首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Vasiljeva O  Dolinar M  Turk V  Turk B 《Biochemistry》2003,42(46):13522-13528
Human procathepsin H was expressed in the form of inclusion bodies in Escherichia coli. Following refolding and autocatalytic activation, a recombinant cathepsin H form lacking the mini chain was produced. Removal of the mini chain completely abolished aminopeptidase activity of the enzyme and largely increased its endopeptidase activity (approximately 40-fold). Similarly to cathepsin S, Bz-FVR-AMC (k(cat)/K(m) value of 1070 mM(-1) s(-1)) was found to be the preferred substrate of recombinant cathepsin H. However, substrate inhibition was observed at a higher substrate (Z-FR-AMC, Bz-FVR-AMC) concentration. Endopeptidase activity of recombinant cathepsin H was seen also with the protein substrate insulin beta-chain with the major cleavage site between Glu13-Ala14. Recombinant human cathepsin H was inhibited by chicken cystatin, stefin A, and stefin B with the K(i) values in the range of 0.05-0.1 nM, which is slightly tighter than the inhibition of purified cathepsin H by the same inhibitors. These results thus indicate that the cathepsin H mini chain is essential for the aminopeptidase activity of the enzyme but has only a minor effect on the inhibition by cystatins.  相似文献   

2.
A comparison of the substrate specificities of cathepsin D and pseudorenin   总被引:3,自引:0,他引:3  
Cathepsin D, purified from hog spleen, releases angiotensin I from tetradecapeptide renin substrate and from protein renin substrates purified from hog and human plasma. However, the enzyme does not act on the naturally occurring renin substrate as it exists in plasma nor on purified substrate in the presence of plasma. Cathepsin D releases angiotensin I quantitatively from tetradecapeptide renin substrate and does not further degrade the angiotensin I on prolonged incubation. The pH optimum for cathepsin D prolonged incubation. The pH optimum for cathepsin D acting on tetradecapeptide renin substrate is 4.5, and there is very low activity above pH 7. These properties are very similar to those of pseudorenin, an angiotensin-forming enzyme originally isolated from human kidney, indicating that cathepsin D and pseudorenin may be identical.  相似文献   

3.
We established a continuous semi-microassay, and for large-scale studies both a stopped and a continuous microtiter plate assay for the fluorometric determination of cathepsin L and cathepsin S activities in body fluids, tissues or cell extracts in the presence of cathepsin B. For the detection of enzymatic activities we used the synthetic substrate Z-Phe-Arg-AMC, and for discrimination between cathepsin L, S and cathepsin B the specific inhibitor CA-074 for blocking interfering cathepsin B activities was applied. Furthermore, we took advantage of the stability of cathepsin S at pH 7.5 for further differentiation between cathepsin L and cathepsin S activities. The kinetic assays were characterized in terms of imprecision, analytical sensitivity, accuracy and substrate concentration. The within-run coefficients of variation were found to be 4.9%-7.2% for the continuous semi-microassay, 10.3%-11.7% for the stopped, and 4.5%-11.8% for the continuous microtiter plate assay. The between-days coefficients of variation for the continuous semi-microassay were 8.1%-8.9%, while for the stopped and continuous microtiter plate assays the coefficients were 11.2%-13.5% and 5.8%-12.2%, respectively. Compared to the continuous semi-microassay, the stopped and the continuous microtiter plate assays showed 3-fold and 11-fold higher sensitivity, respectively. Comparison between the continuous enzyme activity assays at substrate concentrations of 40 microM and 200 microM demonstrated a significant correlation of r = 0.97 and r = 0.99, respectively. The newly developed microtiter plate assay will allow efficient, sensitive and high precision determination of cathepsin L and cathepsin S activities in large-scale studies of cysteine-cathepsin dependent diseases.  相似文献   

