receptor, thereby activating the tyrosine kinase activity of the mutant receptor. Thus, the conformational change caused by the Val382 mutation compromises the ability of the receptor to transmit a signal across the plasma membrane. Furthermore, our observations suggest that receptor phosphorylation by an intermolecular mechanism (i.e. transphosphorylation) may play a role in mediating the action of insulin upon the target cell.  相似文献   

4.
5.
The c-fms gene encodes the receptor for the macrophage colony-stimulating factor (M-CSF), and its extracellular domain consists of five immunoglobulin-like subdomains. To identify which of the five immunoglobulin-like regions are involved in ligand binding, we polymerase chain reaction-cloned five segments of the extracellular domain of the murine c-fms gene, each starting with the normal initiation codon and containing successive additions of the immunoglobulin-like subdomains. These protein segments are designated A, B, C, D, and E and contain, from the N-terminal end, either one, two, three, four, or all five immunoglobulin-like subdomains, respectively. Each segment was expressed as a secreted soluble protein from a baculovirus expression vector in Sf9 insect cells. In addition, segments A, B, C, and E were produced as soluble alkaline phosphatase fusion proteins, as was a segment containing only the fourth and fifth immunoglobulin domains. These segments of the Fms extracellular domain were used to assess M-CSF binding by competition radioimmunoassays, plate binding immunoassays, and immunoprecipitation analyses. The results indicated that the first two N-terminal immunoglobulin-like domains did not interact with M-CSF but, in combination with the third immunoglobulin-like domain, provided high-affinity M-CSF binding. The fourth and fifth immunoglobulin-like domains near the cell membrane did not exhibit M-CSF binding and may inhibit interaction of M-CSF with the first three immunoglobulin domains. These results suggest that the three N-terminal immunoglobulin-like domains constitute the high-affinity M-CSF binding region and that the fourth and fifth immunoglobulin-like domains may perform functions other than ligand binding.  相似文献   

6.
The Na+/glucose cotransporter (SGLT1) is an archetype for the SLC5 family, which is comprised of Na+-coupled transporters for sugars, myo-inositol, choline, and organic anions. Application of the reducing agent dithriothreitol (DTT, 10 mM) to oocytes expressing human SGLT1 affects the protein's presteady-state currents. Integration of these currents at different membrane potentials (Vm) produces a Q-V curve, whose form was shifted by +25 mV due to DTT. The role of the 15 endogenous cysteine residues was investigated by expressing SGLT1 constructs, each bearing a single mutation for an individual cysteine, in Xenopus oocytes, using two-microelectrode voltage-clamp electrophysiology and fluorescent labeling. 12 of the 15 mutants were functional and could be separated into three distinct groups based on the effect of the mutation on the Q-V curve: four mutants did not perturb the transferred charge, six mutants shifted the Q-V curve towards negative potentials, and two mutants (C255A and C511A) produced a shift in the positive direction that was identical to the shift produced by DTT on the wild-type (wt) SGLT1. The double mutant C(255,511)A confirms that the effects of each single mutant on the Q-V curve were not additive. With respect to wt SGLT1, the apparent affinities for alpha-methylglucose (alphaMG) were increased in a similar manner for the single mutants C255A and C511A, the double mutant C(255,511)A as well as for wt SGLT1 treated with DTT. When exposed to a maleimide-based fluorescent probe, wt SGLT1 was not significantly labeled but mutants C255A and C511A could be clearly labeled, indicating an accessible cysteine residue. These residues are presumed to be C511 and C255, respectively, as the double mutant C(255,511)A could not be labeled. These results strongly support the hypothesis that C255 and C511 form a disulfide bridge in human SGLT1 and that this disulfide bridge is involved in the conformational change of the free carrier.  相似文献   

