共查询到20条相似文献,搜索用时 10 毫秒
1.
K Murata T Saikusa Y Fukuda K Watanabe Y Inoue M Shimosaka A Kimura 《European journal of biochemistry》1986,157(2):297-301
L-Threonine catabolism by Saccharomyces cerevisiae was studied to determine the role of glycolytic bypath as a detoxyfication system of 2-oxoaldehyde (methylglyoxal) formed from L-threonine catabolism. During the growth on L-threonine as a sole source of nitrogen, a large amount of aminoacetone was accumulated in the culture. The enzymatic analyses indicated that L-threonine was converted into either acetaldehyde and glycine by threonine aldolase or 2-aminoacetoacetate by NAD-dependent threonine dehydrogenase. Glycine formed was condensed with acetyl-CoA by aminoacetone synthase to form 2-aminoacetoacetate, a labile compound spontaneously decarboxylated into aminoacetone. The enzyme activities of the glycolytic bypath of the cells grown on L-threonine were considerably higher than those of the cells grown on ammonium sulfate as a nitrogen source. The result indicated the possible role of glycolytic bypath as a detoxification system of methylglyoxal formed from L-threonine catabolism. 相似文献
2.
Purification and characterization of a novel NADP-dependent branched-chain alcohol dehydrogenase from Saccharomyces cerevisiae. 下载免费PDF全文
M F van Iersel M H Eppink W J van Berkel F M Rombouts T Abee 《Applied microbiology》1997,63(10):4079-4082
An NADP-dependent branched-chain alcohol dehydrogenase was purified from Saccharomyces cerevisiae var. uvarum grown under anaerobic conditions. Its quaternary structure is monomeric, and it has a molecular mass of 37 kDa and a pI of 5.9. A possible role of the enzyme in flavor production during alcoholic fermentation is discussed. 相似文献
3.
A procedure for the purification of aldehyde dehydrogenase from bakers' yeast (Saccharomyces cerevisiae) is reported. Treatment with acid, heat and organic solvents was avoided and chromatographic and filtration techniques in the presence of phenylmethylsulfonylfluoride were mainly used. An affinity chromatography step using the reactive dye Cibacron blue F3G-A, which was covalently bound to Sepharose 4B, was found to be essential. The enzyme was bound to and then released from the dye. The purified enzyme was shown to be homogeneous by gel filtration, disc electrophoresis and SDS electrophoresis. The molecular weight of the purified enzyme determined by gel filtration was 170,000, which agreed with that of the enzyme in the crude extract. The enzyme was composed of subunits of a molecular weight of 57,000. The specific activity of the enzyme was 20 units per mg of protein under the standard assay conditions. The substrate specificity, the relative maximal velocity, the michaelis constants, the pH optimum, the stability and the activation energy of the enzyme are reported. 相似文献
4.
Purification and characterization of glycerol-3-phosphate dehydrogenase of Saccharomyces cerevisiae. 总被引:2,自引:0,他引:2
The NAD-dependent glycerol-3-phosphate dehydrogenase (glycerol-3-phosphate:NAD+ oxidoreductase; EC 1.1.1.8; G3P DHG) was purified 178-fold to homogeneity from Saccharomyces cerevisiae strain H44-3D by affinity- and ion-exchange chromatography. SDS-PAGE indicated that the enzyme had a molecular mass of approximately 42,000 (+/- 1,000) whereas a molecular mass of 68,000 was observed using gel filtration, implying that the enzyme may exist as a dimer. The pH optimum for the reduction of dihydroxyacetone phosphate (DHAP) was 7.6 and the enzyme had a pI of 7.4. NADPH will not substitute for NADH as coenzyme in the reduction of DHAP. The oxidation of glycerol-3-phosphate (G3P) occurs at 3% of the rate of DHAP reduction at pH 7.0. Apparent Km values obtained were 0.023 and 0.54 mM for NADH and DHAP, respectively. NAD, fructose-1,6-bisphosphate (FBP), ATP and ADP inhibited G3P DHG activity. Ki values obtained for NAD with NADH as variable substrate and FBP with DHAP as variable substrate were 0.93 and 4.8 mM, respectively. 相似文献
5.
