首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A procedure for obtaining G-bands on chromosomes of mammals is outlined. The procedure was utilized in an investigation of the idiogram and banding pattern of the mitotic chromosomes of the cotton rat, Sigmodon arizonae. The diploid number of this species is 22, and each pair of homologues is easily separated on the basis of size, centromeric position, and banding pattern. The autosomes are represented by four pairs of large submetacentric chromosomes, three pairs of medium to small submetacentric chromosomes, two pairs of large subtelocentric chromosomes and one pair of small acrocentric chromosomes. The X chromosome is acrocentric and averages from 5.42% to 5.46% of the haploid female complement. The Y chromosome is a minute acrocentric and easily separated from the smallest acrocentric autosome. The usefulnes of Sigmodon arizonae as a laboratory animal for cytogenetic studies is substantiated.  相似文献   

2.
A new karyotype for blind mole rats was recorded in Tunceli province in Eastern Turkey. The karyotype contained 44 chromosomes, including 13 biarmed pairs, 7 acrocentric pairs, and one heteromorphic pair with a submetacentric and an acrocentric homologue in the autosomal complement (FNa=69). The X chromosome was submetacentric and the Y chromosome medium-sized subtelocentric (FN=73). Distinct dark centromeric C-bands were observed on most of the biarmed and three pairs of the acrocentric autosomes. The NORs were detected on short arms of three subtelocentric pairs and one acrocentric pair of autosomes. The diploid number of chromosomes and the karyotype characteristics observed are obviously unique among hitherto studied populations of blind mole rats and the complement can be evaluated as a new chromosome race of Nannospalax xanthodon. The distribution ranges of individual chromosome races of the species recorded in Eastern Anatolia are revised and possible interracial hybridization is discussed in respect of the finding of a new race.  相似文献   

3.
B. Hermann 《Genetica》1973,44(4):579-587
The chromosome complement of Meriones tristrami Thomas (Rodentia, Gerbillinae), the Israel desert jird, studied by the new technique of chromosome identification (Q and G banding) is described. The diploid number is 72. There are two pairs of submetacentric autosomes (1 and 2) and 33 pairs of acrocentric autosomes. The X chromosome is the largest submetacentric and the Y is the fourth in length among the submetacentric chromosomes of the karyotype. The Fundamental Number (F.N.) is therefore 78 and not 76 as described by Matthey in 1957.

(Travail effectué avec l'appui du Fonds de la Recherche Scientifique Médicale).  相似文献   

4.
Mitotic chromosomes of Heterobilharzia americana from Louisiana are described from parasite material that was dissected from snails, air-dried on slides, and stained with conventional Giemsa and C-band methods. As in other schistosomes, the female is the heterogametic sex. This Louisiana strain, however, differs from a Texas strain and other schistosome species in that the male and female have different diploid numbers of chromosomes (male, 20; female, 19), and the strain has a ZZ male/ZWA female sex-determining mechanism. The chromosomes of the male resemble those of the Texas strain in number and morphology with the Z chromosomes being metacentric and the largest elements in the karyotype. The others form a series decreasing in size to very small number 10's. Chromosomes 2,3, and 4 are subtelocentric; 5 is subtelocentric to acrocentric and is satellited; 6 is submetacentric to subtelocentric; 7 is submetacentric; 8 is subtelocentric to submetacentric; 9 is metacentric to submetacentric; and 10 is metacentric. The female complement differs from the male of this strain in having only 1 normal chromosome 5. The other number 5 and most of the original W apparently have fused tandemly to form the WA chromosome (a "neo-W").  相似文献   

5.
Karyotypic and cytogenetic characteristics of catfish Harttia carvalhoi (Paraíba do Sul River basin, S?o Paulo State, Brazil) were investigated using differential staining techniques (C-banding, Ag-staining) and fluorescent in situ hybridization (FISH) with 18S and 5S rDNA probes. The diploid chromosome number of females was 2n = 52 and their karyotype was composed of nine pairs of metacentric, nine pairs of submetacentric, four pairs of subtelocentric and four pairs of acrocentric chromosomes. The diploid chromosome number of males was invariably 2n = 53 and their karyotype consisted of one large unpaired metacentric, eight pairs of metacentric, nine pairs of submetacentric, four pairs of subtelocentric, four pairs of acrocentric plus two middle-sized acrocentric chromosomes. The differences between female and male karyotypes indicated the presence of a sex chromosome system of XX/XY1Y2 type, where the X is the largest metacentric and Y1 and Y2 are the two additional middle-sized acrocentric chromosomes of the male karyotype. The major rDNA sites as revealed by FISH with an 18S rDNA probe were located in the pericentromeric region of the largest pair of acrocentric chromosomes. FISH with a 5S rDNA probe revealed two sites: an interstitial site located in the largest pair of acrocentric chromosomes, and a pericentromeric site in a smaller metacentric pair of chromosomes. Translocations or centric fusions in the ancestral 2n = 54 karyotype is hypothesized for the origin of such multiple sex chromosome systems where females are fixed translocation homozygotes whereas males are fixed translocation heterozygotes. The available cytogenetic data for representatives of the genus Harttia examined so far indicate large kayotype diversity.  相似文献   