7.
Disulfide bond (Dsb) formation is catalyzed in the periplasm of prokaryotes by the Dsb proteins. DsbB, a key enzyme in this process, generates disulfides de novo by using the oxidizing power of quinones. To explore the mechanism of this newly described enzymatic activity, we decided to study the ubiquinone-protein interaction and identify the ubiquinone-binding domain in DsbB by cross-linking to photoactivatable quinone analogues. When purified Escherichia coli DsbB was incubated with an azidoubiquinone derivative, 3-azido-2-methyl-5-[(3)H]methoxy-6-decyl-1,4-benzoquinone ([(3)H]azido-Q), and illuminated with long wavelength UV light, the decrease in enzymatic activity correlated with the amount of 3-azido-2-methyl-5-methoxy-6-decyl-1,4-benzoquinone (azido-Q) incorporated into the protein. One azido-Q-linked peptide with a retention time of 33.5 min was obtained by high performance liquid chromatography of the V8 digest of [(3)H]azido-Q-labeled DsbB. This peptide has a partial NH(2)-terminal amino acid sequence of NH(2)-HTMLQLY corresponding to residues 91-97. This sequence occurs in the second periplasmic domain of the inner membrane protein DsbB in a loop connecting transmembrane helices 3 and 4. We propose that the quinone-binding site is within or very near to this sequence.  相似文献   

8.
In Drosophila, members of the Frizzled family of tissue-polarity genes encode proteins that appear to function as cell-surface receptors for Wnts. The Frizzled genes belong to the seven transmembrane class of receptors (7TMR) and have on their extracellular region a cysteine-rich domain that has been implicated as the Wnt binding domain. This region has a characteristic spacing of ten cysteines, which has also been identified in FrzB (a secreted antagonist of Wnt signaling) and Smoothened (another 7TMR, which is involved in suppression of the hedgehog pathway). We have identified, using BLAST, sequence similarity between the cysteine-rich domain of Frizzled and several receptor tyrosine kinases, which have roles in development. These include the muscle-specific receptor tyrosine kinase (MuSK), the neuronal specific kinase (NSK2), and ROR1 and ROR2. At present, the ligands for these developmental tyrosine kinases are unknown. Our results suggest that Wnt-like ligands may bind to these developmental tyrosine kinases.  相似文献   

9.
Fibulin-2 is a novel extracellular matrix protein frequently found in close association with microfibrils containing either fibronectin or fibrillin. The entire protein and its predicted domains were obtained as recombinant products and examined by ultracentrifugation and electron microscopy. This demonstrated a disulfide-linked homodimer of 175 kDa subunits. Partial reduction to monomers identified specifically an odd Cys574 residue responsible for dimer formation in one of three anaphylatoxin-like modules that constitute the central globular domain I (13 kDa) of fibulin-2. Furthermore, a Cys574-Ser mutation abolished disulfide connection but not non-covalent dimerization of fibulin-2. The C-terminal region (85 kDa) was shown to represent a 35-nm-long rod consisting of 11 calcium-binding EGF-like modules (domain II) and a small terminal globe (domain III). The unique N-terminal domain N (55 kDa) was also rod-shaped (approximately 38 nm) and rich in galactosamine indicating extensive O-glycosylation. A dimer model is proposed indicating mainly a rod-like shape of 80 nm length based on an anti-parallel association of two subunits through their domains I. This model also implies alignment of domains II and N between different subunits. This was demonstrated by surface plasmon resonance assay which showed a distinct interaction between domains N and II with a Kd of approximately 0.7 microM.  相似文献   

10.
The angiotensin II (AngII) receptor family is comprised of two subtypes, type 1 (AT(1)) and type 2 (AT(2)). Although sharing low homology (only 34%), mutagenesis has identified some key residues that are conserved between both subtypes, including four extracellular cysteines. Previous AT(1) mutagenesis demonstrated that the cysteines form two disulfide bonds, one linking the first and second extracellular loops and another connecting the amino terminus to the third extracellular loop. The importance of these AT(1) disulfides in ligand binding is supported by the effect of dithiothreitol (DTT). DTT breaks disulfide bonds, thereby strongly inhibiting ligand binding in AT(1) receptors. Despite retaining the same cysteines, AT(2) receptor ligand binding is paradoxically enhanced by DTT. Thus, we constructed a series of AT(2) cysteine mutations, either individually or paired, to establish the role of the cysteines and the source of DTT's effects. The AT(2) cysteine mutants surprisingly confirmed that the cysteines form disulfide bonds in the same manner as in the AT(1) subtype. However, breaking the AT(2) disulfide bridges yielded two responses. As in AT(1) receptors, mutations disrupting the disulfide bond between the first and second extracellular loops reduced AT(2) binding by 4-fold. In contrast, mutations breaking the disulfide bridge between the amino terminus and the third extracellular loop increased AT(2) binding, mimicking DTT's effect on this subtype. Further analysis of AT(1)/AT(2) chimeric exchange mutants of these domains suggested that the AT(2) amino terminus and third extracellular loop may possess latent binding epitopes that are only uncovered after DTT exposure.  相似文献   

