首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study is aimed at the development and application of a convenient and rapid optical assay to monitor the wet-heat resistance of bacterial endospores occurring in food samples. We tested the feasibility of measuring the release of the abundant spore component dipicolinic acid (DPA) as a probe for heat inactivation. Spores were isolated from the laboratory type strain Bacillus subtilis 168 and from two food product isolates, Bacillus subtilis A163 and Bacillus sporothermodurans IC4. Spores from the lab strain appeared much less heat resistant than those from the two food product isolates. The decimal reduction times (D values) for spores from strains 168, A163, and IC4 recovered on Trypticase soy agar were 1.4, 0.7, and 0.3 min at 105 degrees C, 120 degrees C, and 131 degrees C, respectively. The estimated Z values were 6.3 degrees C, 6.1 degrees C, and 9.7 degrees C, respectively. The extent of DPA release from the three spore crops was monitored as a function of incubation time and temperature. DPA concentrations were determined by measuring the emission at 545 nm of the fluorescent terbium-DPA complex in a microtiter plate fluorometer. We defined spore heat resistance as the critical DPA release temperature (Tc), the temperature at which half the DPA content has been released within a fixed incubation time. We found Tc values for spores from Bacillus strains 168, A163, and IC4 of 108 degrees C, 121 degrees C, and 131 degrees C, respectively. On the basis of these observations, we developed a quantitative model that describes the time and temperature dependence of the experimentally determined extent of DPA release and spore inactivation. The model predicts a DPA release rate profile for each inactivated spore. In addition, it uncovers remarkable differences in the values for the temperature dependence parameters for the rate of spore inactivation, DPA release duration, and DPA release delay.  相似文献   

2.
Effect of thermal treatments in oils on bacterial spore survival   总被引:1,自引:0,他引:1  
The heat resistance of Bacillus cereus F4165/75, Clostridium sporogenes PA 3679 and Cl. botulinum 62A spores suspended in buffer (pH 7.2), olive oil and a commercial oil (a mixture of rapeseed oil and soy oil) was investigated. Linear survivor curves were obtained with B. cereus spores in the three menstrua and with 62A and PA 3679 spores suspended in buffer. However, the inactivation kinetics of the clostridial spores suspended in oils were concave upward with a characteristic tailing-off for 62A spores suspended in olive oil. These deviations from the semi-log model could not be ascribed to a heterogeneity in heat resistance of the spore population or to the variation of aw during heating. Spore resistance to heat increased in the order: buffer much less than commercial oil less than olive oil. The greater heat resistance of oil-suspended spores was ascribed to the low aw (0.479 and 0.492 for commercial oil and olive oil, respectively) and to the composition of the oils. The difference in z values (ca 28 degrees C in oils and 10 degrees-12 degrees C in buffer) suggested that the mechanism of inactivation differs for spores suspended in lipids and in aqueous systems. The thermodynamic data were consistent with this hypothesis.  相似文献   

3.
Aqueous spore suspensions of Bacillus stearothermophilus ATCC 12980 were heated at different temperatures for various time intervals in a resistometer, spread plated on antibiotic assay medium supplemented with 0.1% soluble starch without (AAMS) or with (AAMS-S) 0.9% NaCl, and incubated at 55 degrees C unless otherwise indicated. Uninjured spores formed colonies on AAMS and AAMS-S; injured spores formed colonies only on AAMS. Values of D, the decimal reduction time (time required at a given temperature for destruction of 90% of the cells), when survivors were recovered on AAMS were 62.04, 18.00, 8.00, 3.33, and 1.05 min at 112.8, 115.6, 118.3, 121.1, and 123.9 degrees C, respectively. Recovery on AAMS-S resulted in reduced decimal reduction time. The computed z value (the temperature change which will alter the D value by a factor of 10) for spores recovered on AAMS was 8.3 degrees C; for spores recovered on AAMS-S, it was 7.6 degrees C. The rates of inactivation and injury were similar. Injury (judged by salt sensitivity) was a linear function of the heating temperature. At a heating temperature of less than or equal to 118.3 degrees C, spore injury was indicated by the curvilinear portion of the survival curve (judged by salt sensitivity), showing that injury occurred early in the thermal treatment as well as during logarithmic inactivation (reduced decimal reduction time). Heat-injured spores showed an increased sensitivity not only to 0.9% NaCl but also to other postprocessing environmental factors such as incubation temperatures, a pH of 6.6 for the medium, and anaerobiosis during incubation.  相似文献   

