首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
To investigate the pattern of expression of the three calmodulin (CaM) genes by in situ hybridization, gene-specific [35S]-cRNA probes complementary to the multiple CaM mRNAs were hybridized in rat brain sections and subsequently detected by quantitative film or high-resolution nuclear emulsion autoradiography. A widespread and differential area-specific distribution of the CaM mRNAs was detected. The expression patterns corresponding to the three CaM genes differed most considerably in the olfactory bulb, the cerebral and cerebellar cortices, the diagonal band, the suprachiasmatic and medial habenular nuclei, and the hippocampus. Moreover, the significantly higher CaM I and CaM III mRNA copy numbers than that of CaM II in the molecular layers of certain brain areas revealed a differential dendritic targeting of these mRNAs. The results indicate a differential pattern of distribution of the multiple CaM mRNAs at two levels of cellular organization in the brain: (a) region-specific expression and (b) specific intracellular targeting. A precise and gene-specific regulation of synthesis and distribution of CaM mRNAs therefore exists under physiological conditions in the rat brain.  相似文献   

3.
Structural organization of multiple rat calmodulin genes   总被引:12,自引:0,他引:12  
Elsewhere, we have reported the structure of a rat calmodulin gene and two distinct rat calmodulin cDNAs, pRCM1 and pRCM3. Here, I report the cloning and sequencing of the third calmodulin cDNA (pRCM4) and two additional rat calmodulin genes. The original calmodulin gene is named CaM I (pRCM1) and the newly discovered calmodulin genes are named CaM II (pRCM3) and CaM III (pRCM4). CaM II spans about 10 x 10(3) base-pairs and consisted of five exons, while CaM III spans about 7.2 x 10(3) base-pairs and consisted of six exons. One of the introns (intron 3) observed in CaM I and CaM III is lost in CaM II. Otherwise, the intron/exon organization of these genes is exactly the same. In all calmodulin genes, the first intron separates the initiation codon (ATG) from the coding region of the protein. Northern blotting showed that CaM I is transcribed primarily into 1.7 x 10(3) base-pair mRNA in various tissues examined and 4.0 x 10(3) base-pair mRNA mainly in skeletal muscle, CaM II is transcribed into 1.4 x 10(3) base-pair mRNA almost exclusively in brain and CaM III is transcribed predominantly into 2.3 x 10(3) base-pair mRNA and faintly into 1.0 x 10(3) base-pair mRNA mainly in skeletal muscle and brain. DNA sequences in the promoter-regulator regions of these genes are partly homologous but essentially distinct and possess a number of direct repeats, palindromes and feasible stem-loop structures. Together with these, I report here the structures of the third and fourth calmodulin retropseudogenes.  相似文献   

4.
5.
Three different calmodulin genes that encode the identical protein have been identified in the rat (Nojima, 1989); however, calmodulin gene expression at the various stages of tissue differentiation and maturation has not been previously determined. We have quantitated the content of mRNAs encoding calmodulin in the developing brain and skeletal muscle using RNA blot analysis with three specific cDNA probes. Our results show that five species of calmodulin mRNAs: 4.0 and 1.7 kb for CaM I, 1.4 kb for CaM II, and 2.3 and 0.8 kb for CaM III are detectable at all ages in the brain as well as in skeletal muscle but exhibit a tissue-specific developmental pattern of expression. The comparison of the temporal pattern of calmodulin gene expression with both mitotic activity, as demonstrated by cyclin A mRNA levels, and differentiation and maturation of specific brain or muscle regions is consistent with calmodulin involvement in development.  相似文献   

6.
The complete nucleotide sequence of the rat aldolase A isozyme gene, including the 5' and 3' flanking sequences, was determined. The gene comprises ten exons, spans 4827 base-pairs and occurs in a single copy per haploid rat genome. The genomic DNA sequence was compared with those of three species of rat aldolase A mRNA (mRNAs I, II and III) that have been found to differ from each other only in the 5' non-coding region and to be expressed tissue-specifically. It revealed that the first exon (exon M1) encodes the 5' non-coding sequence of mRNA I, while the second exon (exon AH1) encodes those of mRNAs II and III and the following eight exons (exons 2 to 9) are shared commonly by all the mRNA species. These results allowed us to conclude that mRNA I and mRNAs II, III were generated from a single aldolase A gene by alternative usage of exon M1 or exon AH1 in addition to exons 2 to 9. S1 nuclease mapping of the 5' ends of their precursor RNAs suggested that these three mRNA species were transcribed from three different initiation sites on the single gene.  相似文献   

7.
Differential expression of fibrillar collagen genes during callus formation   总被引:5,自引:0,他引:5  
An experimental fracture healing model in the rat tibio-fibular bone was employed to study the appearance of messenger RNAs for types I, II and III collagens during endochondral fracture repair. Total RNA was extracted from normal bone and from callus tissue at various time points. The total RNAs were analyzed in Northern hybridization for their contents of procollagen mRNAs using specific cDNA clones. The results show that during the first week of fracture repair type III collagen mRNA is increased to the greatest extent, followed by type II collagen mRNA during the second week. The 28-day callus resembles bone by containing mainly type I collagen mRNAs and very little type II or III collagen mRNA.  相似文献   