11.
We have tested the hypothesis that activation of the insulin receptor tyrosine kinase is due to autophosphorylation of tyrosines 1146, 1150 and 1151 within a putative autoinhibitory domain. A synthetic peptide corresponding to residues 1134–1162, with tyrosines substituted by alanine or phenylalanine, of the insulin receptor subunit was tested for its inhibitory potency and specificity towards the tyrosine kinase activity. This synthetic peptide gave inhibition of the insulin receptor tyrosine kinase autophosphorylation and phosphorylation of the exogenous substrate poly(Glu, Tyr) with an approximate IC50 of 100 M. Inhibition appeared to be independent of the concentrations of insulin or the substrate poly(Glu, Tyr) but was decreased by increasing concentrations of ATP. This same peptide also inhibited the EGF receptor tyrosine kinase but not a serine/threonine protein kinase. These results are consistent with the hypothesis that this autophosphorylation domain contains an autoinhibitory sequence. (Mol Cell Biochem120: 103–110, 1993)Abbreviations IR Insulin Receptor - SDS/PAGE Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis - CaM Calmodulin - HEPES 4-(2-Hydroxyethyl)-Piperazineethane-Sulfonic Acid - DMEM Dulbecco's Modified Eagle' Medium - PMSF Phenylmethyl-Sulfonyl Fluoride - HPLC High Performance Liquid Chromatography - PKC Protein Kinase C - PKI Inhibitory Peptide for cAMP-Kinase - CaMK II Ca2+/Calmodulin-Dependent Protein Kinase II - CaN A A Subunit of Calcineurin  相似文献   

12.
To explore the utility of the baculovirus/insect-cell system for the expression of a soluble secreted human insulin-receptor (hIR) extracellular ligand-binding domain, we have engineered a recombinant virus encoding an hIR deletion mutant which is truncated eight residues from the beginning of the predicted transmembrane domain (i.e. 921 residues). Within 24 h after infection of Sf9 cells with virus, insulin-binding activity begins to accumulate in the culture medium, and reaches a maximum between 48 and 72 h. The intracellular transit and processing of this secreted receptor, designated 'AchIR01', is quite slow. After 24 h in pulse-chase experiments approximately 50% of the metabolically labelled protein is still inside the cell. This protein accumulates as a non-cleaved hIR precursor which is glycosylated, but the carbohydrate is entirely endoglycosidase H (endoH)-sensitive (i.e. high mannose). Approximately one-half of the receptor in the culture medium (i.e. approximately 25% of the total) is in the form of non-cleaved precursor, and about one half of its carbohydrate chains are now endoH-resistant. The remainder of the protein is proteolytically processed hIR (alpha-plus truncated beta-subunits). None of these hIR species exhibit O-linked carbohydrate. Only the processed form of the receptor in the medium binds insulin. This insulin-binding protein is secreted as a dimer (alpha beta)2, and binds insulin with an affinity which is comparable with that of both the wild-type hIR as well as the secreted form of the hIR expressed in mammalian cells. Despite the rather inefficient processing and altered glycosylation of the AchIR01 protein in insect cells, this high-affinity insulin-binding protein accumulates in the medium at levels (mg/litre) of about 100 times that achieved in a mammalian-cell system.  相似文献   