4.
Thermal inactivation and injury of Bacillus stearothermophilus spores   总被引:2,自引:0,他引:2  
Aqueous spore suspensions of Bacillus stearothermophilus ATCC 12980 were heated at different temperatures for various time intervals in a resistometer, spread plated on antibiotic assay medium supplemented with 0.1% soluble starch without (AAMS) or with (AAMS-S) 0.9% NaCl, and incubated at 55 degrees C unless otherwise indicated. Uninjured spores formed colonies on AAMS and AAMS-S; injured spores formed colonies only on AAMS. Values of D, the decimal reduction time (time required at a given temperature for destruction of 90% of the cells), when survivors were recovered on AAMS were 62.04, 18.00, 8.00, 3.33, and 1.05 min at 112.8, 115.6, 118.3, 121.1, and 123.9 degrees C, respectively. Recovery on AAMS-S resulted in reduced decimal reduction time. The computed z value (the temperature change which will alter the D value by a factor of 10) for spores recovered on AAMS was 8.3 degrees C; for spores recovered on AAMS-S, it was 7.6 degrees C. The rates of inactivation and injury were similar. Injury (judged by salt sensitivity) was a linear function of the heating temperature. At a heating temperature of less than or equal to 118.3 degrees C, spore injury was indicated by the curvilinear portion of the survival curve (judged by salt sensitivity), showing that injury occurred early in the thermal treatment as well as during logarithmic inactivation (reduced decimal reduction time). Heat-injured spores showed an increased sensitivity not only to 0.9% NaCl but also to other postprocessing environmental factors such as incubation temperatures, a pH of 6.6 for the medium, and anaerobiosis during incubation.  相似文献   

5.
The effects of initial concentration and pulsed pressurization on the inactivation of Clostridium sporogenes spores suspended in deionized water were determined during thermal processing (TP; 105 degrees C, 0.1 MPa) and pressure-assisted thermal processing (PATP; 105 degrees C and 700 MPa) treatments for 40 min and 5 min holding times, respectively. Different inoculum levels (10(4), 10(6), and 10(8) CFU/ml) of C. sporogenes spores suspended in deionized water were treated at 105 degrees C under 700 MPa with single, double, and triple pulses. Thermally treated samples served as control. No statistical significances (p > 0.05) were observed among all different inoculum levels during the thermal treatment, whereas the inactivation rates (k1 and k2) were decreased with increasing the initial concentrations of C. sporogenes spores during the PATP treatments. Double- and triple-pulsed pressurization reduced more effectively the number of C. sporogenes spores than single-pulse pressurization. The study shows that the spore clumps formed during the PATP may lead to an increase in pressure-thermal resistance, and multiple-pulsed pressurization can be more effective in inactivating bacterial spores. The results provide an interesting insight on the spore inactivation mechanisms with regard to inoculum level and pulsed pressurization.  相似文献   

6.
AIMS: The mechanism of the inactivation of Bacillus subtilis spores by reciprocal pressurization (RP) was unclear. Therefore, the mechanism was investigated. METHODS AND RESULTS: To investigate the effects of RP and continuous pressurization (CP) treatments on the inactivation and injury of B. subtilis spores, spores were treated at 25, 35, 45 and 55 degrees C under 200, 300 and 400 MPa. RP treatment was effective in injuring and inactivating spores. Scanning electron microscopy and transmission electron microscopy observation showed that spores treated by RP treatment were more morphologically and structurally changed than the ones treated by CP treatment. There were significant differences between the release of dipicolinic acid (pyridine-2,6-dicarboxylic acid) by RP and CP treatments. From this result, it was concluded that the core fraction was released into the spore suspension. CONCLUSIONS: The mechanism of RP treatment is believed to work as follows: hydrostatic pressure treatment initiated germination of bacterial spores, and the repeated rapid decompression caused disruption, injury and inactivation of the germinated spores. SIGNIFICANCE AND IMPACT OF THE STUDY: This study indicated that the physical injury of bacterial spores was effective to inactivate the bacterial spores through the disruption of spores and leakage of their contents.  相似文献   