4.
Cathepsin K is known to play an important role in bone resorption, and it has the P2 specificity for proline. Rat cathepsin K has 88% identity with the human enzyme. However, it has been reported that its enzymatic activity for a Cbz-Leu-Arg-MCA substrate is lower than that of human cathepsin K, and that the rat enzyme is not well inhibited by human cathepsin K inhibitors. For this study, we prepared recombinant enzyme to investigate the substrate specificity of rat cathepsin K. Cleavage experiments using the fragment of type I collagen and peptidic libraries demonstrated that rat cathepsin K preferentially hydrolyses the substrates at the P2 Hyp position. Comparison of the S2 site between rat and human cathepsin K sequences indicated that two S2 residues at Ser134 and Val160 in rat are varied to Ala and Leu, respectively, in the human enzyme. Cleavage experiments using two single mutants, S134A and V160L, and one double mutant, S134A/V160L, of rat cathepsin K showed that all the rat mutants lost the P2 Hyp specificity. The information obtained from our comparative studies on rat and human cathepsin K should make a significant impact on developing specific inhibitors of human cathepsin K since rat is usually used as test species.  相似文献   

5.
The kinetics of exposure of endocytosed material to two lysosomal enzymes were determined for a number of cultured cell lines using fluorogenic substrates. Hydrolysis of endocytosed substrates for cathepsin B and acid phosphatase was observed to begin within 3-10 min of substrate addition and to proceed linearly for up to 60 min thereafter. Hydrolysis of the cathepsin B substrate was not affected by inhibition of protein synthesis with cycloheximide, indicating that the enzymes present in early endosomes are not exclusively newly synthesized. As had been observed previously for a cathepsin B substrate (Roederer, M., Bowser, R., and Murphy, R. F., J. Cell. Physiol., 131:200-209, 1987), hydrolysis of the acid phosphatase substrate was not blocked at temperatures below 20 degrees C. The results suggest that the endosome is the primary site of initial exposure of endocytosed material to hydrolytic enzymes.  相似文献   

6.
Lecaille F  Choe Y  Brandt W  Li Z  Craik CS  Brömme D 《Biochemistry》2002,41(26):8447-8454
The primary specificity of papain-like cysteine proteases (family C1, clan CA) is determined by S2-P2 interactions. Despite the high amino acid sequence identities and structural similarities between cathepsins K and L, only cathepsin K is capable of cleaving interstitial collagens in their triple helical domains. To investigate this specificity, we have engineered the S2 pocket of human cathepsin K into a cathepsin L-like subsite. Using combinatorial fluorogenic substrate libraries, the P1-P4 substrate specificity of the cathepsin K variant, Tyr67Leu/Leu205Ala, was determined and compared with those of cathepsins K and L. The introduction of the double mutation into the S2 subsite of cathepsin K rendered the unique S2 binding preference of the protease for proline and leucine residues into a cathepsin L-like preference for bulky aromatic residues. Homology modeling and docking calculations supported the experimental findings. The cathepsin L-like S2 specificity of the mutant protein and the integrity of its catalytic site were confirmed by kinetic analysis of synthetic di- and tripeptide substrates as well as pH stability and pH activity profile studies. The loss of the ability to accept proline in the S2 binding pocket by the mutant protease completely abolished the collagenolytic activity of cathepsin K whereas its overall gelatinolytic activity remained unaffected. These results indicate that Tyr67 and Leu205 play a key role in the binding of proline residues in the S2 pocket of cathepsin K and are required for its unique collagenase activity.  相似文献   

7.
Cathepsin E is an intracellular aspartic proteinase of the pepsin family predominantly expressed in cells of the immune system and believed to contribute to homeostasis by participating in host defense mechanisms. Studies on its enzymatic properties, however, have been limited by a lack of sensitive and selective substrates. For a better understanding of the importance of this enzyme in vivo, we designed and synthesized a highly sensitive peptide substrate for cathepsin E based on the sequence of the specific cleavage site of alpha2-macroglobulin. The substrate constructed, MOCAc-Gly-Ser-Pro-Ala-Phe-Leu-Ala-Lys(Dnp)-D-Arg-NH2 [where MOCAc is (7-methoxycoumarin-4-yl)acetyl and Dnp is dinitrophenyl], derived from the cleavage site sequence of human alpha2-macroglobulin, was the most sensitive and selective for cathepsin E, with k(cat)/K(m) values of 8-11 microM(-1) s(-1), whereas it was resistant to hydrolysis by the analogous aspartic proteinases cathepsin D and pepsin, as well as the lysosomal cysteine proteinases cathepsins B, L, and H. The assay allows the detection of a few fmol of cathepsin E, even in the presence of plasma and cell lysate, and gives accurate results over a wide enzyme concentration range. This substrate might represent a useful tool for monitoring and accurately quantifying cathepsin E, even in crude enzyme preparations.  相似文献   

