首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The sea louse Lepeophtheirus salmonis (Kr?yer, 1837) (Copepoda: Caligidae) is an ectoparasite of salmonid fish. It has earlier been proposed that the free-swimming infectious copepodid stage of L. salmonis gather at river mouths to infect wild Atlantic salmon Salmo salar L. and sea trout S. trutta L. smolts during their seaward migration. This study used aquarium-based methods to investigate the survival, infective ability and behaviour of L. salmonis copepodids exposed to short periods of low salinity levels, such as those encountered at river mouths. Survival of free-swimming copepodids was found to be severely compromised at salinity levels below 29 parts per thousand (ppt). Attachment to an S. salar host did not aid copepodid survival during post-infection exposure to low salinity environment, and a reduction in salinity appears to reduce the ability of copepodids to remain attached to S. salar smolts. Pre-infection exposure of copepodids to reduced salinity levels reduced infection of S. salar. Infection levels at reduced salinity were lower than predicted from the free-swimming survival experiment, suggesting that low salinity compromises the copepodids' ability to sense or respond to the presence of a host. In salinity gradients, copepodids demonstrated avoidance of salinities below 27 ppt, by both altering their swimming behaviour and changing the orientation of passive sinking. Avoidance of low salinity levels may be due to their adverse effects on copepodid physiology, as suggested by the reduction in survival. Sinking rates were also faster in reduced salinity, suggesting that remaining in the water column would be more energetically demanding for the copepodids at reduced salinity. These results show that both survival and host infectivity of L. salmonis are severely compromised by short-term exposure to reduced salinity levels.  相似文献   

2.
Superoxide dismutase (SOD) is considered a primary antioxidant which defends against reactive oxygen species that are induced by environmental stress. In this study, we examined changes in SOD activity and expression in the cyanobacterium Spirulina (Arthrospira) platensis under iron and salinity stress; we characterized its induction under these stress conditions and we overexpressed the enzyme in a bacterial host for preliminary characterization. Analysis of SOD isoforms concludes that S. platensis was found to regulate only the iron-containing SOD isoform (FeSOD) in response to two types of stress that were tested. The FeSOD expression (on the level of both mRNA and enzyme activity) was induced by the stress conditions of salinity and iron levels. The FeSOD from S. platensis was overexpressed in Escherichia coli BL21. The recombinant FeSOD protein (about 23 kDa) was purified for characterization. It showed high specific activity and pH stability at 6.0–9.0, and it is relatively thermostable, retaining 45 % of its activity after 30 min at 90 °C. Phylogenetic analysis reveals that S. platensis FeSOD is grouped with the FeSODs from other cyanobacterial species and separated from those of the eukaryotic Chlorophyta, suggesting that the FeSOD gene may be used as a molecular marker in physiological, phylogenetic, and taxonomic studies. This study also suggests that the increased activity and expression of SOD may play a role in algal survival under stress conditions.  相似文献   

3.
The effects of salt stress on dry mass, lipid peroxidation, polyphenol and hydrogen peroxide content and activities of antioxidative enzymes were investigated in seedlings of Salicornia persica and S. europaea grown in vitro. Seeds were germinated under a broad range of NaCl concentrations (0, 100, 200, and 300 mM) on Murashige and Skoog medium for 45 d. Dry mass of both species increased at low (100 mM) salinity but decreased at higher NaCl concentrations. Malondialdehyde (MDA) content decreased at low salinity, whereas increased at 200 and 300 mM NaCl. H2O2 content in S. europaea was considerably enhanced by salinity, but it was not significantly affected in S. persica. The salt stress progressively enhanced the polyphenol content in S. persica, whereas in S. europaea, it increased with respect to the control only at higher salinities. In both species, the salinity progressively enhanced the superoxide dismutase (SOD) and peroxidase (POD) activities, whereas the CAT activity was only registered at the low salinity and the APX activity decreaseed in both species. The results indicate that S. persica exhibited a better protection mechanism against oxidative damage and it is more salt-tolerant than S. europaea.  相似文献   