7.
Effect of microwave radiation on Bacillus subtilis spores   总被引:4,自引:0,他引:4  
AIMS: To compare the killing efficacy and the effects exerted by microwaves and conventional heating on structural and molecular components of Bacillus subtilis spores. METHODS AND RESULTS: A microwave waveguide applicator was developed to generate a uniform and measurable distribution of the microwave electric-field amplitude. The applicator enabled the killing efficacy exerted by microwaves on B. subtilis spores to be evaluated in comparison with conventional heating at the same temperature value. The two treatments produced a similar kinetics of spore survival, while remarkably different effects on spore structures were seen. The cortex layer of the spores subjected to conductive heating was 10 times wider than that of the untreated spores; in contrast, the cortex of irradiated spores did not change. In addition, the heated spores were found to release appreciable amounts of dipicolinic acid (DPA) upon treatment, while extracellular DPA was completely undetectable in supernatants of the irradiated spores. These observations suggest that microwave radiation may promote the formation of stable complexes between DPA and other spore components (i.e. calcium ions); thus, making any release of DPA from irradiated spores undetectable. Indeed, while a decrease in measurable DPA concentrations was not produced by microwave radiation on pure DPA solutions, a significant lowering in DPA concentration was detected when this molecule was exposed to microwaves in the presence of either calcium ions or spore suspensions. CONCLUSIONS: Microwaves are as effective as conductive heating in killing B. subtilis spores, but the microwave E-field induces changes in the structural and/or molecular components of spores that differ from those attributable only to heat. SIGNIFICANCE AND IMPACT OF THE STUDY: This study provides information on the effect of microwaves on B. subtilis spore components.  相似文献   

8.
Effects of thermoradiation on bacteria.   总被引:2,自引:2,他引:0       下载免费PDF全文
A 60Co source was used to determine the effects of thermoradiation on Achromobacter aquamarinus, Staphylococcus aureus, and vegetative and spore cells of Bacillus subtilis var. globigii. The rate of inactivation of these cultures, except vegetative-cell populations of B. subtilis, was exponential and in direct proportion to temperature. The D10 (dose that inactivates 90% of the microbial population) value for A. aquamarinus was 8.0 Krad at 25 degrees C and 4.9 Krad at 35 degrees C. For S. aureus, D10 was 9.8 and 5.3 Krad at 35 and 45 degrees C, respectively. Vegetative cells of B. subtilis demonstrated a rapid initial inactivation followed by a steady but decreased exponential rate. The D10 at 25 degrees C was 10.3 Krad, but at 35 and 45 degrees C this value was 6.2 and 3.8 Krad, respectively. Between 0 and 95 Krad, survival curves for B. subtilis spores at 75 degrees C showed slight inactivation, increasing in rat at and above 85 degrees C. The D10 values for spores at 85 and 90 degrees C were 129 and 92 Krad, respectively. Significant synergism between heat and irradiation was noted at 35 degrees C for A. aquamarinus and 45 degrees C for S. aureus. The presence of 0.1 mM cysteine in suspending media afforded protection to both cultures at these critical temperatures. On the other hand, cysteine sensitized B. subtilis spores at radiation doses greater than 100 Krad. The combined effect of heat and irradiation was more destructive to bacteria than either method alone.  相似文献   

