首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We studied female preferences for familiar and unfamiliar males. The subjects were laboratory-born house mice: (1) non-commensal Mus musculus domesticus from the eastern part of Syria along the Euphrates River; and (2) commensal M. m. musculus from the Czech Republic. Pair-choice preference tests have revealed that oestrous females of both populations sniffed towards unfamiliar males more than familiar males. In the case of females exhibiting postpartum oestrus, this preference was less pronounced and statistically not significant. Thus, our mice clearly exhibited the behavioural pattern known from commensal populations of polygynous and/or promiscuous M. m. domesticus. We found no inverse tendency to seek proximity to the familiar male that has been previously reported from closely related and presumably monogamous aboriginal mouse Mus spicilegus. We conclude that neither commensal M. m. musculus, nor non-commensal M. m. domesticus, are likely to share a monogamous mating system with mound-building mice.  相似文献   

2.
Male house mice (Mus musculus) emit ultrasonic vocalizations (USVs) during courtship, which attract females, and we aimed to test whether females use these vocalizations for species or subspecies recognition of potential mates. We recorded courtship USVs of males from different Mus species, Mus musculus subspecies, and populations (F1 offspring of wild-caught Mus musculus musculus, Mus musculus domesticus (and F1 hybrid crosses), and Mus spicilegus), and we conducted playback experiments to measure female preferences for male USVs. Male vocalizations contained at least seven distinct syllable types, whose frequency of occurrence varied among species, subspecies, and populations. Detailed analyses of multiple common syllable types indicated that Mus musculus and Mus spicilegus could be discriminated based on spectral and temporal characteristics of their vocalizations, and populations of Mus musculus were also distinctive regardless of the classification model used. Females were able to discriminate USVs from different species, and showed assortative preferences for conspecific males. We found no evidence that females discriminate USVs of males from a different subspecies or separate populations of the same species, even though our spectral analyses identified acoustic features that differ between species, subspecies, and populations of the same species. Our results provide the first comparison of USVs between Mus species or between Mus musculus subspecies, and the first evidence that male USVs potentially facilitate species recognition.  相似文献   

3.
Hybrid zones between genetically diverged populations are widespread among animals and plants. Their dynamics usually depend on selection against admixture and dispersal of parental forms in the zone. Although indirect estimates of selection have been the target of many studies, dispersal has been neglected. In this study we carried out open field experiments to test whether males of two house mouse subspecies, Mus musculus musculus and Mus musculus domesticus, differ in their propensity to disperse and in their character of exploration. We tested wild‐caught males and males of two wild‐derived inbred strains. In addition, we examined reciprocal F1 crosses to test the prediction that these hybrids display intermediate behaviours. We revealed that M. m. musculus males were less hesitant to enter the experimental arena than were M. m. domesticus males, but once inside the arena their movements were more timid. F1 males differed from both parental strains, with longer latencies to enter the arena, but explored the arena in a similar fashion as the M. m. domesticus males, thus displaying transgressive behavioural phenotypes. These results contribute to our knowledge of behavioural divergence between the mouse subspecies, and add a new facet to the study of speciation. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, ●●, ●●–●●.  相似文献   

4.
The severe virulence of Toxoplasma gondii in classical laboratory inbred mouse strains contradicts the hypothesis that house mice (Mus musculus) are the most important intermediate hosts for its transmission and evolution because death of the mouse before parasite transmission equals death of the parasite. However, the classical laboratory inbred mouse strains (Mus musculus domesticus), commonly used to test Toxoplasma strain differences in virulence, do not capture the genetic diversity within Mus musculus. Thus, it is possible that Toxoplasma strains that are severely virulent in laboratory inbred mice are avirulent in some other mouse sub-species. Here, we present insight into the responses of individual mouse strains, representing strains of the genetically divergent Mus musculus musculus, Mus musculus castaneus and Mus musculus domesticus, to infection with individual clonal and atypical Toxoplasma strains. We observed that, unlike M. m. domesticus, M. m. musculus and M. m. castaneus are resistant to the clonal Toxoplasma strains. For M. m. musculus, we show that this is due to a locus on chromosome 11 that includes the genes that encode the interferon gamma (IFNG)-inducible immunity-related GTPases (Irgs) that can kill the parasite by localising and subsequently vesiculating the parasitophorous vacuole membrane. However, despite the localization of known effector Irgs to the Toxoplasma parasitophorous vacuole membrane, we observed that some atypical Toxoplasma strains are virulent in all the mouse strains tested. The virulence of these atypical strains in M. m. musculus could not be attributed to individual rhoptry protein 5 (ROP5) alleles, a secreted parasite pseudokinase that antagonises the canonical effector Irgs and is indispensable for parasite virulence in laboratory inbred mice (M. m. domesticus). We conclude that murine resistance to Toxoplasma is modulated by complex interactions between host and parasite genotypes and may be independent of known effector Irgs on murine chromosome 11.  相似文献   