4.
Arbuscular mycorrhizal fungi (AMF) were investigated in roots of 18 host plant species in a salinized south coastal plain of Laizhou Bay, China. From 18 clone libraries of 18S rRNA genes, all of the 22 AMF phylotypes were identified into Glomus, of which 18 and 4 were classified in group A and B in the phylogenetic tree, respectively. The phylotypes related to morphologically defined Glomus species occurred generally in soil with higher salinity. AMF phylotype richness, Shannon index, and evenness were not significantly different between root samples from halophytes vs. non-halophytes, invades vs. natives, or annuals vs. perennials. However, AMF diversity estimates frequently differed along the saline gradient or among locations, but not among pH gradients. Moreover, UniFrac tests showed that both plant traits (salt tolerance, life style or origin) and abiotic factors (salinity, pH, or location) significantly affected the community composition of AMF colonizers. Redundancy and variation partitioning analyses revealed that soil salinity and pH, which respectively explained 6.9 and 4.2 % of the variation, were the most influential abiotic variables in shaping the AMF community structure. The presented data indicate that salt tolerance, life style, and origin traits of host species may not significantly affect the AMF diversity in roots, but do influence the community composition in this salinized ecosystem. The findings also highlight the importance of soil salinity and pH in driving the distribution of AMF in plant and soil systems.  相似文献   

5.
Mangroves throughout the world are threatened by environmental changes apart from anthropogenic disturbances. Many of these changes may inhibit the growth and survival of mangrove species. To understand and predict the effects of global change on mangrove forests, it is necessary to obtain insights on the growth dynamics of mangroves in relation to environmental factors. This study was conducted on Sonneratia apetala, a mangrove species which grows under a range of salinity conditions across the Sundarbans in Bangladesh. We studied trees growing under respectively high, medium, and low salinity conditions based on the influence of freshwater discharge. First, the periodicity of radial growth across the year was detected by applying cambial analyses. Based on tree-ring analyses, we calculated the growth response of S. apetala to monthly variation in precipitation and temperature as well as river discharge, as a proxy for salinity. We found the cambium of S. apetala being active during the monsoon and post-monsoon period whereas it was dormant in the pre-monsoon. This periodicity in radial growth leads to the formation of distinct annual rings with ring boundaries being marked by radially flattened fibres. S. apetala trees growing under low salinity conditions generally show higher growth rates indicating the positive impact of river discharge, i.e. freshwater input on mangrove growth. Wet and warm conditions during the monsoon period positively affected S. apetala growth, especially in the low salinity zone. Our results show that salinity is the primary driver of growth dynamics of S. apetala in the Sundarbans. A gradual or seasonal increase in salinity, e.g. as a consequence of sea-level rise may therefore importantly alter the growth of this species, possibly leading to changes in mangrove forest dynamics and zonation.  相似文献   

6.
The genus Salmincola is an ectoparasitic copepod group commonly infesting the branchial and buccal cavities of salmonids. While negative impacts on hatchery fishes have been reported, their impacts on wild fish populations and distribution patterns are critically understudied. In the Shiretoko Peninsula, Hokkaido, Japan, we found parasites belonging to this genus on the branchial cavity of a stream salmonid, Southern Asian Dolly Varden Salvelinus curilus. All parasites recovered were identified as Salmincola edwardsii based on morphological characteristics and partial 28S rDNA sequences. Prevalence was highly heterogeneous even among neighboring streams (0–54.8%, < 10 km) with the mean intensity among streams being generally low (2.19 parasites/infeted fish). Despite the low intensity, quantile regression analysis showed negative trends between parasite intensity and host condition, suggesting that the infestation of S. edwardsii has a potential negative impact on the host salmonid. In addition, a single copepod was found from an anadromous fish, which could indicate some salinity tolerance of the copepods. It is important to evaluate the effects of Salmincola spp. on host species and determine the limiting factors on the parasite's distribution for proper management.  相似文献   