9.
The inactivation of Clostridium perfringens type A spores (three strains of different heat resistances) at ultrahigh temperatures was studied. Aqueous spore suspensions were heated at 85 to 135 C by the capillary tube method. When survivors were enumerated on the standard plating medium, the spores appeared to have been rapidly inactivated at temperatures above 100 C. The addition of lysozyme to the plating medium did not affect the recovery of spores surviving the early stages of heating, but lysozyme was required for maximal recovery of spores surviving extended heat treatments. The percentage of survivors requiring lysozyme for colony formation increased greatly with longer exposure times or increasing treatment temperature. Time-survivor curves indicated that each spore suspension was heterogeneous with respect to the heat resistance of spore outgrowth system or in the sensitivity of the spores to lysozyme. Recovery of survivors on the lysozyme containing medium revealed greater heat resistance for one strain than has been reported for spores of many mesophilic aerobes and anaerobes. The spores of all three strains were more resistant to heat inactivation when suspended in phosphate buffer, but a greater percentage of the survivors required lysozyme for colony formation.  相似文献   

10.
A plot of the thermal resistance of Bacillus subtilis var. niger spores (log D value) against temperature was linear between 37 and 190 degrees C (z = 23 degrees C), provided that the relative humidity of the spore environment was kept below a certain critical level. The corresponding plot for Bacillus stearothermophilus spores was linear in the range 150 to 180 degrees C (z = 29 degrees C) but departed from linearity at lower temperatures (decreasing z value). However, the z value of 29 degrees C was decreased to 23 degrees C if spores were dried before heat treatment. The straight line corresponding to this new z value was consistent with the inactivation rate at a lower temperature (60 degrees C). The data indicate that bacterial spores which are treated in dry heat at an environmental relative humidity near zero are inactivated mainly by a drying process. By extrapolation of the thermal resistance plot obtained under these conditions for B. subtilis var. niger spores, the D value at 0 degrees C would be about 4 years.  相似文献   

11.
The optimal conditions for activation of Dictyostellium discoideum spores are an 8 M urea treatment for 30 min. The lag between activation and swelling is 45 min. Lower concentrations of urea do not activate entire spore populations. Incubating spores in 8 M urea for 60 min or treatment with 10 M urea for 30 min results in a lengthening of the post-activation lag and a decrease in the final percentage of germination. Urea-activated spores can be deactivated by azide, cyanide, osmotic pressure, and low-temperature incubation. Activated spores do not germinate if incubated in 1 M urea for 24 h but will complete germination upon resuspension in urea-free buffer. Shocking spores at 45 degrees C in 8 M urea or incubating spores in 4-8 M urea for 10 h at 23.5 degrees C causes inactivation. When suspended in urea-free buffer, a larger percentage of these dead spores release spheroplasts through a longitudinal split in the spore case. Sequential enzyme treatment of spheroplasts with cellulase and pronase causes them to release lysable protoplasts. The data of these experiments suggest that shedding of the outer and middle wall layers during physiological spore swelling may be a physical process rather than an enzymatic one.  相似文献   

12.
Effect of thermal treatments in oils on bacterial spore survival   总被引:2,自引:2,他引:0  
The heat resistance of Bacillus cereus F4165/75, Clostridium sporogenes PA 3679 and Cl. botulinum 62A spores suspended in buffer (pH 7˙2), olive oil and a commercial oil (a mixture of rapeseed oil and soy oil) was investigated. Linear survivor curves were obtained with B. cereus spores in the three menstrua and with 62A and PA 3679 spores suspended in buffer. However, the inactivation kinetics of the clostridial spores suspended in oils were concave upward with a characteristic tailing-off for 62A spores suspended in olive oil. These deviations from the semi-log model could not be ascribed to a heterogeneity in heat resistance of the spore population or to the variation of aw during heating. Spore resistance to heat increased in the order: buffer ⋖ commercial oil < olive oil. The greater heat resistance of oil-suspended spores was ascribed to the low aw (0˙479 and 0˙492 for commercial oil and olive oil, respectively) and to the composition of the oils. The difference in z values ( ca 28°C in oils and 10°-12°C in buffer) suggested that the mechanism of inactivation differs for spores suspended in lipids and in aqueous systems. The thermodynamic data were consistent with this hypothesis.  相似文献   