6.
The karyotypes of Hystrix coreana from eastern USSR and H. patula from USA were investigated by Giemsa C-banding. Both species are outbreeders and have 2n = 4x = 28. The karyotype of two plants of H. coreana has 10 metacentric, 6 submetacentric, 8 heterobrachial and 4 SAT chromosomes; two plants differed by having 12 metacentric, 4 submetacentric, 8 heterobrachial and 4 SAT-chromosomes, and 10 metacentric, 4 submetacentric, 9 heterobrachial and 5 SAT-chromosomes, respectively. The C-banding pattern had no or few inconspicuous intercalary bands, but conspicuous telomeric C-bands in one or both arms giving a high content of heterochromatin (16.3–18.2%). The chromosome complement of one plant of H. patula had 8 metacentric, 6 submetacentric, 8 heterobrachial and 6 SAT-chromosomes. The C-banding pattern had between 1 and 4 intercalary or centromeric bands and conspicuous telomeric bands on one or both arms giving a high content of constitutive heterochromatin (16.4%).  相似文献   

7.
The karyotype and major ribosomal sites as revealed using silver staining of Anatolian leuciscine cyprinid fish Acanthobrama marmid were studied. The diploid chromosome number was invariably 2n = 50. Karyotype consisted of eight pairs of metacentric, 13 pairs of submetacentric and four pairs of subtelocentric to acrocentric chromosomes. The largest chromosome pair of the complement was subtelo-to acrocentric characteristically, which is a characteristic cytotaxonomic marker for representatives of the cyprinid lineage Leuciscinae. The nucleolar organizer regions (NORs) were detected in the telomeres of two pairs of medium sized submeta-to subtelocentric chromosomes. No heteromorphic sex chromosomes were found. The karyotype pattern of A. marmid is nearly identical to that found in most other representatives of the Eurasian leuciscine cyprinids, while the multiple NOR phenotype appears to be more derived as opposed to a uniform one, ubiquitous in this group.  相似文献   

8.
The karyotype of one female Brachyteles arachinoides (E. Geoffroy, 1806) was studied. The specimen exhibited 62 chromosomes, which could be arranged in three clearly distinguishable groups: the first one including 5 pairs of subtelocentric chromosomes, the second one including 8 pairs of metacentric and submetacentric chromosomes and the third one including 18 pairs of acrocentric chromosomes. The X chromosome pair could not be identified.This study was supported by grants from CNPq (SIP 04/011), Brazil.  相似文献   

9.
The diploid chromosome number of two specimens of Lepilemur mustelinus (I. Geoffroy 1851) is 2N = 20. All of the chromosomes, except the Y chromosome, are metacentric or submetacentric; the Y chromosome is acrocentric and is the shortest chromosome in the complement. Satellites on autosomal pair 5 provide marked chromosomes for the animals studied and may be a marked pair for the species.  相似文献   

10.
A karyometric analysis of the chromosome set of the marine turbellariansMonocelis fusca, M. lineata andParotoplana macrostyla has been carried out. The karyotype of the twoMonocelis species investigated (2n=6) is formed by three pairs of small and similarly sized chromosomes: InM. fusca, chromosome 1 is metacentric, chromosome 2 acrocentric and chromosome 3 is subtelocentric.M. lineata also presents one pair of metacentric chromosomes (chromosome 2), while chromosomes 1 and 3 are submetacentric.P. macrostyla (2n=12) reveals two pairs of large metacentric and four pairs of small chromosomes, three of which are metacentric, whereas the last is subtelocentric.  相似文献   

11.
Karyological studies of five tree shrews showed a diploid number 2n=60 forTupaia glis and 2n=66 forTupaia minor. The Y chromosome ofTupaia glis was found to be a medium-sized submetacentric chromosome in contrast to earlier data in the literature. The karyotype of a femaleTupaia minor showed five pairs of metacentric and submetacentric chromosomes and 28 pairs of acrocentric chromosomes.  相似文献   

