首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The dermaseptins S are closely related peptides with broad-spectrum antibacterial activity that are produced by the skin of the South American hylid frog, Phyllomedusa sauvagei. These peptides are polycationic (Lys-rich), alpha-helical, and amphipathic, with their polar/charged and apolar amino acids on opposing faces along the long axis of the helix cylinder. The amphipathic alpha-helical structure is believed to enable the peptides to interact with membrane bilayers, leading to permeation and disruption of the target cell. We have identified new members of the dermaseptin S family that do not resemble any of the naturally occurring antimicrobial peptides characterized to date. One of these peptides, designated dermaseptin S9, GLRSKIWLWVLLMIWQESNKFKKM, has a tripartite structure that includes a hydrophobic core sequence encompassing residues 6-15 (mean hydrophobicity, +4.40, determined by the Liu-Deber scale) flanked at both termini by cationic and polar residues. This structure is reminiscent of that of synthetic peptides originally designed as transmembrane mimetic models and that spontaneously become inserted into membranes [Liu, L., and Deber, C. M. (1998) Biopolymers 47, 41-62]. Dermaseptin S9 is a potent antibacterial, acting on gram-positive and gram-negative bacteria. The structure of dermaseptin S9 in aqueous solution and in TFE/water mixtures was analyzed by circular dichroism and two-dimensional NMR spectroscopy combined with molecular dynamics calculations. Dermaseptin S9 is aggregated in water, but a monomeric nonamphipathic alpha-helical conformation, mostly in residues 6-21, is stabilized by the addition of TFE. These results, combined with membrane permeabilization assays and surface plasmon resonance analysis of the peptide binding to zwitterionic and anionic phospholipid bilayers, demonstrate that spatial segregation of hydrophobic and hydrophilic/charged residues on opposing faces along the long axis of a helix is not essential for the antimicrobial activity of cationic alpha-helical peptides.  相似文献   

2.
A novel antimicrobial peptide, eumenitin, was isolated from the venom of the solitary eumenine wasp Eumenes rubronotatus. The sequence of eumenitin, Leu-Asn-Leu-Lys-Gly-Ile-Phe-Lys-Lys-Val-Ala-Ser-Leu-Leu-Thr, was mostly analyzed by mass spectrometry together with Edman degradation, and corroborated by solid-phase synthesis. This peptide has characteristic features of cationic linear alpha-helical antimicrobial peptides, and therefore, can be predicted to adopt an amphipathic alpha-helix secondary structure. In fact, the CD spectra of eumenitin in the presence of TFE or SDS showed a high content of alpha-helical conformation. Eumenitin exhibited inhibitory activity against both Gram-positive and Gram-negative bacteria, and moderately stimulated degranulation from the rat peritoneal mast cells and the RBL-2H3 cells, but showed no hemolytic activity against human erythrocytes. This antimicrobial peptide in the eumenine wasp venom may play a role in preventing potential infection by microorganisms during prey consumption by their larvae.  相似文献   

3.
Interaction of cationic antimicrobial peptides with model membranes   总被引:14,自引:0,他引:14  
A series of natural and synthetic cationic antimicrobial peptides from various structural classes, including alpha-helical, beta-sheet, extended, and cyclic, were examined for their ability to interact with model membranes, assessing penetration of phospholipid monolayers and induction of lipid flip-flop, membrane leakiness, and peptide translocation across the bilayer of large unilamellar liposomes, at a range of peptide/lipid ratios. All peptides were able to penetrate into monolayers made with negatively charged phospholipids, but only two interacted weakly with neutral lipids. Peptide-mediated lipid flip-flop generally occurred at peptide concentrations that were 3- to 5-fold lower than those causing leakage of calcein across the membrane, regardless of peptide structure. With the exception of two alpha-helical peptides V681(n) and V25(p,) the extent of peptide-induced calcein release from large unilamellar liposomes was generally low at peptide/lipid molar ratios below 1:50. Peptide translocation across bilayers was found to be higher for the beta-sheet peptide polyphemusin, intermediate for alpha-helical peptides, and low for extended peptides. Overall, whereas all studied cationic antimicrobial peptides interacted with membranes, they were quite heterogeneous in their impact on these membranes.  相似文献   