5.
Faroe house mice are a ‘classic’ system of rapid and dramatic morphological divergence highlighted by J. S. Huxley during the development of the Modern Synthesis. In the present study, we characterize these charismatic mice using modern molecular techniques, examining specimens from all Faroe islands occupied by mice. The aims were to classify the mice within the modern house mouse taxonomy (i.e. as either Mus musculus domesticus or Mus musculus musculus) using four molecular markers and a morphological feature, and to examine the genetic diversity and possible routes of colonization using mitochondrial (mt) control region DNA sequences and microsatellite data (15 loci). Mice on the most remote islands were characterized as M. m. domesticus and exhibited exceptionally low genetic diversity, whereas those on better connected islands were more genetically diverse and had both M. m. musculus and M. m. domesticus genetic elements, including one population which was morphologically M. m. musculus‐like. The mtDNA data indicate that the majority of the mice had their origins in south‐western Norway (or possibly southern Denmark/northern Germany), and probably arrived with the Vikings, earlier than suggested by Huxley. The M. m. musculus genetic component appears to derive from recent mouse immigration from Denmark. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 102 , 471–482.  相似文献   

6.
We compared the organization of satellite DNA (stDNA) and its chromosomal allocation inMus domesticus and inMus musculus. The two stDNAs show similar restriction fragment profiles after digestion (probed withM. domesticus stDNA) with some endonucleases of which restriction sequences are present in the 230–240 bp repetitive unit of theM. domesticus stDNA. In contrast, EcoRI digestion reveals thatM. musculus stDNA lacks most of the GAATTC restriction sites, particularly at the level of the half-monomer. The chromosome distribution of stDNA (revealed by anM. domesticus stDNA probe) shows different patterns in theM. domesticus andM. musculus karyotypes, with about 60% ofM. domesticus stDNA retained in theM. musculus genome. It is particularly noteworthy that the pericentromeric regions ofM. musculus chromosomes 1 and X are totally devoid ofM. domesticus stDNA sequences. In both groups, the differences in energy transfer between the stDNA-bound fluorochromes Hoechst 33258 and propidium iodide suggest that AT-rich repeated sequences have a much more clustered array in theM. domesticus stDNA, as if they are organized in tandem repeats longer than those ofM. musculus. Considering the data as a whole, it seems likely that the evolutionary paths of the two stDNAs diverged after the generation of the ancestral 230–240 bp stDNA repetitive unit through the amplification, in theM. domesticus genome, of a family repeat which included the EcoRI GAATTC restriction sequence.  相似文献   

7.
We tested 96 microsatellites and 10 single nucleotide polymorphisms for their allelic distribution in two subspecies of the house mouse, Mus musculus musculus and M. m. domesticus. Sixty‐two microsatellites discriminated strain‐specific differences among nine wild‐derived ‘musculus’ and ‘domesticus’ and three ‘classical’ laboratory strains. For efficient genotyping, we optimized multiplex conditions using five microsatellites per polymerase chain reaction. All 10 single nucleotide polymorphisms were also optimized for simultaneous analysis in one reaction using SNaPshot multiplex. The uniform distribution of markers on autosomes and on the X chromosome makes these panels potentially useful tools for quantitative trait loci mapping of wild house mice.  相似文献   

