首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The glycosaminoglycans of human tracheobronchial cartilage   总被引:6,自引:6,他引:0       下载免费PDF全文
1. The glycosaminoglycans of human tracheobronchial cartilages from subjects of various ages were liberated by proteolysis of the tissue and purified by ion-exchange chromatography. Purified glycosaminoglycans were fractionated on Dowex 1 resin and cetylpyridinium chloride was used to separate chondroitin sulphates and keratan sulphates occurring in the same fraction. 2. The total chondroitin sulphate content of the cartilages decreased linearly with increasing age. Age-dependent changes in the chemical heterogeneity of chondroitin sulphate were observed, a low-sulphated compound making up 25% of the total glycosaminoglycan at birth but rapidly diminishing in content during the first 6 months of life. Of the total chondroitin sulphate the 6-isomer became rather more prominent than the 4-isomer with increasing age. 3. The total keratan sulphate content of the cartilages increased from trace amounts only at birth to a plateau value by the beginning of the fifth decade. Of the total keratan sulphate approx. 70% was due to a high-molecular-weight compound with a sulphate/hexosamine ratio of 1.5-1.8: 1.0. The degree of sulphation varied between compounds isolated from different individuals. The remaining 30% of the keratan sulphate appeared to be intimately associated with chondroitin 6-sulphate and could only be separated from it after treatment with 0.45m-potassium hydroxide. The hybrid glycosaminoglycans were of lower molecular weight and had a lower sulphate/hexosamine ratio than the major keratan sulphate compound.  相似文献   

2.
1. The non-ultrafilterable acidic glycosaminoglycans from pooled urine of normal men, aged about 20, were isolated and characterized. The isolation procedure included digestion with sialidase and pronase, and fractionation by stepwise elution from an ECTEOLA-cellulose column. The glycosaminoglycans in each fraction were separated from each other by preparative electrophoresis in sodium barbital buffer and in barium acetate. 2. Approximate relative amounts of the different glycosaminoglycans were: chondroitin sulphate 60%, chondroitin 2%, hyaluronic acid 4%, dermatan sulphate 1%, heparan sulphate 15% and keratan sulphate 18%. Chondroitin sulphate-dermatan sulphate hybrids seemed to occur in trace amounts. 3. Chondroitin sulphate, heparan sulphate and keratan sulphate were heterogeneous with respect to degree of sulphation. Two distinct groups of chondroitin sulphate fractions were found, with sulphate/hexosamine molar ratios of about 0.5 and 1 respectively. The sulphate/hexosamine molar ratios in the heparan sulphate fractions varied from 0.5 to 0.9; the N-sulphate/hexosamine ratio was about 0.5 in all fractions. The sulphate/hexosamine molar ratios in the keratan sulphate fractions varied from 0.2 to 0.7.  相似文献   

3.
Absence of keratan sulphate from skeletal tissues of mouse and rat.   总被引:5,自引:3,他引:2       下载免费PDF全文
The absence of keratan sulphate synthesis from skeletal tissues of young and mature mice and rats has been confirmed by (1) analysis of specific enzyme degradation products of newly synthesized glycosaminoglycans, and (2) immunohistochemistry and radioimmunoassay using a monoclonal antibody directed against keratan sulphate. Approx. 98% of the [35S]glycosaminoglycans synthesized in vivo by mouse and rat costal cartilage, and all of those of lumbar disc, are chondroitin sulphate. The remainder in costal cartilage were identified as heparan sulphate in mature rats. In contrast, [35S]glycosaminoglycans synthesized by cornea of both species comprised both chondroitin sulphate and keratan sulphate. In mice keratan sulphate accounted for 12-25% and in rats 40-50% of the total [35S]glycosaminoglycans, depending on the age of the animal. Experiments in vitro with organ culture of cartilage and cornea confirm these results. Absence of keratan sulphate from mouse costal cartilage and lumbar disc D1-proteoglycans was corroborated by inhibition radioimmunoassay with the monoclonal antibody MZ15 and by lack of staining for keratan sulphate in indirect immunofluorescence studies using the same antibody.  相似文献   