12.
Two South African Pyrgomorpha species have reduced chromosome numbers, due to centric fusions between the largest autosomes and the medium and small autosomes. P. rugosa has 2n=11(XO) (4 pairs of submetacentric and 1 pair of acrocentric autosomes) and P. granulata has 2n=13(XO) (3 pairs of submetacentric and 3 pairs of acrocentric autosomes). A third South African species has a typical Pyrgomorphidae number of 2n=19(XO) (acrocentrics). The mean chiasma frequency of the 2n=19 species is higher than that of the other two, although the frequencies of distal chiasmata in all three are similar. The recombination potential of the two species with lower chromosome numbers has been reduced, due to fewer crossovers in comparison to the 2n=19 species, as well as to independent assortment.  相似文献   

13.
The chromosomes of somatic and germ line cells of female embryos produced by paedogenesis were studied. The haploid set in somatic cells consists of one long submetacentric chromosome, one large acrocentric, one medium metacentric and two small acrocentrics. The length vs arm index karyogram makes it possible to distinguish all but the two pairs of small acrocentric chromosomes. — Attempts were made to develope a method for banding pattern visualization. The best result was obtained using trypsin which induced banding in the chromosomes of the somatic cells and occasionally also of the germ line cells. The resulting banding patterns were frequently not identical in members of a chromosome pair. There was also a variation between metaphases within an embryo as well as from different embryos. Some tentative explanations for these results are discussed.  相似文献   

14.
The genus Paullinia includes the economically important P. cupana, known as guaraná in Brazil and more recently in the world market. Native Americans of the Maué and Andirá tribes cultivated P. cupana ‘Sorbilis’ in central Amazon, and the Barés cultivated the ‘Typica’ variety in the upper Negro River (Brazil). Cytological studies in the Sapindaceae family have concentrated on the diversity in number (from 2n = 14 to 96) and size of the chromosomes. In Paullinia, seven species have been karyotyped and all show 2n = 24. Meristem maceration, cellular dissociation and air-drying techniques were used for cytogenetic preparations and DNA content was determined by flow cytometry. Chromosome characterization and DNA content of Paullinia cupana Kunth ‘Sorbilis’ (Mart.) Ducke (Sapindaceae) were studied. The high chromosome number (2n = 210) fall into two cytomorphological groups: (a) a metacentric and submetacentric group showing 25 sets of three pairs of chromosomes (2–76); (b) a group containing only acrocentric showing 12 sets of two pairs of chromosomes (82–105), a homologous submetacentric pair (1) and an acrocentric pair (81). Mean nuclear DNA content of guaraná was 2C = 22.8 pg. A karyogram was set up showing a high chromosome number complement.  相似文献   

15.
The karyotype of Halobatrachus didactylus presents 46 chromosomes, composed of eight metacentric, 18 submetacentric, four subtelocentric, and 16 acrocentric chromosomes. The results of FISH showed that the major ribosomal genes were located in the terminal position of the short arm of a large submetacentric chromosome. They also showed a high variation in the hybridization signals. The products of amplification of 5S rDNA produced bands of about 420 pb. The PCR labeled products showed hybridization signals in the subcentromeric position of the long arm of a submetacentric chromosome of medium size. Double-color FISH indicated that the two ribosomal families are not co-located since they hybridizated in different chromosomal pairs. Telomeres of all the chromosomes hybridized with the (TTAGGG) n probe. The GATA probe displayed a strong signal in the long arm of a submetacentric chromosome of medium size, in the subcentromeric position. The double-color FISH showed that the microsatellite GATA and the 5S rDNA gene are located in different chromosomal pairs. The majority presence of GATA probes in one pair of chromosomes is unusual and considering its distribution through different taxa it could be due to evolutionary mechanisms of heterochromatine accumulation, leading to the formation of differentiated sex chromosomes.  相似文献   

16.
The diploid chromosome number is 2n=38. The fundamental number is 70. The autosomes consist of 11 pairs of metacentric, 5 pairs of submetacentric and 2 pairs of acrocentric chromosomes. The sex chromosomes are both acrocentric, the X-chromosome is the largest.This research (Zoo/1402/11) was supported by the Research Center, College of Science, Kind Saud University, Riyadh, Saudi Arabia.  相似文献   