8.
《Mutation research》1995,329(2):97-105
The mouse P19H22 embryonal carcinoma cell line contains two distinct chromosome 8 homologs, one derived from Mus musculus domesticus (M. domesticus) and the other derived from Mus musculus musculus (M. musculus). It also contains a deletion for the M. musculus aprt allele, which is located on chromosome 8. In this study, cells with spontaneous or induced aprt deficiencies were isolated from P19H22 and examined to determine the nature of the mutational events that had occurred. Ultraviolet radiation (UV), ethyl methanesulfonate (EMS), and two forms of ionizing radiation, 137Cs and 252Cf, were used for mutation induction. DNA preparations from the aprt deficient cells were initially screened with a Southern blot analysis and separated into two broad classes: those that had lost the M. domesticus aprt allele and those that had retained it. The overwhelming majority ( > 95%) of the spontaneous and ionizing radiation-induced mutants exhibited aprt gene loss, indicating that relatively large events had occurred and that homozygosity for the deleted region was not a lethal event. Loss of heterozygosity for syntenic markers was found to be a common event in cells exhibiting aprt gene loss. In contrast, a majority of the UV-induced mutants (61%) and a substantial minority of the EMS-induced mutants (38%) retained the aprt gene. A sequence analysis confirmed that base-pair substitutions were responsible for this class of mutation. Gene inactivation associated with hypermethylation of the promoter region was found to be a rare event and was not induced by any of the mutagenic agents tested. The results demonstrate the suitability of the P19H22 cell line for mutational studies, particularly those that are large in nature.  相似文献   

9.
The worldwide distributed house mouse, Mus musculus, is subdivided into at least three lineages, Mus musculus musculus, Mus musculus domesticus, and Mus musculus castaneus. The subspecies occur parapatrically in a region considered to be the cradle of the species in Southern Asia (‘central region’), as well as in the rest of the world (‘peripheral region’). The morphological evolution of this species in a phylogeographical context is studied using a landmark‐based approach on mandible morphology of different populations of the three lineages. The morphological variation increases from central to peripheral regions at the population and subspecific levels, confirming a centrifugal sub‐speciation within this species. Furthermore, the outgroup comparison with sister species suggests that M. musculus musculus and populations of all subspecies inhabiting the Iranian plateau have retained a more ancestral mandible morphology, suggesting that this region may represent one of the relevant places of the origin of the species. Mus musculus castaneus, both from central and peripheral regions, is morphologically the most variable and divergent subspecies. Finally, the results obtained in the present study suggest that the independent evolution to commensalism in the three lineages is not accompanied by a convergence detectable on jaw morphology. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 105 , 635–647.  相似文献   

10.
Twenty-eight biochemical markers were examined in three strains (Mol-A, Mol-N and Mol-T) derived from the Japanese wild mouse, Mus musculus molossinus, as well as five laboratory strains, Mus musculus musculus. The Mol strains showed specific alleles at as many as 12 loci. These findings emphasize that the Mol strains have significance in future genetic and developmental studies.  相似文献   

11.
The dominant hemimelia(Dh) mutation causes various developmental abnormalities in mice. Most -Dh/+ males, crosses between DDD females and DH-Dh/+ males, have lethal abnormalities during the neonatal period. This is a consequence of synergism among three independent gene loci; that is, theDh allele on chromosome (Chr) 1, the DDD allele on an X Chr-linked locus, and a Y Chr-linked locus in some strains. With regard to the Y Chr derived fromMus musculus musculus (M. m. musculus), the Y Chrs of C57BL/6J and BALB/cA caused lethality, but the Y Chr of C3H/HeJ did not, suggesting that not allM. m. musculus Y Chrs are the same. In the present study, whether Y Chrs derived fromM. m. domesticus andM. m. castaneus could cause lethality was investigated. Among seven inbred strains, including AKR/J, DDD, RF/J, SJL/J, SWR/J, TIRANO/Ei, and CAST/Ei, Y Chrs of AKR/ J, DDD, SJL/J, SWR/J, and TIRANO/Ei caused lethality, but Y Chrs of RF/J and CAST/Ei did not. It was unlikely that the mitochondrial genome of the DDD strain contributed to the lethality. The X Chr-linked locus could not compensate for the role of the Y Chr-linked locus. These results suggest that not allM. m. domesticus Y Chrs are the same.  相似文献   

12.
Mus musculus domesticus, M.m. bactrianus, M. m. musculus, M.m. castaneus, and M.m. molossinus wild mice were investigated for polymorphisms of the Y Chromosome (Chr) genes Zinc finger-Y (Zfy) and Sex-determining region-Y (Sry). Zfy divided the Y Chrs of these mice into domesticus- (domesticus) and musculus-types (musculus, castaneus, molossinus). M.m. bactrianus specimens had both Y Chrs, possibly owing to the introgression of a musculus-type Y into this population. Sry identified a subpopulation of musculus-type Y chromosomes. This subpopulation, designated the molossinus-type, was found in M.m. molossinus, a M. musculus subspecies specimen from northern China (Changchun), and laboratory mice. The cumulative data suggest that M.m. musculus of northern China and Korea are subpopulation distinct from M.m. musculus of Europe and central China and that this subpopulation invaded Japan, giving rise to M.m. molossinus. Furthermore, the data suggest that the musculus-type Y of the laboratory mouse originated from this subpopulation, corroborating early historical record reporting that Chinese and Japanese mice that were imported into Europe for the pet trade contributed to the genome of the laboratory mouse.  相似文献   

