首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Dietl P  Haller T  Frick M 《Cell calcium》2012,52(3-4):296-302
The type II cell of the pulmonary alveolus is a polarized epithelial cell that secretes surfactant into the alveolar space by regulated exocytosis of lamellar bodies (LBs). This process consists of multiple sequential steps and is correlated to elevations of the cytoplasmic Ca(2+) concentration ([Ca(2+)](c)) required for extended periods of secretory activity. Both chemical (purinergic) and mechanical (cell stretch or exposure to an air-liquid interface) stimuli give rise to complex Ca(2+) signals (such as Ca(2+) peaks, spikes and plateaus) that differ in shape, origin and spatio-temporal behavior. This review summarizes current knowledge about Ca(2+) channels, including vesicular P2X4 purinoceptors, in type II cells and associated signaling cascades within the alveolar microenvironment, and relates stimulus-dependent activation of these pathways with distinct stages of surfactant secretion, including pre- and postfusion stages of LB exocytosis.  相似文献   

2.
In order to obtain more information on the development, morphology and function of the pores of Kohn, the lungs of Wistar rats are studied during their early postnatal period, up to 3 weeks of age, by scanning and transmission electron microscopy. The substantial development of the interalveolar pores on days 14 and 21 coincides with the period of septal rearrangement when secondary interalveolar septa become lengthened and thinner. The high frequency of transseptal type II pneumocytes from day 7 onwards, and their typical localization near the pores of Kohn at this period of lung development especially suggests that type II pneumocytes are engaged in the formation of the pores of Kohn. During early lung development, the pores of Kohn seem to serve as passageways for alveolar macrophages.  相似文献   

3.
4.
A monoclonal antibody that identifies a membrane molecule unique in rat lung for type II alveolar epithelial cells was used to isolate these cells from enzymatically dispersed lung cells by fluorescence-activated cell sorting. Although multistep physical separation techniques have permitted the isolation of large quantities of these cells and flow cytometry has been used by others to isolate lamellar body-containing cells, the application of this antibody-directed sorting has distinct advantages. Because the marker molecule is expressed on immature type II cells prior to the development of lamellar bodies, the antibody will also permit their isolation and study.  相似文献   

5.
Alveolar type II pneumocytes were isolated from adult male rabbits and were placed in primary culture. The presence of anti-oxidants throughout the isolation procedure, particularly ascorbic acid and glutathione, was found to enhance in vitro attachment efficiency of cells. The use of a culture medium substituting D-valine for L-valine also significantly enhanced attachment efficiency. Although these cells do not ordinarily proliferate in culture, a low-serum medium containing insulin, transferrin, selenium and hydrocortisone allowed limited proliferation in addition to promoting dome formation in culture.  相似文献   

6.
An amiloride binding protein in adult rat and rabbit alveolar type II (ATII) cells was characterized using three different antibodies against epithelial Na+ channel proteins. We found that 1) polyclonal antibodies raised against epithelial Na+ channel proteins from bovine kidney cross-react with a 135-kDa protein in ATII membrane vesicles on Western blots; 2) using the photoreactive amiloride analog, 2'-methoxy-5'-nitrobenzamil (NMBA), in combination with anti-amiloride antibodies, we found that NMBA specifically labeled the same M(r) protein; and 3) monoclonal anti-idiotypic antibodies directed against anti-amiloride antibodies also recognized this same M(r) protein on Western blots. We also demonstrated a low benzamil affinity binding site (apparent Kd = 370 nM) in rabbit ATII cell membranes and both high and low benzamil affinity binding sites (apparent Kd = 6 nM and 230 nM) in bovine kidney membranes using [3H]Br-benzamil as a ligand. Pharmacological inhibitory profiles for displacing bound [3H]Br-benzamil were also different between ATII cells and bovine kidneys. These observations indicate that adult ATII pneumocytes express a population of epithelial Na+ channels having a low affinity to benzamil and amiloride and a pharmacological inhibitory profile different from that in bovine kidney.  相似文献   