8.
Cysteine proteinases are the major class of enzymes responsible for digestive proteolysis in western corn rootworm (Diabrotica virgifera), a serious pest of maize. A larval gut extract hydrolysed typical cathepsin substrates, such as Z-phe-arg-AMC and Z-arg-arg-AMC, and hydrolysis was inhibited by Z-phe-tyr-DMK, specific for cathepsin L. A cDNA library representing larval gut tissue mRNA contained cysteine proteinase-encoding clones at high frequency. Sequence analysis of 11 cysteine proteinase cDNAs showed that 9 encoded cathepsin L-like enzymes, and 2 encoded cathepsin B-like enzymes. Three enzymes (two cathepsin L-like, DvRS5 and DvRS30, and one cathepsin B-like, DvRS40) were expressed as recombinant proteins in culture supernatants of the yeast Pichia pastoris. The cathepsin L-like enzymes were active proteinases, whereas the cathepsin B-like enzyme was inactive until treated with bovine trypsin. The amino acid residue in the S2 binding pocket, the major determinant of substrate specificity in cathepsin cysteine proteinases, predicted that the two cathepsin L-like enzymes, DvRS5 and DvRS30, should differ in substrate specificity, with the latter resembling cathepsin B in hydrolysing substrates with a positively charged residue at P2. This prediction was confirmed; DvRS5 only hydrolysed Z-phe-arg-AMC and not Z-arg-arg-AMC, whereas DvRS30 hydrolysed both substrates. The enzymes showed similar proteolytic activity towards peptide substrates.  相似文献   

9.
《Insect Biochemistry》1990,20(3):313-318
The larval midgut of the Colorado beetle, Leptinotarsa decemlineata contains cathepsin B, D and H activity detected by use of haemoglobin, synthetic substrates specific for each enzyme, pH at which the substrate was maximally hydrolysed and effects of potential activators and inhibitors on proteolytic activity. Cysteine proteases cathepsin B, and H were activated by thiol compounds and inhibited by iodoacetamide, TLCK and epoxysuccinyl-leucyl-amido(guanidino)butane (E-64) a cysteine specific proteinase inhibitor. Cathepsin B was distinguished from H by hydrolysis of benzoyloxycarbonyl-Ala-Arg-Arg-methoxynaphthylamide, a cathepsin B specific substrate and inhibition of substrate hydrolysis by leupeptin. Cathepsin H activity, detected using the specific substrate arginine-naphthylamide, was insensitive to leupeptin. Cathepsin D had maximal activity at pH 4.5 and was inhibited by pepstatin, an aspartic proteinase inhibitor.  相似文献   

10.
Cathepsin S is the key protease responsible for the removal of the invariant chain from MHC class II molecules and, as such, has attracted much attention as a target for developing immunosuppressive drugs. To help in testing candidate compounds, the monkey (Saimiri boliviensis) and dog (Canis familiaris) cathepsin S cDNAs have been cloned. The monkey cDNA sequence encodes a 330 amino acid protein with 95% homology to human cathepsin S. The dog cDNA sequence encodes a 331 amino acid protein with 91% homology to human cathepsin S. The amino acid differences do not have a major effect on the hydrolysis of the substrate Z-VVR-AMC, but may affect the substrate specificity. As for human and bovine cathepsin S, activity against Z-VVR-AMC extends into the neutral pH range. These parameters are important for understanding the role of cathepsin S in different species and for testing inhibitors in animal models of autoimmunity.  相似文献   