7.
BackgroundCoastal wetlands are threatened by the increased salinity that may result from sea level rise. Salinity stress alters species zonation patterns through changes in competitive outcome between species differing in salinity tolerance. This study therefore aimed to understand how salinity and light affect two dominant and competing coastal wetland grasses that differ in salt tolerance, height and photosynthetic metabolism.MethodsThe C4 species Spartina anglica and the C3 species Phragmites australis were grown at five salinity levels (0, 7, 14, 21 and 28 ppt) and two light fluxes (100 % and 50 % of natural daylight) in an outdoor experimental setup for 102 d with full access to nutrients.Key ResultsSalinity reduced the biomass, height and shoot density of P. australis from 81.7 g dry weight (DW), 0.73 m and 37 shoots per pot at a salinity of 0 ppt to 16.8 gDW, 0.3 m and 14 shoots per pot at a salinity of 28 ppt. Biomass, height and shoot density of S. anglica did not respond or were only slightly reduced at the highest salinity of 28 ppt. High salinity also resulted in a higher tissue concentration of N and P in P. australis. Both species had low ability to acclimate to the lower light flux. Shade acclimation in S. anglica occurred via modest changes in specific leaf area, pigment content and biomass allocation.ConclusionsHigh salinity reduced traits important for light competition and increased the nutrient concentration in P. australis leaf and root biomass, while this was overall unaffected in S. anglica. This is likely to reduce the competitive ability of P. australis over S. anglica for light because at high salinities the former cannot effectively shade the lower-growing S. anglica. Neither species effectively acclimates to shade, which could explain why S. anglica does not occur in the understorey of P. australis at low salinities.  相似文献   

8.
The effect of salinity on germination, seedling emergence, seedling growth and ion accumulation of a euhalophyte Suaeda salsa L. in an intertidal zone and on saline inland were investigated. Brown seeds of S. salsa were heavier and better developed than black seeds in both the intertidal zone and on saline inland. The brown seeds/black seeds ratio for S. salsa in the intertidal zone was much higher than that for S. salsa on saline inland. More germinated seeds grew as seedlings under high salinity for S. salsa from the intertidal zone than S. salsa on saline inland; high salinity decreased the shoot length more severely for S. salsa from saline inland than for S. salsa from the intertidal zone; the seedling growth at a range of NaCl, measured either as shoot length or shoot dry weight, for S. salsa from the intertidal zone was lower than that of S. salsa from saline inland. In conclusion, for S. salsa from the intertidal zone there appears to be selection for slower growth and producing more brown seeds. The establishment of populations of S. salsa in different saline environments depends on the responses of seed germination, seedling emergence and seedling growth to salinity. These characteristics may determine the natural distributions of S. salsa populations in different saline environments.  相似文献   

9.
The coastal lagoons of south Florida, U.S., experience fluctuating levels of sedimentation and salinity and contain only a subset of the coral species found at the adjacent reefs of the Florida Reef Tract. The dominant species within these habitats is Siderastrea radians, which can reach densities of up to 68 colonies m- 2 and is commonly exposed to salinity extremes (< 10 psu to > 37 psu) and chronic sediment burial. In this study, we document the patterns of resistance and resilience of S. radians to sub-optimal salinity levels and sediment burial in a series of short-term, long-term, acute, chronic, single-stressor, and sequential-stressor experiments.S. radians displayed remarkable patterns of resistance and resilience and mortality was documented only under prolonged (≥ 48 h) continuous exposure to salinity extremes (15 and 45 psu) and chronic sediment burial. A reduction in photosynthetic rates was documented for all salinity exposures and the decrease in photosynthesis was linearly related to exposure time. Negative impacts on photosynthetic rates were more severe under low salinity (15 psu) than under high salinity (45 psu). Corals exposed to intermediate, low-salinity levels (25 psu), exhibited initial declines in photosynthesis that were followed by temporary increases that may represent transient acclimatization patterns. The impacts of sediment burial were influenced by the duration of the burial period and ranged from a temporary reduction in photosynthesis to significant reductions in growth and tissue mortality. The maintenance of P/R ratios > 1 and the rapid (< 24 h) recovery of photosynthetic rates after burial periods of 2-24 h indicates that S. radians is able to resist short-term burial periods with minor physiological consequences. However, as burial periods increase and colonies become covered at multiple chronic intervals, sediment burial resulted in extended photosynthetic recovery periods, reduced growth, and mortality. Under normal conditions (i.e., no salinity stress), S. radians was very effective at clearing sediments, and > 50% of the colonies' surface area was cleared within 1 h. However, clearing rates were influenced by physiological status, and prior exposure to sub-optimal salinity significantly reduced the clearing rates of stressed colonies.The response of S. radians to disturbance documented in this study characterizes this species as highly stress-tolerant and provides an explanation for its present high abundance in both reef and marginal environments. Moreover, the key life-history attributes of S. radians, such as brooding reproductive strategy, small colony size, high stress-tolerance, and high recruitment rates, suggest the potential for this species to replace reef-building taxa under increased disturbance scenarios in Florida and elsewhere in the region.  相似文献   