4.
Articular cartilage from cow and calf femoral condyles was incubated in Tyrodes solution containing [35S]sulphate for different periods up to 80 min. Glycosaminoglycans from the cartilage tissue and incubation medium were fractionated on Cetylpyridinium chloride and ECTEOLA cellulose microcolumns.The incorporation of [35S]sulphate into all individual fractions of chondroitin sulphate and keratan sulphate was found to be linear from 20 to 80 min incubation time. As a rule the total specific activities of keratan sulphate and chondroitin sulphate were similar for both calves and cows.The proteoglycan material recovered from the medium amounted to about 1% of the tissue dry weight and was found to have a higher chondroitin sulphate: keratan sulphate ratio than the corresponding cartilage tissue for both calf and cow.The solubility profiles for the newly synthesised glycosaminoglycans, obtained from determination of the radioactivity in the individual fractions, were compared with those of glycosaminoglycans already present. These curves indicated that newly synthesised chondroitin sulphate had a higher average molecular size than that present in the tissue whereas the newly synthesised keratan sulphate had a smaller average molecular size. These newly synthesised components were also detected in the proteoglycans recovered from the incubation medium.  相似文献   

5.
Articular cartilage from cow and calf femoral condyles was incubated in Tyrodes solution containing [35S]sulphate for different periods up to 80 min. Glycosaminoglycans from the cartilage tissue and incubation medium were fractionated on Cetylpyridinium chloride and ECTEOLA cellulose microcolumns. The incorporation of [35S]sulphate into all individual fractions of chondroitin sulphate and keratan sulphate was found to be linear from 20 to 80 min incubation time. As a rule the total specific activities of keratan sulphate and chondroitin sulphate were similar for both calves and cows. The proteoglycan material recovered from the medium amounted to about 1% of the tissue dry weight and was found to have a higher chondroitin sulphate: keratan sulphate ratio than the corresponding cartilage tissue for both calf and cow. The solubility profiles for the newly synthesised glycosaminoglycans, obtained from determination of the radioactivity in the individual fractions, were compared with those of glycosaminoglycans already present. These curves indicated that newly synthesised chondroitin sulphate had a higher average molecular size than that present in the tissue whereas the newly synthesised keratan sulphate had a smaller average molecular size. These newly synthesised components were also detected in the proteoglycans recovered from the incubation medium.  相似文献   

6.
1. A system is described, which was used to incubate neonatal rat epiphysial cartilage in vitro with [U-(14)C]glucose and [(35)S]sulphate. 2. The acid glycosaminoglycans of neonatal rat epiphyses were extracted and fractionated on cetylpyridinium chloride-cellulose columns. The major components were chondroitin 4-sulphate (65%), chondroitin 6-sulphate (15%), hyaluronic acid (4%) and keratan sulphate (2%). 3. The acid-soluble nucleotides and intermediates of glycosaminoglycan synthesis were separated on a Dowex 1 (formate) system. The tissue contents and cellular concentrations of these metabolites were determined. 4. The rates of synthesis of UDP-glucuronic acid and UDP-N-acetyl-hexosamine from [U-(14)C]glucose were found to be 0.79+/-0.16 and 3.2+/-0.08nmol/min per g wet wt. respectively. 5. The incorporation of [U-(14)C]glucose into the uronic acid and hexosamine moieties of the polymers was also measured and the turnover rates of the glycosaminoglycans were calculated. It was found that chondroitin sulphate was turning over in about 70h and hyaluronic acid in about 120h. 6. The relative rates of synthesis of the sulphated glycosaminoglycans were calculated from [(35)S]sulphate incorporation and were found to be in good agreement with those obtained from [U-(14)C]glucose labelling.  相似文献   

7.
A sulphated glycoconjugate was isolated from adult human brain from a glycosaminoglycan fraction which was not precipitated with 1% cetylpyridinium chloride or ethanol below 50% concentration. It appeared heterogeneous on gel filtration, exhibiting a molecular weight range from about 7000 to over 10 000. Its main covalent structure was shown to contain sulphated, repeating disaccharide units of (beta-D-galactose-(1----4)-N-acetyl-D-glucosamine-(1----3)). In addition, it was susceptible to degradation by keratan sulphate endo-beta-galactosidase and thus was assumed to be keratan sulphate.  相似文献   