11.
Cathepsin B is a lysosomal cysteine protease exhibiting mainly dipeptidyl carboxypeptidase activity, which decreases dramatically above pH 5.5, when the enzyme starts acting as an endopeptidase. Since the common cathepsin B assays are performed at pH 6 and do not distinguish between these activities, we synthesized a series of peptide substrates specifically designed for the carboxydipeptidase activity of cathepsin B. The amino-acid sequences of the P(5)-P(1) part of these substrates were based on the binding fragments of cystatin C and cystatin SA, the natural reversible inhibitors of papain-like cysteine protease. The sequences of the P'(1)-P'(2) dipeptide fragments of the substrates were chosen on the basis of the specificity of the S'(1)-S'(2) sites of the cathepsin B catalytic cleft. The rates of hydrolysis by cathepsin B and papain, the archetypal cysteine protease, were monitored by a continuous fluorescence assay based on internal resonance energy transfer from an Edans to a Dabcyl group. The fluorescence energy donor and acceptor were attached to the C- and the N-terminal amino-acid residues, respectively. The kinetics of hydrolysis followed the Michaelis-Menten model. Out of all the examined peptides Dabcyl-R-L-V-G-F- E(Edans) turned out to be a very good substrate for both papain and cathepsin B at both pH 6 and pH 5. The replacement of Glu by Asp turned this peptide into an exclusive substrate for cathepsin B not hydrolyzed by papain. The substitution of Phe by Nal in the original substrate caused an increase of the specificity constant for cathepsin B at pH 5, and a significant decrease at pH 6. The results of kinetic studies also suggest that Arg in position P(4) is not important for the exopeptidase activity of cathepsin B, and that introducing Glu in place of Val in position P(2) causes an increase of the substrate preference towards this activity.  相似文献   

12.
Cathepsin G has both trypsin- and chymotrypsin-like activity, but studies on its enzymatic properties have been limited by a lack of sensitive synthetic substrates. Cathepsin G activity is physiologically controlled by the fast acting serpin inhibitors alpha1-antichymotrypsin and alpha1-proteinase inhibitor, in which the reactive site loops are cleaved during interaction with their target enzymes. We therefore synthesized a series of intramolecularly quenched fluorogenic peptides based on the sequence of various serpin loops. Those peptides were assayed as substrates for cathepsin G and other chymotrypsin-like enzymes including chymotrypsin and chymase. Peptide substrates derived from the alpha1-antichymotrypsin loop were the most sensitive for cathepsin G with kcat/Km values of 5-20 mM-1 s-1. Substitutions were introduced at positions P1 and P2 in alpha1-antichymotrypsin-derived substrates to tentatively improve their sensitivity. Replacement of Leu-Leu in ortho-aminobenzoyl (Abz)-Thr-Leu-Leu-Ser-Ala-Leu-Gln-N-(2, 4-dinitrophenyl)ethylenediamine (EDDnp) by Pro-Phe in Abz-Thr-Pro-Phe-Ser-Ala-Leu-Gln-EDDnp produced the most sensitive substrate of cathepsin G ever reported. It was cleaved with a specificity constant kcat/Km of 150 mM-1 s-1. Analysis by molecular modeling of a peptide substrate bound into the cathepsin G active site revealed that, in addition to the protease S1 subsite, subsites S1' and S2' significantly contribute to the definition of the substrate specificity of cathepsin G.  相似文献   

13.
The mini-chain of human cathepsin H has been identified as the major structural element determining the protease's substrate specificity. A genetically engineered mutant of human cathepsin H lacking the mini-chain, des[Glu(-18)-Thr(-11)]-cathepsin H, exhibits endopeptidase activity towards the synthetic substrate Z-Phe-Arg-NH-Mec (kcat = 0.4 s(-1), Km = 92 microM, kcat/Km = 4348 M(-1) s(-1)) which is not cleaved by r-wt cathepsin H. However, the mutant enzyme shows only minimal aminopeptidase activity for H-Arg-NH-Mec (kcat = 0.8 s(-1), Km = 3.6 mM, kcat/Km = 222 M(-1) s(-1)) which is one of the best known substrates for native human cathepsin H (kcat = 2.5 s(-1), Km = 150 microM, kcat/Km = 16666 M(-1) s(-1)). Inhibition studies with chicken egg white cystatin and E-64 suggest that the mini-chain normally restricts access of inhibitors to the active site. The kinetic data on substrates hydrolysis and enzyme inhibition point out the role of the mini-chain as a structural framework for transition state stabilization of free alpha-amino groups of substrates and as a structural barrier for endopeptidase-like substrate cleavage.  相似文献   