10.
Interactions between environmental stressors play an important role in shaping the health of an organism. This is particularly true in terms of the prevalence and severity of infectious disease, as stressors in combination will not always act to simply decrease the immune function of a host, but may instead interact to compound or even oppose the influence of parasitism on the health of an organism. Here, we explore the impact of environmental stress on host–parasite interactions using the water flea Daphnia magna and it is obligate parasite Pasteuria ramosa. Utilising an ecologically relevant stressor, we focus on the combined effect of salinity and P. ramosa on the fecundity and survival of the host, as well as on patterns of infectivity and the proliferation of the parasite. We show that in the absence of the parasite, host fecundity and survival was highest in the low salinity treatments. Once a parasite was introduced into the environment, however, salinity and parasitism acted antagonistically to influence both host survival and fecundity, and these patterns of disease were unrelated to infection rates or parasite spore loads. By summarising the form of interactions found in the broader Daphnia literature, we highlight how the combined effect of stress and parasitism will vary with the type of stressor, the trait used to describe the health of Daphnia and the host–parasite combination under observation. Our results highlight how the context-dependent nature of interactions between stress and parasitism inevitably complicates the link between environmental factors and the prevalence and severity of disease.  相似文献   

11.
《Aquatic Botany》2005,81(3):199-211
In Ireland, Schoenoplectus triqueter is confined to areas in the upper part of the Shannon estuary where average summer soil pore water salinity levels do not exceed 7.0 ppt. Soil-based and nutrient solution-based experiments showed that growth and reproduction of S. triqueter was significantly reduced at salinity of 10 ppt and significantly enhanced at 2.0 ppt compared to a freshwater control. Young plants were less tolerant of salinity than older plants. A transplantation trial showed that S. triqueter could grow at higher salinities in the field but that growth and reproduction were significantly inhibited at higher field salinities. The effect of simulated diurnal tidal inundation on the growth and reproduction of S. triqueter was examined by growing plants in a tank with fluctuating water levels. S. triqueter was able to grow and produce seed when inundated for up to 12 h per 24-h period, indicating a considerable capacity to withstand periodic inundation. Growth responses to simulated tidal inundation were also examined in Bolboschoenus maritimus. Long periods of daily inundation reduced growth of B. maritimus proportionately more than that of S. triqueter. It is concluded that S. triqueter occupies a narrow ecological niche in the Shannon Estuary that is circumscribed by competition from more robust emergent species but is facilitated by the ability of S. triqueter to tolerate lengthy periods of inundation by the tides.  相似文献   

12.
Reed beetles (Donaciinae) of the genus Macroplea Samouelle, 1819 live permanently submerged. Literature indicates that Macroplea mutica occurs in brackish water, whereas Macroplea appendiculata is restricted to freshwater. The salinity preference of these two species was tested in a linear and a circular device that offered a continuous salinity gradient. The distribution of animals in the devices was monitored over at least 3 h in each of the 21 experiments. Both species preferred freshwater (salinity 0) over brackish water (salinity 10). In particular, this holds true for specimens collected in brackish water. Likewise, immediate reactions could be observed when during such experiments the direction of the gradient was reversed. While M. mutica can be regarded as a truly marine insect, this marine environment does not strictly reflect its fundamental niche with respect to salinity preference. This is in line with accumulating evidence that M. mutica can be found in freshwater habitats (and M. appendiculata in brackish water). This indicates that the species’ distribution might be influenced by other factors like host plant preference or dispersal mechanisms. It is discussed if—in spite of similar fundamental niches—differences in salinity tolerance (and hence performance in brackish water) may have contributed to speciation in the genus Macroplea.  相似文献   