8.
9.
Three species of aldolase A mRNA (mRNAs I, II, and III) only differing in the structure of the 5'-terminal noncoding region were detected in rat tissues. The cDNA clones for mRNAs II and III were prepared from ascites hepatoma AH60C and sequenced. The mRNA II is 1393 nucleotides long excluding poly(A) tail, while the mRNA III is 1440 nucleotides long, some 50 nucleotides longer than the mRNA II. The mRNAs II and III differ in the sequence between -25 and the 5' termini from the previously reported skeletal muscle aldolase A mRNA (mRNA I, 1343 nucleotides long). By contrast, the residual 5' noncoding sequence (-24 to -1) and the coding and 3' noncoding sequences are common to all the mRNAs. By dot spot hybridization and S1 mapping the distribution of these mRNAs in the various tissues was determined. The mRNA I appears exclusively in a skeletal muscle and some in heart and hepatoma AH60C, whereas the mRNAs II and III appear more or less in all the tissues examined, implying that their appearances are under tissue-specific control. Furthermore, partial nucleotide sequence analysis of the fetal liver aldolase A mRNA supports that aldolase A mRNA that reappeared in hepatoma is really a resurgence of the gene product expressed in the fetus.  相似文献   

10.
K Elima  E Vuorio 《FEBS letters》1989,258(2):195-198
Cell cultures were initiated from epiphyseal cartilages, diaphyseal periosteum, and muscle of 16-week human fetuses. Total RNAs isolated from these cultures were analyzed for the levels of mRNAs for major fibrillar collagens, two proteoglycan core proteins and osteonectin. In standard monolayer cultures the differentiated chondrocyte phenotype was replaced by a dedifferentiated one: the mRNA levels of cartilage-specific type II collagen decreased upon subculturing, while those of types I and III collagen, and the core proteins increased. When the cells were transferred to grow in agarose, redifferentiation (reappearance of type II collagen mRNA) occurred. Fibroblasts grown from periosteum and muscle were found to contain mRNAs for types I and III collagen and proteoglycan cores. When these cells were transferred to agarose they acquired a shape indistinguishable from chondrocytes, but no type II collagen mRNA was observed.  相似文献   

11.
Functional expression of cloned cDNA encoding sodium channel III   总被引:11,自引:0,他引:11  
H Suzuki  S Beckh  H Kubo  N Yahagi  H Ishida  T Kayano  M Noda  S Numa 《FEBS letters》1988,228(1):195-200
  相似文献   

12.
The role of DNA methylation in the expression of the rat gamma-glutamyl transpeptidase (GGT) gene was assessed in the Fao cell line using a hypomethylating agent, 5-azacytidine. Ten repetitive treatments of the cells, with 8 microM 5-azacytidine for 24 h, led to 13- and 80-fold increases, respectively, in GGT activity and in GGT mRNA level. The DNA methylation patterns generated by the isoschizomeric restriction enzymes Hpa II and Msp I indicated that the GGT gene, highly methylated in Fao cells, became strongly demethylated after 5-azacytidine treatments. Thus, DNA demethylation increases the expression of the GGT gene. 5-Azacytidine treatments also increased, but to a lesser extent, mRNAs level for actin, albumin, mitochondrial aspartate aminotransferase, aldolase B mRNAs (12- to 16-fold) as well as for tubulin, gluthathione transferase, and tyrosine aminotransferase mRNAs (2- to 5-fold). The GGT gene expression was further studied in B4 cells, cloned from the demethylated Fao cell population. This clone B4 exhibited a stable and strong GGT activity and a highly demethylated GGT gene. Among the three GGT mRNA I, II, or III, transcribed from three different promoters of the single rat GGT gene, only mRNA III was detected in Fao cells and was increased in clone B4, indicating that the demethylation acts on the promoter for mRNA III. The analysis of the differentiation state of B4 cells, as compared to Fao cells, showed a loss of the regulation of GGT and aspartate aminotransferase genes by dexamethasone, as well as a loss of the gluconeogenic pathway. Interestingly, B4 cells have retained many other specific functions of hepatic differentiation and have acquired alpha-fetoprotein expression; thus this clone exhibits the characteristics of a hepatic fetal phenotype.  相似文献   

13.
A Maeda  T Kubo  M Mishina  S Numa 《FEBS letters》1988,239(2):339-342
The tissue distribution of the mRNAs encoding muscarinic acetylcholine receptors (mAChRs) I, II, III and IV has been investigated by blot hybridization analysis with specific probes. This study indicates that exocrine glands contain both mAChR I and III mRNAs, whereas smooth muscles contain both mAChR II and III mRNAs. All four mAChR mRNAs are present in cerebrum, whereas only mAChR II mRNA is found in heart.  相似文献   