13.
With an automated computerized temperature control and a specialized temperature measurement system, dry spores of Bacillus subtilis subsp. niger were treated with heat simultaneously in a convection dry-heat oven and a microwave oven. The temperature of the microwave oven was monitored such that the temperature profiles of the spore samples in both heat sources were nearly identical. Under these experimental conditions, we unequivocally demonstrated that the mechanism of sporicidal action of the microwaves was caused solely by thermal effects. Nonthermal effects were not significant in a dry microwave sterilization process. Both heating systems showed that a dwelling time of more than 45 min was required to sterilize 10(5) inoculated spores in dry glass vials at 137 degrees C. The D values of both heating systems were 88, 14, and 7 min at 117, 130, and 137 degrees C, respectively. The Z value was estimated to be 18 degrees C.  相似文献   

14.
With an automated computerized temperature control and a specialized temperature measurement system, dry spores of Bacillus subtilis subsp. niger were treated with heat simultaneously in a convection dry-heat oven and a microwave oven. The temperature of the microwave oven was monitored such that the temperature profiles of the spore samples in both heat sources were nearly identical. Under these experimental conditions, we unequivocally demonstrated that the mechanism of sporicidal action of the microwaves was caused solely by thermal effects. Nonthermal effects were not significant in a dry microwave sterilization process. Both heating systems showed that a dwelling time of more than 45 min was required to sterilize 10(5) inoculated spores in dry glass vials at 137 degrees C. The D values of both heating systems were 88, 14, and 7 min at 117, 130, and 137 degrees C, respectively. The Z value was estimated to be 18 degrees C.  相似文献   

15.
Comparative sporicidal effects of liquid chemical agents.   总被引:8,自引:4,他引:4       下载免费PDF全文
We compared the effectiveness of glutaraldehyde, formaldehyde, hydrogen peroxide, peracetic acid, cupric ascorbate (plus a sublethal amount of hydrogen peroxide), sodium hypochlorite, and phenol to inactivate Bacillus subtilis spores under various conditions. Each chemical agent was distinctly affected by pH, storage time after activation, dilution, and temperature. Only three of the preparations (hypochlorite, peracetic acid, and cupric ascorbate) studied here inactivated more than 99.9% of the spore load after a 30-min incubation at 20 degrees C at concentrations generally used to decontaminate medical devices. Under similar conditions, glutaraldehyde inactivated approximately 90%, and hydrogen peroxide, formaldehyde, and phenol produced little killing of spores in suspension. By kinetic analysis at different temperatures, we calculated the rate of spore inactivation (k) and the activation energy of spore killing (delta E) for each chemical agent. Rates of spore inactivation had a similar delta E value of approximately 20 kcal/mol (ca.83.68 kJ/mol) for every substance tested. The variation among k values allowed a quantitative comparison of liquid germicidal agents.  相似文献   

16.
Inactivation rates for nine enzymes extracted from Bacillus cereus spores were measured at several temperatures, and the temperature at which each enzyme had a half-life of 10 min (inactivation temperature) was determined. Inactivation temperatures ranged from 47 degrees C for glucose 6-phosphate dehydrogenase to 70 degrees C for leucine dehydrogenase, showing that spore enzymes were not unusually heat stable. Enzymes extracted from vegetative cells of B. cereus had heat stabilities similar to the respective enzymes from spores. When spores were heated and the enzymes were subsequently extracted and assayed, inactivation temperatures for enzymes within the spore ranged from 86 degrees C for glucose 6-phosphate dehydrogenase to 96 degrees C for aldolase. The internal environment of the spore raised the inactivation temperature of most enzymes by approximately 38 degrees C. Loss of dipicolinic acid from spores was initially slow compared with enzyme inactivation but increased rapidly with longer heating. Viability loss was faster than loss of most enzyme activities and faster than dipicolinic acid release.  相似文献   