13.
A gene fragment encoding the extracellular domain of the human growth hormone (hGH) receptor from liver was cloned into a plasmid under control of the Escherichia coli alkaline phosphatase promoter and the heat-stable enterotoxin (StII) signal peptide sequence. Strains of E. coli expressing properly folded hGH binding protein were identified by blotting colonies with 125I-hGH. The E. coli strain capable of highest expression (KS330) secreted 10 to 20 mg/liter of culture of properly processed and folded hGH receptor fragment into the periplasmic space. The protein was purified to near homogeneity in 70 to 80% yield (in tens of milligram amounts) using ammonium sulfate precipitation, hGH affinity chromatography, and gel filtration. The unglycosylated extracellular domain of the hGH receptor has virtually identical binding properties compared to its natural glycosylated counterpart isolated from human serum, suggesting glycosylation is not important for binding of hGH. The extracellular binding domain codes for 7 cysteines, and we show that six of them form three disulfide bonds. Peptide mapping studies show these disulfides are paired sequentially to produce short loops (10-15 residues long) as follows: Cys38-Cys48, Cys83-Cys94, and Cys108-Cys122. Cys241 is unpaired, and mutagenic analysis shows that the extreme carboxyl end of the receptor fragment (including Cys241) is not essential for folding or binding of the protein to hGH. High level expression of this receptor binding domain and its homologs in E. coli will greatly facilitate their detailed biophysical and structural analysis.  相似文献   

14.
Anti-insulin receptor monoclonal antibody MA-10 inhibits insulin receptor autophosphorylation of purified rat liver insulin receptors without affecting insulin binding (Cordera, R., Andraghetti, G., Gherzi, R., Adezati, L., Montemurro, A., Lauro, R., Goldfine, I. D., and De Pirro, R. (1987) Endocrinology 121, 2007-2010). The effect of MA-10 on insulin receptor autophosphorylation and on two insulin actions (thymidine incorporation into DNA and receptor down-regulation) was investigated in rat hepatoma Fao cells. MA-10 inhibits insulin-stimulated receptor autophosphorylation, thymidine incorporation into DNA, and insulin-induced receptor down-regulation without affecting insulin receptor binding. We show that MA-10 binds to a site of rat insulin receptors different from the insulin binding site in intact Fao cells. Insulin does not inhibit MA-10 binding, and MA-10 does not inhibit insulin binding to rat Fao cells. Moreover, MA-10 binding to down-regulated cells is reduced to the same extent as insulin binding. In rat insulin receptors the MA-10 binding site has been tentatively localized in the extracellular part of the insulin receptor beta-subunit based on the following evidence: (i) MA-10 binds to insulin receptor in intact rat cells; (ii) MA-10 immunoprecipitates isolated insulin receptor beta-subunits labeled with both [35S]methionine and 32P; (iii) MA-10 reacts with rat insulin receptor beta-subunits by the method of immunoblotting, similar to an antipeptide antibody directed against the carboxyl terminus of the insulin receptor beta-subunit. Moreover, MA-10 inhibits autophosphorylation and protein-tyrosine kinase activity of reduced and purified insulin receptor beta-subunits. The finding that MA-10 inhibits insulin-stimulated receptor autophosphorylation and reduces insulin-stimulated thymidine incorporation into DNA and receptor down-regulation suggests that the extracellular part of the insulin receptor beta-subunit plays a role in the regulation of insulin receptor protein-tyrosine kinase activity.  相似文献   

15.
In Drosophila, members of the Frizzled family of tissue-polarity genes encode proteins that appear to function as cell-surface receptors for Wnts. The Frizzled genes belong to the seven transmembrane class of receptors (7TMR) and have on their extracellular region a cysteine-rich domain that has been implicated as the Wnt binding domain. This region has a characteristic spacing of ten cysteines, which has also been identified in FrzB (a secreted antagonist of Wnt signaling) and Smoothened (another 7TMR, which is involved in the hedgehog signalling pathway). We have identified, using BLAST, sequence similarity between the cysteine-rich domain of Frizzled and several receptor tyrosine kinases, which have roles in development. These include the muscle-specific receptor tyrosine kinase (MuSK), the neuronal specific kinase (NSK2), and ROR1 and ROR2. At present, the ligands for these developmental tyrosine kinases are unknown. Our results suggest that Wnt-like ligands may bind to these developmental tyrosine kinases  相似文献   