8.
Colon wall from pig, stripped of most of the mucosal layer to leave material largely composed of muscle, basement membrane, and extracellular matrix, was subjected to procedures for isolation of glycosaminoglycans. A total ethanol precipitate from a papain digest was fractionated by selective ethanol precipitation in the presence of Ca2+. Glycosaminoglycan fractions, freed proteolytically from a high molecular weight glycoprotein component, were further purified by Sepharose CL-6B gel-filtration or DE-52 anion-exchange chromatography. Glycosaminoglycans were identified by chemical composition, 13C-NMR spectroscopy and response to chondroitinase and nitrous acid degradations. The content of glycosaminoglycan in the tissue is low (0.05% dry weight) being comprised of dermatan sulphate (38%), heparin (34%), heparan sulphate (18%) and chondroitin sulphates (10%) as a percentage of total glycosaminoglycan content. Hyaluronic acid and keratan sulphate have not been detected. The composition is generally typical of a high muscle content tissue.  相似文献   

9.
The biosynthesis in vitro of keratan sulphate in bovine cornea   总被引:5,自引:4,他引:1       下载免费PDF全文
1. Bovine corneas were incubated in vitro with [U-(14)C]glucose. 2. The glycosaminoglycans of corneal stroma were isolated and fractionated on cetylpyridinium chloride-cellulose columns. The major components were keratan sulphate (71%), chondroitin 4-sulphate (17%) and chondroitin 6-sulphate (4%). 3. The acid-soluble nucleotides and intermediates of glycosaminoglycan biosynthesis of corneal stroma were separated on Dowex 1 (formate form) and the tissue content and cellular concentrations were determined. 4. The rates of synthesis of the intermediates of glycosaminoglycan biosynthesis in corneal stroma were determined. 5. The incorporation of radioactivity from [U-(14)C]glucose into the uronic acid and hexosamine components of the glycosaminoglycans present in corneal stroma were measured and the turnover rates of these polymers were calculated. It was found that keratan sulphate was turning over in about 723h and chondroitin 6-sulphate in 251h.  相似文献   

10.
Two simple methods for dissolving salts of acid glycosaminoglycans with inorganic cations (e.g. Li+ and Na+) in dry dimethyl sulphoxide are described. Complete n.m.r. spectra of, e.g., Na+ and Li+ salts of chondroitin sulphate and keratan sulphate were obtained on these solutions. In [2H6]dimethyl sulphoxide the NH resonance of 2-acetamido-2-deoxy hexosides is in the range 7.2-8.0 delta, but is downfield (8.3-9.3 delta) when the NH is H-bonded to -CO2-. Heparan sulphate shows two NH resonances, of which one (at 8.3 delta) is probably indicative of H-bonding. Space-filling models show that a very close approach of NH to -CO2- across the alpha-glucosaminidic bond is possible, and a solution configuration for heparan sulphate is proposed. The n.m.r. results are entirely compatible with interpretations of periodate-oxidation kinetics, based on H-bonded secondary structures present in hyaluronate and chondroitin sulphates, but not in dermatan (or keratan) sulphate.  相似文献   

11.
Glycosaminoglycans synthesized in polymorphonuclear (PMN) leucocytes isolated from blood (peripheral PMN leucocytes) and in those induced intraperitoneally by the injection of caseinate (peritoneal PMN leucocytes) were compared. Both peripheral and peritoneal PMN leucocytes were incubated in medium containing [35S]sulphate and [3H]glucosamine. Each sample obtained after incubation was separated into cell, cell-surface and medium fractions by trypsin digestion and centrifugation. The glycosaminoglycans secreted from peripheral and peritoneal PMN leucocytes were decreased in size by alkali treatment, indicating that they existed in the form of proteoglycans. Descending paper chromatography of the unsaturated disaccharides obtained by the digestion of glycosaminoglycans with chondroitinase AC and chondroitinase ABC identified the labelled glycosaminoglycans of both the cell and the medium fractions in peripheral PMN leucocytes as 55-58% chondroitin 4-sulphate, 16-19% chondroitin 6-sulphate, 16-19% dermatan sulphate and 6-8% heparan sulphate. Oversulphated chondroitin sulphate and oversulphated dermatan sulphate were found only in the medium fraction. In peritoneal PMN leucocytes there is a difference in the composition of glycosaminoglycans between the cell and the medium fractions; the cell fraction was composed of 60% chondroitin 4-sulphate, 5.5% chondroitin 6-sulphate, 16.8% dermatan sulphate and 13.9% heparan sulphate, whereas the medium fraction consisted of 24.5% chondroitin 4-sulphate, 28.2% chondroitin 6-sulphate, 33.7% dermatan sulphate and 10% heparan sulphate. Oversulphated chondroitin sulphate and oversulphated dermatan sulphate were found in the cell, cell-surface and medium fractions. On the basis of enzymic assays with chondro-4-sulphatase and chondro-6-sulphatase, the positions of sulphation in the disulphated disaccharides were identified as 4- and 6-positions of N-acetylgalactosamine. Most of the 35S-labelled glycosaminoglycans synthesized in peripheral PMN leucocytes were retained within cells, whereas those in peritoneal PMN leucocytes were secreted into the culture medium. Moreover, the amount of glycosaminoglycans in peritoneal PMN leucocytes was significantly less than that in peripheral PMN leucocytes. Assay of lysosomal enzymes showed that these activities in peritoneal PMN leucocytes were 2-fold higher than those in peripheral PMN leucocytes.  相似文献   