4.
Basic amphipathic alpha-helical peptides Ac-(Leu-Ala-Arg-Leu)3 or 4-NHCH3 (4(3) or 4(4)) and H-(Leu-Ala-Arg-Leu)3-(Leu-Arg-Ala-Leu)2 or 3-OH (4(5) or 4(6)) were synthesized and studied in terms of their interactions with phospholipid membranes, biological activity, and ion channel-forming ability. CD study of the peptides showed that they form alpha-helical structures in the presence of phospholipid liposomes and thus they have amphipathic distribution of the side chains along the axis of the helix. A leakage study of carboxyfluorescein encapsulated in phospholipid vesicles indicated that the peptides possess a highly potent ability to perturb the membrane structure. Membrane current measurements using the planar lipid bilayer technique revealed that the peptide 4(6), which was long enough to span the lipid bilayer in the alpha-helical structure, formed cation-selective ion channels at a concentration of 0.5 microM in a planar diphytanoylphosphatidylcholine bilayer. In contrast, other shorter peptides failed to form discrete and stable channels though they occasionally induced an increase in the membrane current with erratic conductance levels. The probability of detecting a conductance increase was in the order of 4(6) greater than 4(5) greater than 4(4) greater than 4(3), which corresponds to the order of the peptide chain lengths. Furthermore, 4(6) but not 4(5) showed an antimicrobial activity against both Gram-positive and -negative bacteria. The structure of ion channels formed by 4(6) and the relationship between the peptide chain length and biological activity of the synthetic peptides are discussed.  相似文献   

5.
Diversity of antimicrobial peptides and their mechanisms of action   总被引:31,自引:0,他引:31  
Antimicrobial peptides encompass a wide variety of structural motifs. Many peptides have alpha-helical structures. The majority of these peptides are cationic and amphipathic but there are also hydrophobic alpha-helical peptides which possess antimicrobial activity. In addition, some beta-sheet peptides have antimicrobial activity and even antimicrobial alpha-helical peptides which have been modified to possess a beta-structure retain part of their antimicrobial activity. There are also antimicrobial peptides which are rich in a certain specific amino acid such as Trp or His. In addition, antimicrobial peptides exist with thio-ether rings, which are lipopeptides or which have macrocyclic Cys knots. In spite of the structural diversity, a common feature of the cationic antimicrobial peptides is that they all have an amphipathic structure which allows them to bind to the membrane interface. Indeed, most antimicrobial peptides interact with membranes and may be cytotoxic as a result of disturbance of the bacterial inner or outer membranes. Alternatively, a necessary but not sufficient property of these peptides may be to be able to pass through the membrane to reach a target inside the cell. The interaction of these peptides with biological membranes is not just a function of the peptide but is also modulated by the lipid components of the membrane. It is not likely that this diverse group of peptides has a single mechanism of action, but interaction of the peptides with membranes is an important requirement for most, if not all, antimicrobial peptides.  相似文献   

6.
To assess and compare different model Leu-Lys-containing cationic alpha-helical peptides, their antimicrobial activities were tested against Escherichia coli as target organism over a broad peptide concentration range. The natural cationic alpha-helical peptides magainin 2 and PGLa and the cyclic cationic peptide gramicidin S were also tested between comparison. The dose-response curves differed widely for these peptides, making it difficult to rank them into an activity order over the whole concentration range. We therefore compared five different inhibition parameters from dose-response curves: IC(min) (lowest concentration leading to growth inhibition), IC(50) (concentration that gives 50% growth inhibition), IC(max) (related to minimum inhibition concentration and minimum bactericidal concentration), inhibition concentration factor (IC(F); describing the increase in concentration of the peptide between minimum and maximum inhibition), and activity slope (A(S); related to the Hill coefficient). We found that these parameters were covariant: two of them sufficed to characterize the dose dependence and hence the activity of the peptides. This was corroborated by showing that the dose dependences followed the Hill equation, with a small, constant aberration. We propose that the activity of antimicrobial peptides can readily be characterized by both IC(50) and IC(F) (or A(S)) rather than by a single parameter and discuss how this may relate to investigations into their mechanisms of action.  相似文献   