7.
OBJECTIVE: To evaluate the prevalence of reactive type II pneumocytes (RPII) in bronchoalveolar lavage (BAL) fluid samples obtained from patients with various pulmonary disorders. STUDY DESIGN: Consecutive BAL fluid samples were screened for the presence of RPII on May-Grünwald-Giemsa-stained cytocentrifuge preparations. BAL fluid samples with and without RPII were compared with regard to prevalence, associated clinical diagnoses and cytologic findings. RESULTS: RPII were generally large cells with a high nuclear:cytoplasmic ratio and deeply blue-stained, vacuolated cytoplasm. Most RPII occurred in cohesive cell groups, and the vacuoles tended to be confluent. Cytologic findings associated with RPII were foamy alveolar macrophages, activated lymphocytes and plasma cells. RPII were present in 94 (21.7%) of 433 included BAL fluid samples. The highest prevalences were noted in patients with systemic inflammatory response syndrome and alveolar hemorrhage. In addition, RPII tended to occur more frequently in ventilator-associated pneumonia, Pneumocystis carinii pneumonia, extrinsic allergic alveolitis and drug-induced pulmonary disorders. In contrast, RPII were not observed in BAL fluid samples obtained from patients with sarcoidosis. CONCLUSION: RPII were prevalent in about 20% of BAL fluid specimens. They were associated mainly with conditions of acute lung injury and not observed in sarcoidosis.  相似文献   

8.
We previously reported that arachidonic acid stimulates secretion of phosphatidylcholine in cultures of type II pneumocytes and, based on studies with cyclooxygenase and lipoxygenase inhibitors, suggested that this effect was mediated by lipoxygenase products of arachidonic acid metabolism (Gilfillan, A.M. and Rooney, S.A. (1985) Biochim. Biophys. Acta 833, 336-341). We have now examined the effect of leukotrienes on phosphatidylcholine secretion in type II cells as well as the effect of a leukotriene antagonist, FPL55712, on the stimulatory effect of arachidonic acid. Leukotrienes C4, D4 and E4 stimulated phosphatidylcholine secretion and this effect was dependent on concentration in the range 10(-12)-10(-6) M. Leukotriene E4 was the most stimulatory, followed by D4 and C4. Leukotriene B4 had no effect. Incubation of the cells with 10(-7) M leukotriene E4 for 90 min resulted in a 107% increase in the rate of phosphatidylcholine secretion. Incubation with 10(-6) M leukotrienes D4 and C4 for the same period resulted in 81% and 63% stimulation, respectively. The leukotrienes had no effect on cellular phosphatidylcholine synthesis or on lactate dehydrogenase release. The stimulatory effects of leukotrienes E4 and D4 were abolished by FPL55712. Similarly, the stimulatory effect of 6 X 10(-6) M arachidonic acid on phosphatidylcholine secretion was reduced from 74% to 25% by 10(-5) M FPL55712. Thus, the stimulatory effect of arachidonic acid on surfactant phospholipid secretion in type II cells is mediated at least in part by leukotrienes.  相似文献   

9.
The alveolar epithelial basement membrane is believed to play important roles in lung development, in maintaining normal alveolar architecture, and in guiding repair following lung injury. However, little is known about the formation of this structure, or of the mechanisms which mediate interactions between the epithelium and specific matrix macromolecules. Since type IV collagen is a major structural component of basement membranes, we investigated the production of type IV collagen-binding proteins by primary cultures of rat lung type II pneumocytes. Cultures were labeled for up to 24 h with 3H-labeled amino acids or [3H]mannose. Soluble collagen-binding proteins which accumulated in the culture medium were isolated by chromatography on collagen-Sepharose and examined by SDS-polyacrylamide gel electrophoresis. The major type IV collagen-binding protein (CBP1) was identified as fibronectin. We also identified a novel disulfide-bonded collagen-binding glycoprotein (CBP2; Mr = 45,000, reduced). This protein was not recognized by polyclonal antibodies to fibronectin, and showed no detectable binding to denatured type I collagen. The protein was resolved from fibronectin and partially purified by sequential chromatography on gelatin and type IV collagen-Sepharose. We suggest that type II pneumocyte-derived collagen-binding proteins contribute to the formation of the epithelial basement membrane and/or mediate the attachment of these cells to collagenous components of the extracellular matrix.  相似文献   