13.
Genetic and structural analyses of the mouse genes encoding constant region of immunoglobulin subclasses (Igh-C) have shown that recombination is rare within this cluster which is inherited as a set designated the Igh haplotype. Recent molecular analyses have demonstrated that either DNA exchanges or gene duplications have probably occurred during the evolution of this set of genes. In order to assess the generality of the duplication processes, the presence and expression of two allelic forms of the Igh-1 (2a) gene (Igh-1 a and Igh-1 b) were examined in a large panel of wild mice belonging to Mus musculus domesticus and Mus musculus musculus species. Our data indicate that certain M. m. domesticus animals and most animals in the M. m. musculus group coexpress the two allelic forms of Igh-1. Moreover, genetic studies show that these two immunoglobulin types are encoded by tandemly arranged genes. We propose that wild mice, from which laboratory mice are derived, carry three isotypic 2 genes (Igh-1 a, Igh-1b, Igh-3), and these have given rise to the two isotypes seen in laboratory strains by a deletion/insertion mechanism.  相似文献   

14.
Numerous studies have shown an association between aggressiveness and several other behavioural traits. For example, more aggressive animals were bold and active explorers tending to form persistent routines whereas less aggressive animals were shy, careful but more flexible. While the former are thought to be more successful under stable conditions the latter should have advantages in more dynamic situations. These differences can apply not only to individuals but also to populations, species or groups of species with important implications to species distributions and speciation rates. Here we utilized the Morris water task (MWT) to investigate how two subspecies, Mus musculus musculus and M. m. domesticus, known to differ in aggressiveness, cope with stressful situations. We found that less aggressive musculus males performed significantly better in solving the MWT than more aggressive domesticus males. This suggests that M. m. musculus is more flexible and could be more successful under stressful and/or dynamic situations typical of dispersal bouts. It seems plausible that this difference may have had an influence on the secondary contact between musculus and domesticus populations in the past and perhaps still can affect the dynamics of the European hybrid zone between the subspecies. © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 113 , 310–319.  相似文献   

15.
Mouse chromosomes, with the exception of the Y chromosome, are telocentric. The telomere at the p-arm is separated from the centromere by the tL1 sequence and TLC tandem repeats. A previous report showed that the TLC array was also conserved in other strains of the subgenus Mus. These results suggest that the TLC arrays promote the stable evolutionary maintenance of a telocentric karyotype in the subgenus Mus. In this study, we investigated the degree of conservation of TLC arrays among a variety of wild-derived inbred strains, all of which are descendants of wild mice captured in several areas of the world. Genomic PCR analysis indicates that the sequential order of telomere-tL1 is highly conserved in all strains, whereas tL1-TLC is not. Next, Southern blot analysis of DNAs isolated from a panel of mouse subspecies showed both Mus musculus domesticus and Mus musculus castaneus subspecies possess TLC arrays. Unexpectedly, this repeat appears to be lost in almost all Mus musculus musculus and Mus musculus molossinus subspecies, which show a clear geographic divide. These results indicate that either other unknown sequences were replaced by the TLC repeat or almost all M. m. musculus and M. m. molossinus subspecies do not have any sequence between the telomere and minor satellites. Our observation suggests that the TLC array might be evolutionarily unstable and not essential for murine chromosomal conformation. This is the first example of the subspecies-specific large genome alterations in mice.  相似文献   

16.
Factor H is a plasma glycoprotein with M. W of 160 KDa which serves as one of the regulatory proteins for C 3 convertases. We have previously reported three serologically defined mouse factor H allotypes by surveying many laboratory and wild mice. In the present work, we established a congenic strain with factor H allotype, H. 2. on BALB/c (H. 1 allotype) background and named this strain BALB-H.2. Alloantiserum against each allotype has been easily prepared using two congenic strains by immunization with a small amount of whole mouse serum. BALB-H.2 is valuable for the genetic studies on the genes in the vicinity of factor H gene (cfh) derived from Mus. m. molossinus.  相似文献   