7.
Bacterial exopolysaccharides provide protection against phagocytosis, opsonization, and dehydration and act as a major structural component of the extracellular matrix in biofilms. They contribute to biofilm-related resistance by acting as a diffusion barrier to positively charged antimicrobial agents including cationic antimicrobial peptides (CAPs). We previously created novel CAPs consisting of a nonamphipathic hydrophobic core flanked by Lys residues and containing a Trp residue in the hydrophobic segment as a fluorescent probe. Peptides of this type above a specific hydrophobicity threshold insert spontaneously into membranes and have antimicrobial activity against Gram-positive and Gram-negative bacteria at micromolar concentrations. Here we show that alginate, a polymer of beta-d-mannuronate and alpha-l-guluronate secreted by the cystic fibrosis pathogen Pseudomonas aeruginosa, induces an alpha-helical conformation detected by circular dichroism spectroscopy and blue shifts in Trp fluorescence maxima in peptides above the hydrophobicity threshold, changes typically observed upon association of such peptides with nonpolar (membrane) environments. Parallel effects were observed in the archetypical CAPs magainin II amide and cecropin P1. Fluorescence resonance energy transfer studies indicated that alginate induces peptide-peptide association only in peptides above the hydrophobicity threshold, suggesting that the hydrophilic alginate polymer behaves as an "auxiliary membrane" for the bacteria, demonstrating a unique protective role for biofilm matrices against CAPs.  相似文献   

8.
Novel cationic antimicrobial peptides typified by structures such as KKKKKKAAXAAWAAXAA-NH2, where X = Phe/Trp, and several of their analogues display high activity against a variety of bacteria but exhibit no hemolytic activity even at high dose levels in mammalian erythrocytes. To elucidate their mechanism of action and source of selectivity for bacterial membranes, phospholipid mixtures mimicking the compositions of natural bacterial membranes (containing anionic lipids) and mammalian membranes (containing zwitterionic lipids + cholesterol) were challenged with the peptides. We found that peptides readily inserted into bacterial lipid mixtures, although no insertion was detected in model "mammalian" membranes. The depth of peptide insertion into model bacterial membranes was estimated by Trp fluorescence quenching using doxyl groups variably positioned along the phospholipid acyl chains. Peptide antimicrobial activity generally increased with increasing depth of peptide insertion. The overall results, in conjunction with molecular modeling, support an initial electrostatic interaction step in which bacterial membranes attract and bind peptide dimers onto the bacterial surface, followed by the "sinking" of the hydrophobic core segment to a peptide sequence-dependent depth of approximately 2.5-8 A into the membrane, largely parallel to the membrane surface. Antimicrobial activity was likely enhanced by the fact that the peptide sequences contain AXXXA sequence motifs, which promote their dimerization, and possibly higher oligomerization, as assessed by SDS-polyacrylamide gel analysis and fluorescence resonance energy transfer experiments. The high selectivity of these peptides for nonmammalian membranes, combined with their activity toward a wide spectrum of Gram-negative and Gram-positive bacteria and yeast, while retaining water solubility, represent significant advantages of this class of peptides.  相似文献   