13.
Hemisphere scale events such as El Niño-Southern Oscillation (ENSO) can alter rainfall regimes worldwide, with important effects on species abundance and distribution. The evidence of ENSO effects on terrestrial communities is, however, restricted to a few ecosystem types. We explored the effects of ENSO episodes on plant/terrestrial-herbivore interactions through changes in the rainfall regime in a southwestern Atlantic salt marsh (Mar Chiquita coastal lagoon, Argentina. 37° 40′S, 57° 23′W). Surveys showed a positive relationship between winter rainfall and the abundance of the wild guinea pig Cavia aperea. The highest salt marsh abundances of C. aperea were associated with rainy periods during El Niño episodes, and the lowest ones were associated with the driest La Niña episodes. Rainfall was negatively associated with marsh sediment salinity, and experiments revealed that increased salinity reduces growth and increases mortality of cordgrass (Spartina densiflora). Salt increase also causes the highest percentage of dry area in S. densiflora leaves and reduced carbon content, and more salt content and secretion in S. densiflora stems. A factorial experiment in which we manipulated C. aperea presence and salinity along the edges of S. densiflora patches showed that plants can asexually invade unvegetated areas when salinity is reduced and C. aperea is excluded. Conversely, S. densiflora edges retracted when salinity was increased or there was C. aperea herbivory. Changes in nutritional quality of S. densiflora could explain the low herbivory of (and lack of impacts from) C. aperea in plots with high salinity. Thus, plant distribution responds directly to climate oscillations through changes in salt stress, and indirectly, through changes in plant-herbivore interactions. Herbivores respond indirectly to climate oscillations through changes in plant food quality, which suggests that top-down effects increase when bottom-up stressors are relaxed. ENSO events have direct and indirect effects on marsh communities that modulate the relative importance of top-down and bottom-up effects and have a considerable effect on the primary productivity of S. densiflora marshes.  相似文献   

14.
Eels,Anguilla anguilla (L.), infested withIchthyophthirius multifiliis Fouquet, were exposed to different salinity levels (8, 15, and 30 ‰). Following exposure to 15° C for 2 to 4 weeks the parasite was able to survive on 20 cm long, young eels. This demonstrates thatI. multifiliis is not being damaged below the epidermis of its host; in form of free cysts or as swarmers, it is, however, no longer able to cause infection. In a second experiment, 2 eels of 40 cm length were infested withI. multifiliis at 15° C in 8 ‰ S; however, in 15 ‰ S, the parasite disappeared after 4 weeks.  相似文献   

15.
The influence of global climate change will potentially alter the salinity of aquatic ecosystems. This represents a tremendous challenge for societies worldwide. Different sources of salinization (natural or anthropogenic) amplify the introduction of salt in rivers and streams, causing an increase of salt flowing down to estuarine and coastal areas. In this study, Corbicula fluminea and Scrobicularia plana have been selected because of their large tolerance for salinity variation (euryhaline organisms). They will allow the study of effect on the whole spectrum of salinity from fresh to marine waters respectively. The aim was to study the impact of experimental salinity stress at physiological, biochemical and behavioral levels by exposing both species to a salinity close to their limit range of tolerance, 15 practical salinity unit (psu), and at their field salinity (1.5 psu and 30 psu for C. fluminea and S. plana respectively) in the presence or absence of food during 2 and 7 days of exposure. Negative impacts of hyper saline condition for C. fluminea (15 psu) and hypo saline condition for S. plana (15 psu) have been measured at biochemical, physiological and behavioral levels. At sub-individual and individual levels, structural and energetic parameters and behavioral impairments seemed to be suitable biomarkers to assess salinity stress on C. fluminea and S.plana. After exposure to the limit of salinity tolerance (15psu) for both organisms, fitness modifications could appear, and may participate in endangering populations.  相似文献   

16.
17.
Jie Song 《Plant and Soil》2009,324(1-2):231-240
The effects of waterlogging and salinity on seedling emergence, seedling growth and ion accumulation in a euhalophyte Suaeda salsa in an intertidal zone and on saline inland soil were investigated. Seedlings of S. salsa from the intertidal zone emerged more rapidly than those of the inland population under both waterlogged and drained conditions. Waterlogging and salinity had no adverse effects on seedling emergence of S. salsa from the intertidal zone, but markedly inhibited this parameter in the inland population. Waterlogging did not affect the seedling survival, shoot dry mass, and shoot height in high salinity in S. salsa from the intertidal zone, while the opposite trend was shown in the inland population. The root dry mass was higher in S. salsa from the intertidal zone as compared to the inland population, in waterlogged treatments by 1.9, 1.3, and 1.5 times in 1, 200, and 600 mM NaCl, respectively, and in drained treatments by 1.8, 2.3, and 3.0 times in 1, 200, and 600 mM NaCl, respectively. Waterlogging increased Na+ and K+ concentrations in high salinity, but waterlogging had no effect on Cl- concentration in shoots of S. salsa from the intertidal zone. In all NaCl treatments, waterlogging had no effect on concentrations of these ions in shoots of S. salsa from the saline inland site. In a field investigation, the fresh mass of shoots and roots were lower, whereas the root/shoot ratio was 1.5 times higher in S. salsa from the intertidal zone, compared with the inland population. These findings indicate that S. salsa population from the intertidal zone is more waterlogging tolerant than the inland population. S. salsa from the intertidal zone produced relatively more root biomass and this might help anchor plants against tidal action in the intertidal zone. The physiological and morphological characteristics may determine the natural distributions of the two S. salsa populations in their different saline environments.  相似文献   