Y Looze L Gillet M Deconinck B Couteaux E Polastro J Leonis 《International journal of peptide and protein research》1979,13(3):253-259
Protease B has been isolated from Saccharomyces cerevisiae and purified in six steps as follows: autolysis of the yeast cells, ammonium sulfate fractionation, activation of the proteolytic enzymes, chromatography on DEAE-cellulose, chromatography on CM-cellulose and finally, a second chromatography on DEAE-cellulose. The preparation was shown to be homogeneous on polyacrylamide gels in the absence as well as in the presence of sodium dodecylsulfate. Furthermore, the molecular weight (43,000 daltons) and the isoelectric point (5.45) were in good agreement with earlier published values. The amino acid composition is reported. The absence of disulfide bonds in protease B has to be outlined. The amino acid residues of the protein have been found to be folded nearly quantitatively (at least 80%) in a beta-conformation as deduced from a circular dichroism study. Finally, the tryptophan residues (5 mol/mol protein) are largely buried in the hydrophobic core of the enzyme. 相似文献
6.
7.
8.
Using specific anti-BiP/Kar2 antibody as the probe, we have developed an efficient purification method of BiP/Kar2 protein from the total cell extract of Saccharomyces cerevisiae. Overproduction of BiP/Kar2 protein was achieved by the cloning of the KAR2 gene on multicopy plasmids and the treatment of cells harboring the cloned KAR2 gene with tunicamycin. Freeze-thaw treatment, hydroxyapatite high pressure liquid chromatography, and ATP-agarose column chromatography of crude extract yielded homogeneous BiP/Kar2 protein (including less than 0.2% of degradative derivative) with a 430-fold purification and 28% recovery. Edman degradation of purified BiP/Kar2 suggests that the mature protein corresponds to a processed product with the removal of a 42-amino acid presequence. It is active as a homodimer and exhibits ATPase activity with a specific activity of 2 pmol/min/micrograms of protein. Protease susceptibility indicated that the ADP form of BiP/Kar2 is more resistant than the ATP form to the chymotrypsin digestion and that BiP/Kar2 required the presence of ATP to avoid the irreversible denaturation. Synthesis of BiP/Kar2 was induced by the inducible expression of an aberrant heterologous protein, yeast killer prepro-signal mouse alpha-amylase fusion protein. 相似文献
9.
1. Hypoxanthine-guanine phosphoribosyltransferase (EC 2.4.2.8) from Saccharomyces cerevisiae was purified 9400-fold by affinity chromatography giving rise to an electrophoretically homogeneous preparation. 2. The molecular weight of the enzyme was determined by gel filtration with Sephadex G-100 and by sodium dodecylsulfate gel electrophoresis. Both methods reveal a molecular weight of 51,000. 3. The enzyme requires Mg2+ and has its pH optimum at 8.5. 4. Isoelectric focussing as well as gel electrophoresis of the purified extract reveals a single band which exhibits enzyme activity. The isoelectric point of the enzyme is 5.1. 5. The enzyme displays Michaelis-Menten kinetics with apparent Michaelis constants for hypoxanthine, guanine and phosphoribosylpyrophosphate of 23 microns, 18 microns, and 50 microns respectively. 相似文献
10.
A NAD-dependent (R)-2,3-butanediol dehydrogenase (EC 1.1.1.4), selectively catalyzing the oxidation at the (R)-center of 2,3-butanediol irrespective of the absolute configuration of the other carbinol center, was isolated from cell extracts of the yeast Saccharomyces cerevisiae. Purification was achieved by means of streptomycin sulfate treatment, Sephadex G-25 filtration, DEAE-Sepharose CL-6B chromatography, affinity chromatography on Matrex Gel Blue A and Superose 6 prep grade chromatography leading to a 70-fold enrichment of the specific activity with 44% yield. Analysis of chiral products was carried out by gas chromatographic methods via pre-chromatographic derivatization and resolution of corresponding diasteromeric derivatives. The enzyme was capable to reduce irreversibly diacetyl (2,3-butanediol) to (R)-acetoin (3-hydroxy-2-butanone) and in a subsequent reaction reversibly to (R,R)-2,3-butanediol using NADH as coenzyme. 1-Hydroxy-2-ketones and C5-acyloins were also accepted as substrates, whereas the enzyme was inactive towards the reduction of acetone and dihydroxyacetone. The relative molecular mass (M
r) of the enzyme was estimated as 140 000 by means of gel filtration. On SDS-polyacrylamide gel the protein decomposed into 4 (identical) subunits of M
r 35 000. Optimum pH was 6.7 for the reduction of acetoin to 2,3-butanediol and 7.2 for the reverse reaction.Abbreviations GC-MS
gas chromatography-mass spectrometry
- i.d.
internal diameter
-
M
r
relative molecular mass
- MTPA-Cl
-methoxy--trifluoromethylphenyl acetic acid chloride
- PEIC
1-phenylethylisocyanate 相似文献
11.