12.
Glycosaminoglycans were extracted from normal, inflamed and phenytoin induced overgrowth of human gingival tissue by proteolysis and alcohol precipitation. Extracts were run in a Dowex-1 column and the fractions were treated with mucopolysaccharidases. Cellulose acetate electrophoresis was carried out with or without enzyme digestion for identification of individual glycosaminoglycans. Glycosaminoglycans were found to be decreased in inflammation but were observed to increase in the overgrowth. Hyaluronic acid was found to be increased in both the pathological conditions. Dermatan sulphate, chondroitin sulphate and heparan sulphate were observed to be decreased in inflammation. In overgrowth, dermatan sulphate and chondroitin sulphate were found to increase while the presence of heparan sulphate was not significant. The changes in the pattern of individual glycosaminoglycan in the two varied conditions are discussed.Abbreviations GAG glycosaminoglycan - MPS mucopolysaccharide - DS dermatan sulphate - HS heparan sulphate - CS chondroitin sulphate - HA hyaluronic acid - KS keratan sulphate  相似文献   

13.
The structure of the proteoglycans from normal pig nucleus pulposus and relatively normal human annulus fibrosus and nucleus pulposus was investigated in detail and the results were compared with the current structural model of proteoglycans of hyaline cartilage. Like proteoglycans of cartilage, those of intervertebral disc contain keratan sulphate and chondroitin sulphate attached to a protein core; they are able to aggregate to hyaluronic acid; the protein core likewise has three regions, one lacking glycosaminoglycans, another rich in keratan sulphate and a third region rich in chondroitin sulphate. However, disc proteoglycans contain more keratan sulphate and protein and less chondroitin sulphate and are also considerably smaller than cartilage proteoglycans. In proteoglycans of human discs, these differences appeared to be due principally to a shorter region of the core protein bearing the chondroitin sulphate chains, whereas in proteoglycans of pig discs their smaller size and relatively low uronic acid content were due to shorter chondroitin sulphate chains. There were subtle differences between proteoglycans from the nucleus and annulus of human discs. In the latter a higher proportion of proteoglycans was capable of binding to hyaluronate.  相似文献   

14.
1. Oversulphated chondroitin sulphate (ca 93% of tissue glycosaminoglycans) with average molecular weight 72,500, chondroitin sulphate (5%) and small amounts of lowsulphated chondroitin sulphate were isolated from squid cornea. 2. The sulphation pattern of oversulphated chondroitin sulphate was delta di-4S (52%), delta di-diSD (28%), delta di-6S (9%) and delta di-OSCS (11%) and that of chondroitin sulphate 49, 1, 20 and 30% respectively. 3. All glycosaminoglycans contained neutral monosaccharides, glucose being the predominant neutral monosaccharide in oversulphated chondroitin sulphate and chondroitin sulphate and fucose in low-sulphated chondroitin sulphate. 4. Although L-iduronic acid was not detected, the digestion of oversulphated chondroitin sulphate with chondroitinases ABC and AC gave unexpected results.  相似文献   