9.
The widespread natural sources‐derived cationic peptides have been reported to reveal bacterial killing and/or growth‐inhibiting properties. Correspondingly, a number of artificial peptides have been designed to understand antibacterial mechanism of the cationic peptides. These peptides are expected to be an alternative antibiotic against drug‐resistant pathogenic bacteria because major antimicrobial mechanism of cationic peptides involves bacterial membrane disorder, although those availabilities have not been well evaluated. In this study, cationic peptides containing Aib were prepared to evaluate the availability as an antimicrobial agent, especially against representative pathogenic bacteria. Among them, BRBA20, consisting of five repeated Aib‐Arg‐Aib‐Ala sequences, showed strong antibacterial activity against both Gram‐negative and Gram‐positive bacteria, including methicillin‐resistant Staphylococcus aureus. Additionally, growth of Serratia marcescens and multidrug‐resistant Pseudomonas aeruginosa, known as proteases‐secreting pathogenic bacteria, were also completely inhibited by BRBA20 under 20 µg/ml peptide concentrations. Our results suggested availabilities of Aib‐derived amphiphilicity and protease resistance in the design of artificial antimicrobial peptides. Comparing BRBA20 with BKBA20, it was also concluded that Arg residue is the preferred cationic source than Lys for antimicrobial action of amphiphilic helices. Copyright © 2010 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

10.
Abstract

Most helical antimicrobial peptides (AMPs) are usually unfolded in aqueous solution; however they acquire their secondary structure in the presence of a hydrophobic environment such as lipid membranes. Being the biological membranes the main target of many AMPs it is necessary to understand their way of action. Pandinin 2 (Pin2) is an alpha-helical AMP isolated from the venom of the African scorpion Pandinus imperator which shows high antimicrobial activity against Gram-positive bacteria and it is less active against Gram-negative bacteria, nevertheless, it has strong hemolytic activity. Its chemically synthesized Pin2GVG analog has low hemolytic activity while keeping its antimicrobial activity. With the aim of exploring the partition and subsequent folding of these peptides, in this work we report the results of extensive molecular dynamics simulations of Pin2 and Pin2GVG peptides in the presence of 2 hydrophobic environments such as dodecyl-phosphocholine (DPC) micelle and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocoline (POPC) membrane. Our results indicate that Pin2 folds in DPC with a 79% of alpha-helical content, which is in agreement with the experimental results, while in POPC it has 62.5% of alpha-helical content. On the other hand, Pin2GVG presents a higher percentage of alpha-helical structure in POPC and a smaller content in DPC when compared with Pin2. These results can help to better choose the starting structures in future molecular dynamics simulations of AMPs, because these peptides can adopt slightly different conformations depending on the hydrophobic environment.

Communicated by Ramaswamy H. Sarma  相似文献   

11.
Temporin-SHa and temporin-SHc are 13 residue long antimicrobial peptides from frog skin that have similar sequences but differ markedly in their membrane-damaging properties. Temporin-SHa contains a single basic lysine residue and has a unique antimicrobial spectrum of action among temporins, being very potent against Gram-positive and Gram-negative bacteria, yeasts, fungi, and protozoa. Temporin-SHc, which contains a single basic histidine residue, is inactive against Gram-negative bacteria, has a reduced efficacy against Gram-positive bacteria, but is still active against yeasts and fungi. Temporin-SHb, with no basic residue, has no antimicrobial activity. The three-dimensional structures of the peptides bound to SDS micelles were analyzed by CD and NMR spectroscopy combined with restrained molecular dynamics calculations. The peptides adopt well-defined amphipathic alpha-helical structures extending from residue 3 to residue 12, when bound to SDS micelles. The structures are stabilized by extensive interactions between aliphatic and aromatic side chains on the nonpolar face. Relaxation enhancements caused by paramagnetic probes showed that the peptides adopt nearly parallel orientations to the micelle surface and do not deeply penetrate into the micelle. The interaction of the peptides with model membranes was investigated by differential scanning calorimetry on anionic and zwitterionic multilamellar vesicles and membrane-permeabilization assays on calcein-loaded large unilamellar vesicles. Calorimetric data indicated that both temporin-SHa and -SHc reside at the hydrocarbon core-water interface of the anionic lipid bilayer but interact with anionic bilayers in a very different manner. This suggests that the charge-induced activity of temporins-SH for bacterial cells is due to changes in the membrane-disturbing mechanism of the bound peptides.  相似文献   