17.
The phenotypic consequences in the house mouse (Mus musculus domesticus) of the transition from an ordinary field-dwelling rodent to a species that is dependent on human populations was studied by investigating the morphometric variation of non-commensal populations of M. m. domesticus from Syria, Jordan, SW Iran, and Libya and comparing them with that of conspecific commensal populations from Eastern Turkey, Greece, and Bulgaria. Commensal populations of M. musculus musculus from the Czech Republic were used as an outgroup. About 849 adult specimens of M. musculus were analysed by multivariate procedures based on standard molar, skull and body measurements. As expected, there was considerable variation among the studied populations and a good correspondence between morphometric and geographic distances. The resulting morphometric tree was consistent with the hypothesis that the original radiation of M. m. domesticus took place somewhere in the Near East. Commensal populations of M. m. domesticus form a single derived branch. Specimens originating from four different sites in eastern Syria showed the greatest similarity to one another and possessed relatively bigger molars than the other studied populations. Commensal populations were characterised by longer tails when compared to non-commensal populations, which suggests an adaptation for living in a more three-dimensionally heterogeneous environment for commensal populations.  相似文献   

18.
We investigated the distributions and routes of colonization of two commensal subspecies of house mouse in Norway: Mus musculus domesticus and M. m. musculus. Five nuclear markers (Abpa, D11 cenB2, Btk, SMCY and Zfy2) and a morphological feature (tail length) were used to differentiate the two subspecies and assess their distributions, and mitochondrial (mt) D‐loop sequences helped to elucidate their colonization history. M. m. domesticus is the more widespread of the two subspecies, occupying the western and southern coast of Norway, while M. m. musculus is found along Norway’s southeastern coast and east from there to Sweden. Two sections of the hybrid zone between the two subspecies were localized in Norway. However, hybrid forms also occur well away from that hybrid zone, the most prevalent of which are mice with a M. m. musculus‐type Y chromosome and an otherwise M. m. domesticus genome. MtDNA D‐loop sequences of the mice revealed a complex phylogeography within M. m. domesticus, reflecting passive human transport to Norway, probably during the Viking period. M. m. musculus may have colonized earlier. If so, that leaves open the possibility that M. m. domesticus replaced M. m. musculus from much of Norway, with the widely distributed hybrids a relict of this process. Overall, the effects of hybridization are evident in house mice throughout Norway.  相似文献   

19.
Geographic origin of the Y Chromosomes in “old” inbred strains of mice   总被引:7,自引:0,他引:7  
Six distinct Y Chromosomes (Chr) were identified among 39 standard inbred strains of mice with five probes that identified Y Chr-specific restriction fragments on Southern blots. Three Y Chr types, distributed among 31 strains, were of Asian Mus musculus origin. The remaining three Y Chr types, distributed among eight strains, were of M. domesticus origin. The Asian source of the M. musculus Y Chr was confirmed by determining the DNA sequence of 221 bp from an open reading frame within the Sry (sex determining region Y) gene (Gubbay et al., Nature 346 245–250, 1990) in three inbred strains (C57BL/6J, AKR/J, and SWR/J) and comparing the sequence to the homologous sequences derived from wild caught European and Asian M. musculus males. These data indicate that a minimum of six male mice contributed to the formation of the old inbred strains.  相似文献   

20.
We have investigated 67 primers designed by Dr. J. Todd and co-workers to amplify microsatellites sequences in the mouse. We report on additional polymorphisms concerning seven laboratory inbred strains, complementary to those already published. We include the survey of three independently derived strains of Mus spretus: SPE/Pas, SEG/Pas and SPR/Smh. SPE/Pas and SEG/Pas are very close (3% polymorphism), whereas the third one, (SPR/Smh), is very different from the other two strains (33% polymorphism). Seventy-four to 84% of the microsatellites analyzed in this study are polymorphic between C57BL/6Pas and Mus spretus strains. By comparison, 36–46% are polymorphic between laboratory inbred strains involved in established sets of recombinant inbred strains. A strain derived from Mus musculus musculus (PWK/Pas) was found to be very different from both C57BL/6Pas (70% polymorphism) and SPE/Pas (82% polymorphism). These results emphasize the interest of using Mus musculus musculus inbred strains to establish interspecific crosses, particularly when considering their breeding performances.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号