Purification and characterization of phosphatidylinositol kinase from Saccharomyces cerevisiae 总被引:3,自引:0,他引:3
C J Belunis M Bae-Lee M J Kelley G M Carman 《The Journal of biological chemistry》1988,263(35):18897-18903
The membrane-associated phospholipid biosynthetic enzyme phosphatidylinositol kinase (ATP:phosphatidylinositol 4-phosphotransferase, EC 2.7.1.67) was purified 8,000-fold from Saccharomyces cerevisiae. The purification procedure included Triton X-100 solubilization of microsomal membranes, DE-52 chromatography, hydroxylapatite chromatography, octyl-Sepharose chromatography, and two consecutive Mono Q chromatographies. The procedure resulted in the isolation of a protein with a subunit molecular weight of 35,000 that was 96% of homogeneity as evidenced by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Phosphatidylinositol kinase activity was associated with the purified Mr 35,000 subunit. Maximum phosphatidylinositol kinase activity was dependent on magnesium ions and Triton X-100 at pH 8. The true Km values for phosphatidylinositol and MgATP were 70 microM and 0.3 mM, and the true Vmax was 4,750 nmol/min/mg. The turnover number for the enzyme was 166 min-1. Results of kinetic and isotopic exchange reactions indicated that phosphatidylinositol kinase catalyzed a sequential Bi Bi reaction mechanism. The enzyme bound to phosphatidylinositol prior to ATP and phosphatidylinositol 4-phosphate was the first product released in the reaction. The equilibrium constant for the reaction indicated that the reverse reaction was favored in vitro. The activation energy for the reaction was 31.5 kcal/mol, and the enzyme was thermally labile above 30 degrees C. Phosphatidylinositol kinase activity was inhibited by calcium ions and thioreactive agents. Various nucleotides including adenosine and S-adenosylhomocysteine did not affect phosphatidylinositol kinase activity. 相似文献
12.
Purification and characterization of CDP-diacylglycerol synthase from Saccharomyces cerevisiae 总被引:4,自引:0,他引:4
The membrane-associated phospholipid biosynthetic enzyme CDP-diacylglycerol synthase (CTP:phosphatidate cytidylyltransferase, EC 2.7.7.41) was purified 2,300-fold from Saccharomyces cerevisiae. The purification procedure included Triton X-100 solubilization of mitochondrial membranes, CDP-diacylglycerol-Sepharose affinity chromatography, and hydroxylapatite chromatography. The procedure resulted in a nearly homogeneous enzyme preparation as determined by native and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Radiation inactivation of mitochondrial associated and purified CDP-diacylglycerol synthase suggested that the molecular weight of the native enzyme was 114,000. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the purified enzyme preparation yielded two subunits with molecular weights of 56,000 and 54,000. Antibodies prepared against the purified enzyme immunoprecipitated CDP-diacylglycerol synthase activity and subunits. CDP-diacylglycerol synthase activity was dependent on magnesium ions and Triton X-100 at pH 6.5. Thio-reactive agents inhibited activity. The activation energy for the reaction was 9 kcal/mol, and the enzyme was thermally labile above 30 degrees C. The Km values for CTP and phosphatidate were 1 and 0.5 mM, respectively, and the Vmax was 4,700 nmol/min/mg. Results of kinetic and isotopic exchange reactions suggested that the enzyme catalyzes a sequential Bi Bi reaction mechanism. 相似文献
13.
14.
Purification and characterization of hypoxanthine-guanine phosphoribosyltransferase from Saccharomyces cerevisiae 总被引:2,自引:0,他引:2
Hypoxanthine-guanine phosphoribosyltransferase (HPRT) was purified 12 000-fold to homogeneity from yeast by a three-step procedure including acid precipitation, anion-exchange chromatography, and guanosine 5' -monophosphate affinity chromatography. The enzyme is a dimer consisting of two, probably identical, subunits of Mr 29 500. The enzyme recognized hypoxanthine and guanine, but not adenine or xanthine, as substrates. An antiserum against both native and denatured enzyme has been raised and shown to be specific for the enzyme. The antiserum has no affinity for Chinese hamster or human HPRT but does recognize subunits of yeast HPRT as well as some cyanogen bromide fragments of the enzyme. 相似文献
15.