18.
Oxygen consumption, locomotory activity and, in some cases, osmoregulatory responses of different populations of Palaemon adspersus (Rathke) and Pomatoschistus microps (Krøyer) from the Isefjord (S 19‰) and Karrebaek Fjord (S 12‰) in Denmark and the Barther Bodden (S 6‰) in the G.D.R. to short-term salinity fluctuations, and after long-term adaptation, were tested. The same tests were performed on populations of Gasterosteus aculeatus (L.), Palaemonetes varions (Leach) (both from Barther Bodden, G.D.R.) and Palaemon elegans (Rathke) (Black Sea, Bulgaria, S 18‰). The steady-state experiments showed that the standard metabolic rates of P. adspersus and Pomatoschistus microps reach their lowest levels at mean biotope salinities at both 10 and 20°C. In contrast, the routine metabolic rates of both species are independent of salinity in the ecological salinity range.All Palaemon adspersus and Pomatoschistus microps populations responded to sudden changes in salinity with increased locomotory activity and respiration regardless of the direction of stressing. Metabolic adaptation in these euryhaline species, which is not synchronous with osmotic readjustment, takes from 5 to 12 h, depending on the salinity gradient.The polystenohaline Palaemon elegans from the Black Sea and the holeuryhaline Palaemonetes varians from the Barther Bodden exhibit similar short adaptation times (≈ 2 h) to identical salinity gradients but in different salinity zones.  相似文献   

19.
Spathius agrili Yang (Hymenoptera: Braconidae) is a newly described and important idiobiont ectoparasitoid of the emerald ash borer (EAB) that has excellent potential as a biological control agent against EAB populations in the USA. In order to understand the ecological factors involved in the search and discovery of concealed hosts by S. agrili, we investigated the behavioral responses of adult female wasps to potential semiochemicals from host plants, hosts, and host frass as well as to vibration signals from host feeding and movement. Using a bioassay, we showed that S. agrili first finds the host’s habitats by detecting the volatile compounds emitted by ash. In the second phase of host location and acceptance, the parasitoids detect the mechanical vibrations produced by host feeding and movement under the surface of the bark and then probe to find the EAB larvae. Contact chemicals seem to play little or no role in short-range host finding. Female wasps avoided laying eggs on EAB larvae already parasitized and thus paralyzed. We hypothesized that female wasps were not attracted to these larvae due to their lack of feeding or movement. While an induced paralysis in the host is instrumental in avoiding superparasitism, we cannot rule out that S. agrili females also use an oviposition pheromone to deter conspecific females. Together, these results suggest that vibration and olfactory cues play significant roles in distinct phases of S. agrili host habitat and host location behaviors.  相似文献   

20.
The combined effect of salinity and temperature on Spirorbis spirorbis L. and Circeus spirillum L. larvae from the White Sea was studied in the laboratory experiments. In the White Sea, S. spirorbis is distributed through the depth of 1-20 m and is affected by all varieties of fluctuations in salinity and temperature. C. spirillum lives in more wide range of depths 1-55 m and is more stenohaline. S. spirorbis larvae are sufficiently more resistant to the low salinity (10‰) than C. spirillum larvae. Both species are stenothermic. Highest survivorship of S. spirorbis larvae was marked under 5 °C in all experimental salinities. Under temperature treatments of 10-15 °C, the larval survivorship was sufficiently restricted in all salinities. Highest survivorship of C. spirillum larvae was also marked under 5 °C but in more narrow salinity range.The number of larvae undergoing metamorphosis in both species was very low, only about 10% of the total number. Highest number of successful attachments in both species was marked in high salinities (25-30‰) and does not exceed 25% of survivors. Experimental data suggests that salinity and temperature affect directly general survivorship of the larvae and secondary-attachment and metamorphosis processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号