14.
Targeting allosteric sites is gaining increasing recognition as a strategy for modulating the activity of enzymes, especially in drug design. Here we investigate the mechanisms of allosteric regulation of cathepsin K as a representative of cysteine cathepsins and a promising drug target for the treatment of osteoporosis. Eight novel modifiers are identified by computational targeting of predicted allosteric sites on the surface of the enzyme. All act via hyperbolic kinetic mechanisms in presence of low molecular mass substrates, as expected for allosteric effectors. Two compounds have sizable effects on enzyme activity using interstitial collagen as a natural substrate of cathepsin K and four compounds show a significantly stabilizing effect on cathepsin K. The concept of activity modification space is introduced to obtain a global perspective of the effects elicited by the modifiers. Analysis of the activity modification space reveals that the activity of cathepsin K is regulated via multiple, different allosteric mechanisms.  相似文献   

15.
Cathepsin E and cathepsin D are two major intracellular aspartic proteinases implicated in the physiological and pathological degradation of intra- and extracellular proteins. In this study, we designed and constructed highly sensitive synthetic decapeptide substrates for assays of cathepsins E and D based on the known sequence specificities of their cleavage sites. These substrates contain a highly fluorescent (7-methoxycoumarin-4-yl)acetyl (MOCAc) moiety and a quenching 2,4-dinitrophenyl (Dnp) group. When the Phe-Phe bond is cleaved, the fluorescence at an excitation wavelength of 328 nm and emission wavelength of 393 increases due to diminished quenching resulting from the separation of the fluorescent and quenching moieties. The first substrate, MOCAc-Gly-Lys-Pro-Ile-Leu-Phe-Phe-Arg-Le u-Lys(Dnp)gamma-NH2, in which the Lys-Pro combination at positions P5 and P4 was designed for specific interaction with cathepsin E, is hydrolyzed equally well by cathepsins E and D (kcat/Km = 10.9 microM(-1) x s(-1) for cathepsin E and 15.6 microM(-1) x s(-1) for cathepsin D). A very acidic pH optimum o was obtained for both enzymes. The second substrate, MOCAc-Gly-Lys-Pro-Ile-Ile-Phe-Phe-Arg-Le u-Lys(Dnp)gamma-NH2, in which the isoleucine residue at position P2 was meant to increase the specificity for cathepsin E, is also hydrolyzed equally by both enzymes (kcat/Km = 12.2 microM(-1) x s(-1) for cathepsin E and 16.3 microM(-1) x s(-1) for cathepsin D). The kcat/Km values for both substrates are greater than those for the best substrates for cathepsins E and D described so far. Unfortunately, each substrate shows little discrimination between cathepsin E and cathepsin D, suggesting that amino acids at positions far from the cleavage site are important for discrimination between the two enzymes. However, in combination with aspartic proteinase inhibitors, such as pepstatin A and Ascaris pepsin inhibitor, these substrates enable a rapid and sensitive determination of the precise levels of cathepsins E and D in crude cell extracts of various tissues and cells. Thus these substrates represent a potentially valuable tool for routine assays and for mechanistic studies on cathepsins E and D.  相似文献   

16.
Species variations amongst lysosomal cysteine proteinases   总被引:4,自引:0,他引:4  
H Kirschke  P Locnikar  V Turk 《FEBS letters》1984,174(1):123-127
Properties of cathepsin L from rat liver lysosomes were compared with those of a similar enzyme, cathepsin S from beef spleen. Major characteristics of cathepsin L are the high activity against Z-Phe-Arg-methylcoumarylamide and sensitivity to the fast reacting irreversible inhibitor Z-Phe-Phe-diazomethane. In contrast, cathepsin S hydrolyzes Z-Phe-Arg-methylcoumarylamide only slowly and Z-Phe-Phe-diazomethane cannot be regarded as a potent inhibitor of this enzyme. The differences in the substrate specificity of cathepsin L from rat liver and cathepsin S from beef spleen are discussed in comparison with the substrate specificity of cathepsin B from rat and human liver and beef spleen.  相似文献   