15.
The synovial lining of joint capsules is important because it controls the flow of fluid into and out of the joint cavity. Physiological studies have shown that the glycosaminoglycans, particularly hyaluronan, have an important role in the control of fluid flow. The distribution of the glycosaminoglycans and proteoglycans in the synovium and subsynovium of rabbits (approximately 12 weeks old) was, therefore, determined immunohistochemically. Hyaluronan, chondroitin-4- and chondroitin-6-sulphates and keratan sulphate are present in the synovium and subsynovium; chondroitin-4-sulphate is at higher concentrations than chondroitin-6-sulphate. The core proteins of the chondroitin sulphate proteoglycans, biglycan and decorin, and of the keratan sulphate proteoglycan, fibromodulin, are also present. To date, fibromodulin has not been located in other synovial linings, and its presence corroborates that of keratan sulphate.  相似文献   

16.
1. Corneas of mouse, rat, guinea pig, rabbit, sheep, cat, dog, pig and cow were quantitatively analysed for water, hydroxyproline, nucleic acid, total sulphated polyanion, chondroitin sulphate/dermatan sulphate and keratan sulphate, several samples or pools of tissue from each species being used. Ferret cornea was similarly analysed for water and hydroxyproline on one pool of eight corneas. Pooled frog (38) and ferret (eight) corneas and a single sample of human cornea were qualitatively examined for keratan sulphate and chondroitin sulphate/dermatan sulphate by electrophoresis on cellulose acetate membranes. Nine species (mouse, frog, rat, guinea pig, rabbit, sheep, cat, pig and cow) were examined by light microscopy and six (mouse, frog, rat, guinea pig, rabbit and cow) by electron microscopy, with the use of Alcian Blue or Cupromeronic Blue in critical-electrolyte-concentration (CEC) methods to stain proteoglycans. 2. Water (% of wet weight), hydroxyproline (mg/g dry wt.) and chondroitin sulphate (mg/g of hydroxyproline) contents were approximately constant across the species, except for mouse. 3. Keratan sulphate contents (mg/g of hydroxyproline) increased with corneal thickness, whereas dermatan sulphate contents decreased. The oversulphated domain of keratan sulphate was absent from mouse and frog corneas, increasing as percentage of total keratan sulphate with increasing corneal thickness. Sulphation of dermatan sulphate was essentially complete (i.e. one sulphate group per disaccharide unit). 4. Chondroitin sulphate/dermatan sulphate proteoglycans were present at the d bands of the collagen fibrils of all species examined, orthogonally arrayed, with high frequency, and occasionally at the e bands. Keratan sulphate proteoglycans were present at the a and c bands of all species examined, but with far higher frequency in the thicker corneas, where keratan sulphate contents were high. 5. Alcian Blue CEC staining showed much higher sulphation of keratan sulphate in thick corneas, e.g. that of cow, than in thin corneas, e.g. that of mouse, in keeping with biochemical analyses. 6. It is suggested that the constancy of interfibrillar volumes is regulated via the swelling and osmotic pressure of the interfibrillar polyanions, by adjustment of the extent of sulphation in two independent proteoglycan populations, to achieve an 'average sulphation' of the total polyanion similar to that of fully sulphated chondroitin sulphate/dermatan sulphate. 7. The balance of synthesis of the two kinds of proteoglycans may be determined by the O2 supply to the avascular cornea. O2 supply may also determine the conversion of chondroitin sulphate into dermatan sulphate.  相似文献   

17.
Heparin, dermatan sulfate and chondroitin sulfate in mixtures were fractionated by sequential precipitation with methanol, ethanol and propanol. The recovered fractions from 0.1 to 2.0 volumes of various solvents were analyzed by agarose-gel electrophoresis and densitometric analysis. Heparins with different relative percentages of slow-moving and fast-moving components were precipitated from 0.5 to 0.7 volumes of methanol, and in this range of volumes, the amount of slow-moving component of heparin decreases and that of the fast-moving species increases. From 0.8 to 1.6 volumes of methanol, mixtures with different percentages of the fast-moving component, dermatan sulfate and chondroitin sulfate are precipitated. Heparin was precipitated from mixtures in the range of 0.1 to 0.4 volumes of ethanol, and from 0.5 to 0.8 volumes mixtures with different relative percentages of dermatan sulfate and chondroitin sulfate were precipitated. From 1.0 to 2.0 volumes of ethanol, high purity (about 100%) chondroitin sulfate can be precipitated. Propanol induces the precipitation of heparin from 0.3 to 0.4 volumes, whilst dermatan sulfate with a purity greater than 85% is precipitated at 0.5 and 0.6 volumes of propanol. 100% chondroitin sulfate is obtained with volumes greater than 0.8. Heparin and chondroitin sulfate from a bovine lung extract of glycosaminoglycans were purified by sequential precipitation with ethanol. The fraction precipitated with 0.4 volumes of ethanol shows greater than 90% heparin and that recovered from 0.9 to 2.0 volumes is composed of 100% chondroitin sulfate.  相似文献   