12.
We tested the activity of 48 structurally diverse antimicrobial peptides against Chlamydia trachomatis, serovar L2. The peptides' activity against C. trachomatis, serovar L2 was measured in 48-h McCoy cell shell vial assays. Peptides of 16-20 amino acids were more active than larger peptides, such as defensins. Beta-sheet protegrins, as well as alpha-helical peptides such as novispirin (G-10) were equally active. Enantiomers were as active as native structures. Moderate-sized circular mini-defensins were less effective against C. trachomatis. Moderate-sized cationic peptides may be useful in microbicide preparations designed to prevent chlamydial infection.  相似文献   

13.
Thanatin, a 21-residue peptide, is an inducible insect peptide with a broad range of activity against bacteria and fungi. It has a C-terminal disulfide loop, like the frog skin secretion antimicrobial peptides of the brevinin family. In this study, we tried to find the effect of a number of amino acids between the disulfide bond. Thanatin showed stronger antibacterial activity to Gram negative bacteria than other mutants, except Th1; whereas, the mutant peptides with deletion had higher activity to Gram positive bacteria than thanatin. An increase in the number of amino acid(s) using the alanine residue decreased the antibacterial activity in all of the bacteria. Th1 with deletion of threonine at position 15 (Thr(1)(2)) showed similar antibacterial activity against Gram-negative bacteria, but had higher activity against the Gram positive bacteria. In order to study the structure-function relationship, we measured liposome disruption by the peptides and CD spectra of the peptides. Th1 also showed the highest liposome leaking activity and alpha-helical propensity in the sodium dodecyl sulfate solution, compared with other peptides. Liposome disruption activity was closely correlated with the anti-Gram positive bacterial activity. All of the peptides showed no hemolytic activity. Th1 was considered to be useful as an antimicrobial peptide with broad spectrum without toxicity  相似文献   

14.
The peptide NK-2 is an effective antimicrobial agent with low hemolytic and cytotoxic activities and is thus a promising candidate for clinical applications. It comprises the alpha-helical, cationic core region of porcine NK-lysin a homolog of human granulysin and of amoebapores of pathogenic amoeba. Here we visualized the impact of NK-2 on Escherichia coli by electron microscopy and used NK-2 as a template for sequence variations to improve the peptide stability and activity and to gain insight into the structure/function relationships. We synthesized 18 new peptides and tested their activities on seven Gram-negative and one Gram-positive bacterial strains, human erythrocytes, and HeLa cells. Although all peptides appeared unordered in buffer, those active against bacteria adopted an alpha-helical conformation in membrane-mimetic environments like trifluoroethanol and negatively charged phosphatidylglycerol (PG) liposomes that mimick the cytoplasmic membrane of bacteria. This conformation was not observed in the presence of liposomes consisting of zwitterionic phosphatidylcholine (PC) typical for the human cell plasma membrane. The interaction was paralleled by intercalation of these peptides into PG liposomes as determined by FRET spectroscopy. A comparative analysis between biological activity and the calculated peptide parameters revealed that the decisive factor for a broad spectrum activity is not the peptide overall hydrophobicity or amphipathicity, but the possession of a minimal positive net charge plus a highly amphipathic anchor point of only seven amino acid residues (two helical turns).  相似文献   

15.
M Wu  E Maier  R Benz  R E Hancock 《Biochemistry》1999,38(22):7235-7242
Antimicrobial cationic peptides are prevalent throughout nature as part of the intrinsic defenses of most organisms, and have been proposed as a blueprint for the design of novel antimicrobial agents. They are known to interact with membranes, and it has been frequently proposed that this represents their antibacterial target. To see if this was a general mechanism of action, we studied the interaction, with model membranes and the cytoplasmic membrane of Escherichia coli, of 12 peptides representing all 4 structural classes of antimicrobial peptides. Planar lipid bilayer studies indicated that there was considerable variance in the interactions of the peptides with model phospholipid membranes, but generally both high concentrations of peptide and high transmembrane voltages (usually -180 mV) were required to observe conductance events (channels). The channels observed for most peptides varied widely in magnitude and duration. An assay was developed to measure the interaction with the Escherichia coli cytoplasmic membrane employing the membrane potential sensitive dye 3,5-dipropylthiacarbocyanine in the outer membrane barrier-defective E. coli strain DC2. It was demonstrated that individual peptides varied widely in their ability to depolarize the cytoplasmic membrane potential of E. coli, with certain peptides such as the loop peptide bactenecin and the alpha-helical peptide CP26 being unable to cause depolarization at the minimal inhibitory concentration (MIC), and others like gramicidin S causing maximal depolarization below the MIC. We discuss the mechanism of interaction with the cytoplasmic membrane in terms of the model of Matsuzaki et al. [(1998) Biochemistry 37, 15144-15153] and the possibility that the cytoplasmic membrane is not the target for some or even most cationic antimicrobial peptides.  相似文献   