16.
K B Chiacchia 《Biochemistry》1988,27(13):4894-4902
Elements of the quaternary structure of the native and dithiothreitol- (DTT) reduced rat adipocyte insulin receptor have been elucidated by vectorial probing and subunit cross-linking. The charged reducing agents glutathione and beta-mercaptoethylamine were used to reduce the class I disulfides of the receptor in intact adipocytes, demonstrating the extracellular location of the disulfide directly. This interpretation was confirmed by use of DTT as a reducing agent and the nonpermeant sulfhydryl blocking reagent Thiolyte MQ to prevent the reoxidation of the class I sulfhydryl groups which occurred when they were not blocked. It was found that the above reoxidation of the receptor is dependent on the concentration of insulin in the nanomolar range, not occurring measurably at 4 degrees C in its absence. Cross-linking studies with ethylene glycol bis(succinimidyl succinate) demonstrated that the alpha subunits could not be cross-linked to each other after reduction of the class I disulfides, suggesting that the interaction between the receptor heterodimers may be due primarily to the disulfide bonds.  相似文献   

17.
A loop structure, formed by the putative disulfide bridging of Cys198 and Cys209, is a principal element of the ligand binding site in the glycine receptor (GlyR). Disruption of the loop's tertiary structure by Ser mutations of these Cys residues either prevented receptor assembly on the cell surface, or created receptors unable to be activated by agonists or to bind the competitive antagonist, strychnine. Mutation of residues Lys200, Tyr202 and Thr204 within this loop reduced agonist binding and channel activation sensitivities by up to 55-, 520- and 190-fold, respectively, without altering maximal current sizes, and mutations of Lys200 and Tyr202 abolished strychnine binding to the receptor. Removal of the hydroxyl moiety from Tyr202 by mutation to Phe profoundly reduced agonist sensitivity, whilst removal of the benzene ring abolished strychnine binding, thus demonstrating that Tyr202 is crucial for both agonist and antagonist binding to the GlyR. Tyr202 also influences receptor assembly on the cell surface, with only large chain substitutions (Phe, Leu and Arg, but not Thr, Ser and Ala) forming functional receptors. Our data demonstrate the presence of a second ligand binding site in the GlyR, consistent with the three-loop model of ligand binding to the ligand-gated ion channel superfamily.  相似文献   

18.
19.
The CD95 death receptor plays an important role in several physiological and pathological apoptotic processes involving in particular the immune system. CD95 ligation leads to clustering of the receptor cytoplasmic "death domains" and recruitment of the zymogen form of caspase-8 to the cell surface. Activation of this protease through self-cleavage, followed by activation of downstream effector caspases, culminates in cleavage of a set of cellular proteins resulting in apoptosis with disassembly of the cell. It is very well known that the extracellular region of the CD95 receptor is required for CD95L interaction and that the death domain is necessary for the induction of the apoptotic signaling. Here, we identified and characterized a novel CD95 ligand- and death domain-independent oligomerization domain mapping to the NH(2)-terminal extracellular region of the CD95 receptor. In vitro and in vivo studies indicated that this domain, conserved among all soluble CD95 variants, mediates homo-oligomerization of the CD95 receptor and of the soluble CD95 proteins, as well as hetero-oligomerization of the receptor with the soluble variants. These results offer new insight into the mechanism of apoptosis inhibition mediated by the soluble CD95 proteins and suggest a role of the extracellular oligomerization domain in the regulation of the non-signaling state of the CD95 receptor.  相似文献   

20.
We used single-channel recording and model-based kinetic analyses to quantify the effects of mutations in the extracellular domain (ECD) of the alpha-subunit of mouse muscle-type acetylcholine receptors (AChRs). The crystal structure of an acetylcholine binding protein (AChBP) suggests that the ECD is comprised of a beta-sandwich core that is surrounded by loops. Here we focus on loops 2 and 7, which lie at the interface of the AChR extracellular and transmembrane domains. Side chain substitutions in these loops primarily affect channel gating by either decreasing or increasing the gating equilibrium constant. Many of the mutations to the beta-core prevent the expression of functional AChRs, but of the mutants that did express almost all had wild-type behavior. Rate-equilibrium free energy relationship analyses reveal the presence of two contiguous, distinct synchronously-gating domains in the alpha-subunit ECD that move sequentially during the AChR gating reaction. The transmitter-binding site/loop 5 domain moves first (Phi = 0.93) and is followed by the loop 2/loop 7 domain (Phi = 0.80). These movements precede that of the extracellular linker (Phi = 0.69). We hypothesize that AChR gating occurs as the stepwise movements of such domains that link the low-to-high affinity conformational change in the TBS with the low-to-high conductance conformational change in the pore.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号