10.
Recent epidemiological observations suggest that acetaminophen (paracetamol) may contribute to asthma morbidity. Impaired endogenous antioxidant defences may have a role in the pathogenesis of a number of inflammatory pulmonary diseases, including asthma. We studied the effect of acetaminophen on the intracellular level of reduced glutathione (GSH) with and without inhibitors of cytochrome P450 or prostaglandin H synthetase, and TNF-alpha, IL-6 and IL-8 protein production in human alveolar macrophages and type II pneumocytes in vitro. Following a 20 h incubation with acetaminophen, cytotoxicity was apparent from > or = 5 and > or = 10 mM in macrophages and type II pneumocytes, respectively. A time- and concentration-dependent decrease of intracellular GSH occurred after acetaminophen (0.05-1 mM) exposure (1-4 h) in pulmonary macrophages (up to 53%) and type II pneumocytes (up to 34%). Diethyldithiocarbamic acid, potassium ethyl xanthate, and indomethacin decreased significantly acetaminophen-induced GSH depletion in the two cell types tested, suggesting the involvement of cytochrome P450 (mainly CYP2E1) and/or prostaglandin H synthetase. In macrophages, acetaminophen decreased the secretion of TNF-alpha (at 4 and 24 h, concentration-related) and IL-6 (at 24 h, at 0.1 mM), and did not affect significantly IL-8 production. These in vitro observations demonstrate that clinically relevant concentrations of acetaminophen decreased: (i) intracellular GSH in human pulmonary macrophages and type II pneumocytes and (ii) the secretion of TNF-alpha and possibly IL-6 by human pulmonary macrophages. These findings provide experimental plausibility to the challenging observations that frequent use of APAP may be a risk factor for asthma morbidity.  相似文献   

11.
Based on our previous finding in lung parenchyma of high concentration of the shared epitopes of gp600, a well characterized kidney glycoprotein, we attempted to identify the anatomic site of these epitopes and characterize them biochemically. Affinity-purified polyclonal anti-gp600 antibody was used as the probe. Immunocytochemically in lung on light and electron microscopy the probe reacted exclusively with type II pneumocytes and no other lung cell. The reaction was also demonstrated on freshly isolated and cultured type II pneumocytes. Both approaches showed the reaction to localize on the cell membrane of type II pneumocytes. Immunoprecipitation of radiolabeled type II pneumocyte cell membranes identified two 270- to 290-kDa polypeptides as the reactive proteins. We conclude that the reactive epitopes for anti-gp600 in lung parenchyma are exclusively localized on type II pneumocytes and have a Mr of approximately 270 to 290 kDa and that anti-gp600 may be used as a specific immunologic marker for the type II pneumocytes. Finally, it is possible that the differences in the molecular forms of the cross-reactive proteins in lung and kidney identified in this report are the reason for the known non-nephritogenicity of rat lung for the induction of Heymann nephritis in rat.  相似文献   

12.
Glycerol utilization for phospholipid biosynthesis was examined in type II pneumocytes isolated from normal and streptozocinin-diabetic rats. With glucose in the incubation medium, incorporation of exogenous [1,3-14C]glycerol into disaturated phosphatidylcholine, total phosphatidylcholine (PC), phosphatidylglycerol (PG) and phosphatidylethanolamine (PE) was increased 4-fold in cells from diabetic rats. In the absence of glucose, glycerol incorporation was 5-fold greater than in its presence in cells from normal animals, but was further increased 2.2-fold in cells from diabetic rats. Insulin treatment of diabetic rats returned all incorporation rates to control values. The increased glycerol incorporation rates were not due to differences in either phospholipid turnover or the size of the glycerol 3-phosphate precursor pool. Kinetic analysis of glycerol entry into the acid-soluble cell fraction indicated that glycerol transport occurred largely by simple diffusion, and was not rate limiting for its entry into lipids. Glycerol entry into the total lipid fraction was saturable, reaching a Vmax of 48 pmol/micrograms DNA per h in normal cells and 120 pmol/micrograms DNA per h in cells from diabetic rats, with no change in the Km (0.31 mM). While glycerol oxidation was reduced 23% in cells from diabetic rats in the presence of glucose and by 44% in the absence of glucose, glycerol kinase activity in sonicates of cells from diabetic animals was increased 210% and was reversed by in vivo insulin treatment. These results suggest that glycerol utilization in type II pneumocytes is a hormonally regulated function of both glycerol oxidation and glycerol phosphorylation.  相似文献   

13.
14.
Surfactant-associated protein-A (SP-A) is a component of pulmonary surfactant that acts as a cytokine through interaction with a cell-surface receptor (SPAR) on lung epithelial cells. SP-A regulates important physiological processes including surfactant secretion, gene expression, and protection against apoptosis. Tyrosine kinase and PI3K inhibitors block effects of SP-A, suggesting that SPAR may be a receptor tyrosine kinase and activate the PI3K-PKB/Akt pathway. Here we report that SP-A treatment leads to rapid tyrosine-specific phosphorylation of several important proteins in lung epithelial cells including insulin receptor substrate-1 (IRS-1), an upstream activator of PI3K. Analysis of anti-apoptotic signaling species downstream of IRS-1 showed activation of PKB/Akt but not of MAPK. Phosphorylation of IkappaB was minimally affected by SP-A as was NFkappaB gel shift activity. However, FKHR was rapidly phosphorylated in response to SP-A and its DNA-binding activity was significantly reduced. Since FKHR is pro-apoptotic, this may play an important role in signaling the anti-apoptotic effects of SP-A. Therefore, we have characterized survival-enhancing signaling activated by SP-A leading from SPAR through IRS-1, PI3K, PKB/Akt, and FKHR. The activity of this pathway may explain, in part, the resilience of type II cells to lung injury and their survival to repopulate alveolar epithelium after peripheral lung damage.  相似文献   