16.
Development of antimicrobial peptides has attracted considerable attention in recent years due to the excessive use of antibiotics, which has led to multiresistant bacteria. Cationic amphiphilic Aib-containing peptide models Ac-(Aib-Arg-Aib-Leu)(n)-NH2, n = 1-4, and sequential cationic polypeptides (Arg-X-Gly)(n), X = Ala, Val, Leu, were prepared and studied for their antimicrobial and hemolytic activity, as well as for their proteolytic stability. Ac-(Aib-Arg-Aib-Leu)(n)-NH2, n = 2, 3 and the polypeptide (Arg-Leu-Gly)(n) exhibited significant antimicrobial activity, and they were nontoxic at their MIC values and resistant, in particular the Aib-peptide models, to enzymatic degradation. The conformational characteristics of the peptide models were studied by circular dichroism (CD). Structure-activity relationship studies revealed the importance of the amphipathic alpha-helical conformation of the reported peptides in inducing antimicrobial effects. It is concluded that peptide models comprising cationic amino acids (Arg), helicogenic and noncoding residues (Aib) and/or hydrophobic and helix-promoting components (Leu) may lead to the development of antimicrobial therapeutics.  相似文献   

17.
Unger T  Oren Z  Shai Y 《Biochemistry》2001,40(21):6388-6397
The amphipathic alpha-helical structure is a common motif found in membrane binding polypeptides including cell lytic peptides, antimicrobial peptides, hormones, and signal sequences. Numerous studies have been undertaken to understand the driving forces for partitioning of amphipathic alpha-helical peptides into membranes, many of them based on the antimicrobial peptide magainin 2 and the non-cell-selective cytolytic peptide melittin, as paradigms. These studies emphasized the role of linearity in their mode of action. Here we synthesized and compared the structure, biological function, and interaction with model membranes of linear and cyclic analogues of these peptides. Cyclization altered the binding of melittin and magainin analogues to phospholipid membranes. However, at similar bound peptide:lipid molar ratios, both linear and cyclic analogues preserved their high potency to permeate membranes. Furthermore, the cyclic analogues preserved approximately 75% of the helical structure of the linear peptides when bound to membranes. Biological activity studies revealed that the cyclic melittin analogue had increased antibacterial activity but decreased hemolytic activity, whereas the cyclic magainin 2 analogue had a marked decrease in both antibacterial and hemolytic activities. The results indicate that the linearity of the peptides is not essential for the disruption of the target phospholipid membrane, but rather provides the means to reach it. In addition, interfering with the coil-helix transition by cyclization, while maintaining the same sequence of hydrophobic and positively charged amino acids, allows a separated evaluation of the hydrophobic and electrostatic contributions to binding of peptides to membranes.  相似文献   