17.
We analysed karyotypes of five taxa of the rodent generaOecomys andNectomys, trapped in 14 localities in an area ranging from 8° to 29°S on Brazilian territory.Oecomys cf.concolor, collected in the Amazon and in two localities of the Cerrado biome, showed a 2n=60 karyotype constituted by a pair of large subtelocentric chromosomes, a small metacentric pair and 27 acrocentric pairs. The X chromosome was a large submetacentric and a subtelo-submetacentric, the morphology of the latter showing variable C-banding patterns. In all three localities the Y chromosome was a medium size heterochromatic acrocentric. Two individuals from the Cerrado had a heterochromatic acrocentric B-chromosome.Oecomys cf.bicolor presented two cytotypes, 2n=80 in the specimens from the Cerrado biome and 2n=82 in individuals trapped in the Amazon. The 2n=80 cytotype 1 showed a large subtelocentric, 22 biarmed pairs (medium to small) and 16 acrocentric autosomal pairs. The karyotype of the 2n=82 cytotype 2 is constituted by 15 biarmed chromosomes (median to small) and 25 acrocentric pairs with heterochromatic blocks at pericentromeric regions. The sexual pairs were the same (large submetacentric X and median acrocentric Y) in both cytotypes. InO. cf.concolor and in both cytotypes ofO. cf.bicolor the nucleolar organizer regions were observed in 1-3 pairs, located in the short arms.Nectomys genus presented two cytotypes, 2n=52–55 (N. rattus, with 0–3 biarmed heterochromatic accessory chromosomes) and 2n=56–59 (N. squamipes, bearing 0–3 biarmed, heterochromatic, B-chromosomes). These 2 cytotypes occupy disjunct regions of South America, with overlapping areas in the Brazilian states of Pernambuco, Bahia, and Mato Grosso do Sul.  相似文献   

18.
The chromosome complements of two male and two female adult slow lorises (Nycticebus coucang) have been studied in blood cultures cultivatedin vitro for three days. We have observed basic differences in arrangement from previous results, and the existence in the complement of a dimorphic pair not described before in this species. This dimorphic pair does not fit with any known type of chromosome dimorphism or polymorphism, either in rodents or primates. The diploid chromosome number is 50. Nine of the chromosome pairs are metacentric, the remaining 15 pairs, submetacentric. The X chromosome is a long submetacentric, ranking 4 in order of decreasing size. The Y chromosome is a rather long metacentric and ranks 15 in the same order. The autosomes, 2 to 10µ long in metaphase with arm ratios ranging from 1.14 to 2.65, are paired and arranged in order of decreasing size. Chromosome pair No. 5 is dimorphic, one of the chromosomes in the pair being constantly longer than the other. An idiogram of the haploid chromosome complement is presented, incorporating measurements of 30 analyzed nuclei.  相似文献   

19.
Cytogenetic analysis in three Rineloricaria pentamaculata populations revealed diploid number 2n = 56 chromosomes, karyotype formula 8m/sm + 48st/a and FN = 64. Owing to the presence of the heteromorphic chromosome pair with a big submetacentric chromosome and a small acrocentric one in both males and females, 42.9% of specimens in the Tauá Stream population had the karyotype formula 9m/sm + 47st/a and FN = 65. Analysis of the nucleolus-organizing region by Ag-NOR and FISH techniques showed a single NOR system at pair 5 for R. pentamaculata populations of the Keller River and the Tauá Stream. However, specimens of populations of the Tatupeba Stream had multiple NOR systems at pairs 5 and 8. A constitutive heterochromatin pattern in R. pentamaculata is mainly distributed in the pericentromeric and telomeric regions with interstitial markers in certain chromosomes. Heterochromatin is located in the telomeric and centromeric positions of the acrocentric chromosome in the heteromorphic pair of the Tauá Stream population. In the submetacentric chromosome the markings are located in the telomeric (short arm), pericentomeric and interstitial (long arm) positions. The origins of polymorphisms are discussed.  相似文献   

20.
Individuals of two populations of the fish Characidium cf. fasciatum were cytogenetically studied and showed a basic diploid number of 50 chromosomes. Some fishes were found to have 51 to 54 chromosomes due to the presence of one to four small subtelocentric/acrocentric supernumerary chromosomes. When analyzed by conventional Giemsa staining, male and female specimens of C. cf. fasciatum from the Quinta stream and Pardo River presented the same basic karyotypic macro- and microstructure, consisting of 32 metacentric and 18 submetacentric chromosomes. Ag-NORs were terminally located on the long arms of two submetacentric chromosome pairs. Constitutive heterochromatin was identified by C-banding as small pericentromeric blocks in the majority of the chromosomes, and B-chromosomes were found to be heterochromatic. The occurrence of one totally heterochromatic submetacentric chromosome restricted to females and considered as an unusual feature in fish karyotypes led to the identification of a ZZ/ZW sex-chromosome system. The implications of chromosomic differentiation observed in the genus Characidium are discussed. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号