Purification and characterization of phosphatidate phosphatase from Saccharomyces cerevisiae 总被引:1,自引:0,他引:1
Membrane-associated phosphatidate phosphatase (EC 3.1.3.4) was purified 9833-fold from the yeast Saccharomyces cerevisiae. The purification procedure included sodium cholate solubilization of total membranes followed by chromatography with DE53, Affi-Gel Blue, hydroxylapatite, Mono Q, and Superose 12. The procedure resulted in the isolation of a protein with a subunit molecular weight of 91,000 that was apparently homogeneous as evidenced by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Phosphatidate phosphatase activity was associated with the purified 91,000 subunit. The molecular weight of the native enzyme was estimated to be 93,000 by gel filtration chromatography with Superose 12. Maximum phosphatidate phosphatase activity was dependent on magnesium ions and Triton X-100 at pH 7. The Km value for phosphatidate was 50 microM, and the Vmax was 30 mumol/min/mg. The turnover number (molecular activity) for the enzyme was 2.7 x 10(3) min-1 at pH 7 and 30 degrees C. The activation energy for the reaction was 11.9 kcal/mol, and the enzyme was labile above 30 degrees C. Phosphatidate phosphatase activity was sensitive to thioreactive agents. Activity was inhibited by the phospholipid intermediate CDP-diacylglycerol and the neutral lipids diacylglycerol and triacylglycerol. 相似文献
16.
DNA polymerase III from Saccharomyces cerevisiae. I. Purification and characterization 总被引:24,自引:0,他引:24
Yeast cells from a wild type or protease-deficient strain were lysed in the absence or presence of protease inhibitors and the extracts analyzed by analytical high pressure liquid chromatography on diethylaminoethyl silica gel. Conditions that inhibited protease action caused elution of a novel DNA polymerase activity at a position in the gradient distinct from the elution positions of both DNA polymerase I and II. In large scale purifications, this DNA polymerase, called DNA polymerase III, copurified with a single-stranded DNA dependent 3'-5' exonuclease activity, exonuclease III, to near homogeneity. Glycerol gradient centrifugation partially dissociated the complex to yield two peaks of exonuclease III activity, one at 7.7 S together with the DNA polymerase, and one at 4.0 S without polymerase activity. Gel filtration indicated that the complex has a molecular mass greater than 400 kDa. Polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate indicated that the complex consists of several subunits: 140, 62, 55, and 53 kilodaltons, some of which may be proteolysis products. The exonuclease component of the complex can excise single nucleotide mismatches providing a base-paired primer-template which can be elongated by the DNA polymerase. Under replication conditions, the complex exhibits a measurable turnover rate of dTTP to dTMP and it contains no primase activity. The enzymatic activities of the 3'-5' exonuclease are consistent with a proofreading function during in vivo DNA replication. A second exonuclease activity, exonuclease IV, separated from the complex late in the purification scheme. It degrades both single-stranded and double-stranded DNA in the 5'----3' direction. 相似文献
17.
Homoserine dehydrogenase of Saccharomyces cerevisiae has been rapidly purified to homogeneity by heat and acid treatments, ammonium sulfate fractionation, and chromatography on Matrex Gel Red A and Q-Sepharose columns. The final preparation migrated as a single entity upon sodium dodecyl sulfate-polyacrylamide gel electrophoresis with a Mr of 40,000. The Mr of the native enzyme was 81,000 as determined by gel filtration, suggesting that the enzyme is composed of two identical subunits. This feature was also confirmed by cross-linking analysis using the bifunctional reagent dimethyl suberimidate. Feedback inhibition by L-methionine and L-threonine was observed using the purified enzyme. The enzyme was markedly stabilized against heat treatment at high salt concentrations. Additions of feedback inhibitors or high concentrations of salts failed to cause any dissociation or aggregation of the enzyme subunits unlike enzymes from other sources such as Rhodospirillum rubrum. The enzyme denatured in 3 M guanidine-HCl was refolded by simple dilution with a concomitant restoration of the activity. Cross-linking analysis of the renaturation process suggested that the formation of the dimer is required for activity expression. Amino acid sequence analysis of peptides obtained by digestion of the enzyme protein with Achromobacter lyticus protease I revealed that several amino acid residues are strictly conserved among homoserine dehydrogenases from S. cerevisiae, Escherichia coli, and Bacillus subtilis. 相似文献
18.