17.
An improved cathepsin-D substrate and assay procedure   总被引:1,自引:0,他引:1  
Ten analogs of the peptide A-Phe(NO2)-Phe-Val-Leu-B were synthesized and tested as substrates for cathepsin D and pepsin. The best substrate found for cathepsin D, Phe-Ala-Ala-Phe(NO2)-Phe-Val-Leu-OM4P (kcat = 2.9 s-1; Km = 7.1 microM), has the largest kcat/Km value (408 mM-1 s-1) reported to date for this enzyme. The effect of peptide structure on solubility and kinetic parameters is discussed. The peptide provides a useful new substrate for continuous assay of cathepsin D.  相似文献   

18.
The effects of ATP, vanadate, and molybdate on cathepsin D-catalyzed hydrolysis of proteins and peptides were examined. Hydrolysis of bovine serum albumin, hemoglobin, parathyroid hormone, and a synthetic octapeptide was activated by ATP. Degradation of the protein substrates all had similar ATP concentration dependence, but the magnitude of the activation varied. Kinetic constants for ATP activation were obtained with a synthetic substrate. ATP increased kcat from 0.4 to 2 s-1 but did not change KM. Kact for ATP was 800 microM. Studies with pepstatin-Sepharose confirm that ATP does not alter the substrate binding site on cathepsin D. Pepsin, a homologous aspartate protease, was not activated by ATP. It was also found that vanadate and molybdate inhibit cathepsin D-catalyzed proteolysis. However, this inhibition was dramatically dependent on substrate concentration and was eliminated at high substrate. Hydrolysis of the synthetic peptide was not inhibited at concentrations of molybdate below 50 microM, and above this concentration the peptide precipitated. Protein substrates were also found to precipitate in the presence of molybdate. The ATP dependence of the enzyme was not altered by molybdate or vanadate. These results suggest that inhibition by vanadate and molybdate is related to interactions with the substrate rather than with cathepsin D. It is concluded that ATP activation of cathepsin D may play a physiological role in regulation of proteolysis in lysosomes, but that vanadate and molybdate inhibition of lysosomal proteolysis does not establish ATP dependence.  相似文献   

19.
Cathepsin S (CatS) is a lysosomal cysteine protease belonging to the papain superfamily. Because of the relatively broad substrate specificity of this family, a specific substrate for CatS is not yet known. Based on a detailed study of the CatS endopeptidase specificity, using six series of internally quenched fluorescent peptides, we were able to design a specific substrate for CatS. The peptide series was based on the sequence GRWHTVGLRWE-Lys(Dnp)-DArg-NH2, which shows only one single cleavage site between Gly and Leu and where every substrate position between P-3 and P-3' was substituted with up to 15 different amino acids. The endopeptidase specificity of CatS was mainly determined by the P-2, P-1', and the P-3' substrate positions. Based on this result, systematically modified substrates were synthesized. Two of these modified substrates, Mca-GRWPPMGLPWE-Lys(Dnp)-DArg-NH2 and Mca-GRWHPMGAPWE-Lys(Dnp)-DArg-NH2, did not react with the purified cysteine proteases cathepsin B (CatB) and cathepsin L (CatL). Using a specific CatS inhibitor, we could further show that these two peptides were not cleaved by endosomal fractions of antigen presenting cells (APCs), when CatS was inhibited and related cysteine proteases cathepsin B, H, L and X were still active. Although aspartic proteases like cathepsin E and cathepsin D were also present, our substrates were suitable to quantify cathepsin S activity specifically in APCs, including B cells, macrophages, and dendritic cells without the use of any protease inhibitor. We find that CatS activity differs significantly not only between the three types of professional APCs but also between endosomal and lysosomal compartments.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号