15.
Fetal type II pneumocytes in organotypic culture can oxidize both palmitate and glucose, with glucose being converted to CO2 at a rate substantially greater than that of palmitate. Glucose can be oxidized by both the pentose shunt pathway and the tricarboxylic acid cycle. Palmitate oxidation to CO2 is increased by carnitine and reduced by glucose and unsaturated fatty acids. These data suggest that glucose may be an important oxidative substrate during late fetal life and that fatty acids may play a relatively minor role in type II cell oxidative metabolism.  相似文献   

16.
17.
Somatic cell gene transfer is a potentially useful strategy to alter lung function. However, achieving efficient transfer to the alveolar epithelium, especially in smaller animals, has not been demonstrated. In this study, the rat heme oxygenase-1 (HO-1) gene was delivered to the lungs of neonatal mice via transpulmonary injection. A bidirectional promoter construct coexpressing both HO-1 and a luciferase reporter gene was used so that in vivo gene expression patterns could be monitored in real time. HO-1 expression levels were also modulated with doxycycline and assessed in vivo with bioluminescent light transmitted through the tissues from the coregulated luciferase reporter. As a model of oxidative stress and HO-1-mediated protection, groups of animals were exposed to hyperoxia. After gene transfer, elevated levels of HO-1 were detected predominantly in alveolar type II cells by immunocytochemistry. With overexpression of HO-1, increased oxidative injury was observed. Furthermore, this model demonstrated a cell-specific effect of lung HO-1 overexpression in oxidative stress. Specific control of expression for therapeutic genes is possible in vivo. The transpulmonary approach may prove useful in targeting gene expression to cells of the alveolar epithelium or to circumscribed areas of the lung.  相似文献   

18.
To determine whether type II pneumocytes isolated from diabetic animals could serve as a useful model for the study of surfactant phospholipid biosynthesis and its regulation, type II pneumocytes were isolated from adult streptozotocin-diabetic rats and placed in short-term primary culture. On a DNA basis, total cellular disaturated phosphatidylcholine (disaturated PC) and phosphatidylglycerol (PG) were decreased 36 and 66%, respectively, in type II cells from diabetic animals. 7 days of insulin treatment of diabetic rats returned the cellular disaturated PC and PG content to control values and increased the total cellular phosphatidylethanolamine (PE) content by 51%. The rates of glucose and acetate incorporation into disaturated PC per unit DNA were reduced 32 and 38%, respectively, in cells isolated from diabetic rats, while glycerol incorporation was increased by 143%. Insulin treatment of diabetic rats returned the glucose and glycerol incorporation rates to control values and increased acetate incorporation into disaturated PC by 66%. These data suggest that the biosynthesis of surfactant is altered by both diabetes mellitus and in vivo insulin treatment.  相似文献   

19.
To study the effect of diabetes on pulmonary surfactant secretion, type II pneumocytes from adult streptozotocin-induced diabetic rats were placed in short-term culture. As opposed to a linear secretory rate by control type II cells, the secretory rate of type II cells from diabetic animals was biphasic reaching a minimum at 1.5 h. When exogenous surfactant containing radioactive phosphatidylcholine was added to the incubation media for 1.5 h, the cells from diabetic animals incorporated more exogenous phosphatidylcholine into lamellar bodies than control cells. This suggests that in the type II cell from diabetic animals, the rate of reutilization is greater than the rate of secretion until 1.5 h, at which time the rate of secretion becomes greater. The altered secretory pattern was reversed by in vivo insulin treatment 30 min prior to killing but not by the addition of insulin to the incubation media. When challenged by isoproterenol, a beta-adrenergic agonist, the secretory pattern of cells from diabetic animals was biphasic as observed with basal secretion; however, secretion was stimulated 30% as opposed to 100% increase in control cells. These data suggest that basal and stimulated secretion are altered in the cultured type II cell from diabetic animals and restored by in vivo but not in vitro insulin treatment.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号