18.
Km and Vmax. were determined for the degradation by chondroitinase of chondroitin 4-sulphate, 4-sulphate-proteoglycna, chondroitin 6-sulphate, dermatan sulphate and hyaluronic acid. Degradation of chondroitin 4-sulphate was inhibited by hyaluronic acid but not by keratan sulphate. The results are discussed with regard to the use to the use of chondroitinase as a sleective reagent for the degradation of tissue glycosaminoglycans.  相似文献   

19.
Summary The glycosaminoglycans secreted into the matrices associated with fractures of the rabbit tibia healing under stable and unstable mechanical conditions have been characterized histochemically using the dye Alcian Blue at pH 5.7 in the presence of increasing concentrations of magnesium chloride, and after enzymatic extractions. These results are compared with those of immunohistochemical experiments using monoclonal antibodies which recognize epitopes specific to various glycosaminoglycans.The results indicate that the fibrous tissues, including those of the cavities of the cancellous bone and periosteum, possess hyaluronate and chondroitin sulphate, but the amounts present are small. The glycosaminoglycans detected in the cortical bone are located mainly around the osteocyte lacunae where chondroitin and keratan sulphates are found. The developing trabeculae of cancellous bone in the callus contain chondroitin and keratan sulphates, but as the trabeculae mature, these glycosaminoglycans are no longer present throughout the matrix; they are found particularly around the osteocyte lacunae.The cartilage in the callus of mechanically unstable fractures contains chondroitin, chondroitin-4- and 6-sulphates and keratan sulphate, though their distribution is variable. The small, transient areas of cartilage in the callus of mechanically stable fractures also contain those glycosaminoglycans, but they appear to be less highly sulphated.The mechanical stability of the fractures appears to affect the amount and degree of sulphation of the glycosaminoglycans, rather than the types of glycosaminoglycan produced. The glycosaminoglycans produced during fracture healing are compared with those produced during embryonic development and other healing processes.  相似文献   

20.
Rabbit menisci were incubated with Na2 35SO4 in short-term organ culture to label newly synthesized proteoglycans. The radioactive products present in both tissue and culture medium were characterized separately with respect to distribution after ultracentrifugation in CsCl isopycnic density gradients, hydrodynamic size, interaction with hyaluronic acid, and glycosaminoglycan composition (types, size and content). Analysis of proteoglycan size by gel-filtration chromatography of the most-dense CsCl fractions (A1) on Sephacryl S-500 (associative conditions) resolved three species. A peak with Kav. approx. 0.7 was present in each chromatogram, and constituted the principal component in tissue extracts. Two other peaks with Kav. values of approx. 0.2 and 0.45 were also found. When the A1 fraction from tissue was subjected to CsCl-density-gradient ultracentrifugation under dissociative conditions, 71% of the recovered radioactivity was present in the most dense (A1D1) fraction. Incubation with hyaluronic acid of either A1 or A1D1 fraction from associative extract did not alter the apparent size of the labelled product, indicating a lack of aggregate formation. Meniscal proteoglycans showed an unusual and marked tendency to adsorb irreversibly to agarose and agarose-containing gel-filtration-chromatography media. High-pressure liquid-chromatographic analyses indicated that the sulphated glycosaminoglycans consisted of chondroitin 6-sulphate (72%), chondroitin 4-sulphate (19%) and dermatan sulphate (5%). Endo-beta-galactosidase (keratanase) digestion of the material failed to detect the presence of keratan sulphate. Of the labelled glycosaminoglycans, 95% was eluted from Sephacryl S-400 as a single symmetrical peak with a Kav. of 0.5. The results of studies with tissue extracts and culture medium were similar.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号