18.
Two simple lipid A analogues methyl 2,3-di-O-tetradecanoyl-alpha-D-glucopyranoside (GL1) and methyl 2,3-di-O-tetradecanoyl-alpha-D-glucopyranoside 4-O-phosphate (GL2) were synthesized and used for preparing mixed phosphocholine vesicles as models of the outer membrane of gram-negative bacteria. The interaction of these model membranes with magainin 2, a representative of the alpha-helical membrane active peptides, and apidaecin Ib and drosocin, two insect Pro-rich peptides which do not act at the level of the cellular membrane, were studied by CD and dye-releasing experiments. The CD spectra of apidaecin Ib and drosocin in the presence of GL1- or GL2-containing vesicles were consistent with largely unordered structures, whereas, according to the CD spectra, magainin 2 adopted an amphipathic alpha-helical conformation, particularly in the presence of negatively charged bilayers. The ability of the peptides to fold into amphipathic conformations was strictly correlated to their ability to bind and to permeabilize phospholipid as well as glycolipid membranes. Apidaecin Ib and drosocin, which are unable to adopt an amphipathic structure, showed negligible dye-leakage activity even in the presence of GL2-containing vesicles. It is reasonable to suppose that, as for the killing mechanism, the two classes of antimicrobial peptides follow different patterns to cross the bacterial outer membrane.  相似文献   

19.
Trp-rich antimicrobial peptides play important roles in the host innate defense mechanisms of many plants, insects, and mammals. A new type of Trp-rich peptide, Ac-KWRRWVRWI-NH(2), designated Pac-525, was found to possess improved activity against both gram-positive and -negative bacteria. We have determined that the solution structures of Pac-525 bound to membrane-mimetic sodium dodecyl sulfate (SDS) micelles. The SDS micelle-bound structure of Pac-525 adopts an alpha-helical segment at residues Trp2, Arg3, and Arg4. The positively charged residues are clustered together to form a hydrophilic patch. The three hydrophobic residues Trp2, Val6, and Ile9 form a hydrophobic core. The surface electrostatic potential map indicates the three tryptophan indole rings are packed against the peptide backbone and form an amphipathic structure. Moreover, the reverse sequence of Pac-525, Ac-IWRVWRRWK-NH(2), designated Pac-525(rev), also demonstrates similar antimicrobial activity and structure in membrane-mimetic micelles and vesicles. A variety of biophysical and biochemical methods, including circular dichroism, fluorescence spectroscopy, and microcalorimetry, were used to show that Pac-525 interacted strongly with negatively charged phospholipid vesicles and induced efficient dye release from these vesicles, suggesting that the antimicrobial activity of Pac-525 may be due to interactions with bacterial membranes.  相似文献   

20.
Oren Z  Shai Y 《Biochemistry》2000,39(20):6103-6114
The amphipathic alpha-helical structure is considered to be a prerequisite for the lytic activity of a large group of cytolytic peptides. However, despite numerous studies on the contribution of various parameters to their structure and activity, the importance of linearity has not been examined. In the present study we functionally and structurally characterized a linear amphipathic alpha-helical peptide (wt peptide), its diastereomer, and cyclic analogues of both. Using analogues with the same sequence of hydrophobic and positively charged amino acids, but with different propensities to form a helical structure, we were able to examine the contribution of linearity to helix formation, bilogical function, and membrane binding and permeation. Importantly, we found that cyclization increases the selectivity between bacteria and human erythrocytes by substantially reducing the hemolytic activity of the cyclic peptides compared with the linear peptides. Moreover, whereas the wt peptide was highly active toward gram(+) bacteria, its cyclic counterpart is active toward both gram(+) and gram(-) bacteria. These findings are correlated with an impaired ability of the cyclic analogues to bind and permeate zwitterionic phospholipid membranes compared with their linear counterparts and an increase in the binding and permeating activity of the cyclic wt peptide toward negatively charged membranes. Furthermore, cyclization abolished the oligomerization of the linear wt peptide in solution and in SDS, suggesting an additional factor that may account for the difference in the spectrum of antibacterial activity between the linear and the cyclic wt peptides. Interestingly, attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy revealed that, despite cyclization and incorporation of 33% D-amino acids along the peptide backbone, the membrane environment can impose a predominantly helical structure on the peptides, which is required for their bilogical function. Overall, our results indicate that linearity is not a prerequisite for lytic activity of amphipathic alpha-helical peptides but rather affects the selectivity between gram(+) and gram(-) bacteria and between mammalian cells and bacteria. In addition, the combination of incorporating of D-amino acids into lytic peptides and their cyclization open the way for developing a new group of antimicrobial peptides with improved properties for treating infectious diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号