Purification and partial characterization of an aldo-keto reductase from Saccharomyces cerevisiae. 总被引:4,自引:3,他引:4 下载免费PDF全文
A cytosolic aldo-keto reductase was purified from Saccharomyces cerevisiae ATCC 26602 to homogeneity by affinity chromatography, chromatofocusing, and hydroxylapatite chromatography. The relative molecular weights of the aldo-keto reductase as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and size exclusion chromatography were 36,800 and 35,000, respectively, indicating that the enzyme is monomeric. Amino acid composition and N-terminal sequence analysis revealed that the enzyme is closely related to the aldose reductases of xylose-fermenting yeasts and mammalian tissues. The enzyme was apparently immunologically unrelated to the aldose reductases of other xylose-fermenting yeasts. The aldo-keto reductase is NADPH specific and catalyzes the reduction of a variety of aldehydes. The best substrate for the enzyme is the aromatic aldehyde p-nitrobenzaldehyde (Km = 46 microM; kcat/Km = 52,100 s-1 M-1), whereas among the aldoses, DL-glyceraldehyde was the preferred substrate (Km = 1.44 mM; kcat/Km = 1,790 s-1 M-1). The enzyme failed to catalyze the reduction of menadione and p-benzoquinone, substrates for carbonyl reductase. The enzyme was inhibited only slightly by 2 mM sodium valproate and was activated by pyridoxal 5'-phosphate. The optimum pH of the enzyme is 5. These data indicate that the S. cerevisiae aldo-keto reductase is a monomeric NADPH-specific reductase with strong similarities to the aldose reductases. 相似文献
19.
Acetyl-CoA hydrolase, which hydrolyzes acetyl-CoA to acetate and CoASH, was isolated from Saccharomyces cerevisiae and demonstrated by protein sequence analysis to be NH2-terminally blocked. The enzyme was purified 1080-fold to apparent homogeneity by successive purification steps using DEAE-Sepharose, gel filtration and hydroxylapatite. The molecular mass of the native yeast acetyl-CoA hydrolase was estimated to be 64 +/- 5 kDa by gel-filtration chromatography. SDS/PAGE analysis revealed that the denatured molecular mass was 65 +/- 2 kDa and together with that for the native enzyme indicates that yeast acetyl-CoA hydrolase was monomeric. The enzyme had a pH optimum near 8.0 and its pI was approximately 5.8. Several acyl-CoA derivatives of varying chain length were tested as substrates for yeast acetyl-CoA hydrolase. Although acetyl-CoA hydrolase was relatively specific for acetyl-CoA, longer acyl-chain CoAs were also hydrolyzed and were capable of functioning as inhibitors during the hydrolysis of acetyl-CoA. Among a series of divalent cations, Zn2+ was demonstrated to be the most potent inhibitor. The enzyme was inactivated by chemical modification with diethyl pyrocarbonate, a histidine-modifying reagent. 相似文献
20.
Ubiquitin-activating enzyme was purified from the yeast Saccharomyces cerevisiae by covalent affinity chromatography on ubiquitin-Sepharose followed by HPLC anion-exchange chromatography. Enzyme activity was monitored by the ubiquitin-dependent ATP: 32PPi exchange assay. The purified enzyme has a specific activity of 1.5 mumol 32PPi incorporated into ATP.min-1.mg-1 at 37 degrees C and pH 7.0 under standard conditions for substrate concentrations as described by Ciechanover et al. (1982) J. Biol. Chem. 257, 2537-2542. The catalytic activity showed a maximum at pH 7.0. Its molecular weight both in non-denaturing and in SDS-gel electrophoresis was estimated to be 115 kDa, suggesting a monomeric form. The isoelectric point determined by gel electrofocusing was approximately 4.7. Two protein bands differing slightly in electrophoretic mobility could be distinguished when SDS gels were loaded with very small amounts of purified E1 and immunoblotted, the one with higher molecular weight being clearly predominant. The same two bands were also found in anti-E1 immunoblots of crude yeast lysates prepared under broad protease inhibition. 相似文献