17.
The sporicidal activity of chlorhexidine gluconate in aqueous and alcoholic solution against spores of Bacillus subtilis was examined over a broad temperature range. Activity was not observed at 20 degrees C even with concentrations as high as 10% chlorhexidine. Temperatures of 37 degrees-70 degrees C in combination with such high concentrations were required for reductions in spore viability. No viable spores were recoverable after 4 h contact at 55 degrees C with 10% aqueous chlorhexidine and none after 3 h contact with the alcoholic solution. Because of the high concentrations necessary for activity and the possibility of sporostasis occurring from inefficient chlorhexidine inactivation, existing inactivation systems were examined and modified to obtain satisfactory results. The spores of other Bacillus species examined (B. cereus, B. megaterium and B. stearothermophilus) proved to be considerably less resistant than those of B. subtilis. Presence of organic matter had little effect on the activity.  相似文献   

18.
High-pressure CO2 treatment has been studied as a promising method for inactivating bacterial spores. In the present study, we compared this method with other sterilization techniques, including heat and pressure treatment. Spores of Bacillus coagulans, Bacillus subtilis, Bacillus cereus, Bacillus licheniformis, and Geobacillus stearothermophilus were subjected to CO2 treatment at 30 MPa and 35 degrees C, to high-hydrostatic-pressure treatment at 200 MPa and 65 degrees C, or to heat treatment at 0.1 MPa and 85 degrees C. All of the bacterial spores except the G. stearothermophilus spores were easily inactivated by the heat treatment. The highly heat- and pressure-resistant spores of G. stearothermophilus were not the most resistant to CO2 treatment. We also investigated the influence of temperature on CO2 inactivation of G. stearothermophilus. Treatment with CO2 and 30 MPa of pressure at 95 degrees C for 120 min resulted in 5-log-order spore inactivation, whereas heat treatment at 95 degrees C for 120 min and high-hydrostatic-pressure treatment at 30 MPa and 95 degrees C for 120 min had little effect. The activation energy required for CO2 treatment of G. stearothermophilus spores was lower than the activation energy for heat or pressure treatment. Although heat was not necessary for inactivationby CO2 treatment of G. stearothermophilus spores, CO2 treatment at 95 degrees C was more effective than treatment at 95 degrees C alone.  相似文献   

19.
Tailing of survivor curves of clostridial spores heated in edible oils   总被引:1,自引:1,他引:0  
Tailing of survivor curves was observed for Clostridium sporogenes PA 3679 and Cl. botulinum 62A spores heated whilst suspended in edible oils, but not for the same spores suspended in buffer (pH 7˙2) or mineral oil or for Bacillus cereus F4165/75 spores suspended in buffer or oils. The tailing cannot be ascribed to a genetic or developmental heterogeneity in the resistance of the spore population or to a heterogeneity of the treatment severity during heating. Heat adaptation due to the release of protective factor(s), to the selection for resistant spores or to the diffusion of oil constituents inside the spore protoplast to protect key molecules from heat denaturation was also ruled out. The tailing can be ascribed to spore clumping during the course of heating or to a heterogeneity in heat resistance of germination system(s) within spores, concurrently with the activation of a dormant germination system. It is probably caused by some oleic acid containing triglycerides.  相似文献   

20.
Tailing of survivor curves of clostridial spores heated in edible oils   总被引:2,自引:0,他引:2  
Tailing of survivor curves was observed for Clostridium sporogenes PA 3679 and Cl. botulinum 62A spores heated whilst suspended in edible oils, but not for the same spores suspended in buffer (pH 7.2) or mineral oil or for Bacillus cereus F4165/75 spores suspended in buffer or oils. The tailing cannot be ascribed to a genetic or developmental heterogeneity in the resistance of the spore population or to a heterogeneity of the treatment severity during heating. Heat adaptation due to the release of protective factor(s), to the selection for resistant spores or to the diffusion of oil constituents inside the spore protoplast to protect key molecules from heat denaturation was also ruled out. The tailing can be ascribed to spore clumping during the course of heating or to a heterogeneity in heat resistance of germination system(s) within spores, concurrently with the activation of a dormant germination system. It is probably caused by some oleic acid containing triglycerides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号