14.
The cells that express the genes for the fibrillar collagens, types I, II, III and V, during callus development in rabbit tibial fractures healing under stable and unstable mechanical conditions were localized. The fibroblast-like cells in the initial fibrous matrix express types I, III and V collagen mRNAs. Osteoblasts, and osteocytes in the newly formed membranous bone under the periosteum, express the mRNAs for types I, III and V collagens, but osteocytes in the mature trabeculae express none of these mRNAs. Cartilage formation starts at 7 days in calluses forming under unstable mechanical conditions. The differentiating chondrocytes express both types I and II collagen mRNAs, but later they cease expression of type I collagen mRNA. Both types I and II collagens were located in the cartilaginous areas. The hypertrophic chondrocytes express neither type I, nor type II, collagen mRNA. Osteocalcin protein was located in the bone and in some cartilaginous regions. At 21 days, irrespective of the mechanical conditions, the callus consists of a layer of bone; only a few osteoblasts lining the cavities now express type I collagen mRNA.We suggest that osteoprogenitor cells in the periosteal tissue can differentiate into either osteoblasts or chondrocytes and that some cells may exhibit an intermediate phenotype between osteoblasts and chondrocytes for a short period. The finding that hypertrophic chondrocytes do not express type I collagen mRNA suggests that they do not transdifferentiate into osteoblasts during endochondral ossification in fracture callus.  相似文献   

15.
We have examined the ability of dexamethasone, retinoic acid, and vitamin D3 to induce osteogenic differentiation in rat marrow stromal cell cultures by measuring the expression of mRNAs associated with the differentiated osteoblast phenotype as well as analyzing collagen secretion and alkaline phosphatase activity. Marrow cells were cultured for 8 days in primary culture and 8 days in secondary culture, with and without 10 nM dexamethasone or 1 microM retinoic acid. Under all conditions, cultures produced high levels of osteonectin mRNA. Cells grown with dexamethasone in both primary and secondary culture contained elevated alkaline phosphatase mRNA and significant amounts of type I collagen and osteopontin mRNA. Addition of 1,25-dihydroxyvitamin D3 to these dexamethasone-treated cultures induced expression of osteocalcin mRNA and increased osteopontin mRNA. The levels of alkaline phosphatase, osteopontin, and osteocalcin mRNAs in Dex/Dex/VitD3 cultures were comparable to those of 1,25-dihydroxyvitamin D3-treated ROS 17/2.8 osteosarcoma cells. Omitting dexamethasone from either primary or secondary culture resulted in significantly less alkaline phosphatase mRNA, little osteopontin mRNA, and no osteocalcin mRNA. Retinoic acid increased alkaline phosphatase activity to a greater extent than did dexamethasone but did not have a parallel effect on the expression of alkaline phosphatase mRNA and induced neither osteopontin or osteocalcin mRNAs. In all conditions, marrow stromal cells synthesized and secreted a mixture of type I and III collagens. However, dexamethasone-treated cells also synthesized an additional collagen type, provisionally identified as type V. The synthesis and secretion of collagens type I and III was decreased by both dexamethasone and retinoic acid. Neither dexamethasone nor retinoic acid induced mRNAs associated with the chondrogenic phenotype. We conclude that dexamethasone, but not retinoic acid, promotes the expression of markers of the osteoblast phenotype in cultures of rat marrow stromal fibroblasts.  相似文献   

16.
17.
18.
A fluorescence-based method using the cell sorter has been devised to separate rat lung fibroblasts into subpopulations. Type I or type III collagen antiserum was used as the primary antibody to react with parent rat lung fibroblasts. This was followed by a fluorescein-conjugated secondary antibody. Specificity of the primary collagen antibody was determined using a monoclonal beta-actin antibody and purified IgG as the primary antibodies. The fluorescent shift of parent rat lung fibroblasts was optimized for the amount of primary collagen antibody and secondary fluorescein-conjugated antibody. An increase in slot blot intensity was observed for pro-alpha 1(I), pro-alpha 2(I), and pro-alpha 1(III) mRNAs with increasing amounts of cellular RNA. When precipitating with type I collagen antibodies, the total cellular steady-state levels of type I procollagen mRNAs were increased in the high intensity cells as compared with the low intensity cells. Alternately, when the type III collagen antibodies were used to precipitate the rat lung fibroblasts, the low intensity cells had increased type I procollagen mRNAs while the high intensity cells had increased type III procollagen mRNA. The subpopulations of rat lung fibroblasts after isolation using the fluorescent cell sorter were readily propagated for at least four passages.  相似文献   

19.
S Beckh 《FEBS letters》1990,262(2):317-322
RNA blot hybridization analyses using probes specific for sodium channels I, II and III revealed high levels of sodium channel I mRNA and low levels of sodium channel II and III mRNAs in peripheral nervous system (PNS) tissues. The developmental expression patterns of these mRNAs were generally similar to those described for the central nervous system. The small amounts of sodium channel I and III mRNAs present in tongue muscle were greatly reduced after partial denervation. Expression of the three sodium channels thus appears to be restricted to the nervous system. Putative novel additional mRNAs, specifically expressed in the PNS, were detected with a probe that recognizes nucleotide sequences common to sodium channels I, II and III.  相似文献   

20.
We have reported that the delta3 isoform of Ca2+/ calmodulin-dependent protein kinase II (CaM kinase II) is abundant in the nucleus in cerebellar granule cells. To examine the possibility that the nuclear isoforms of CaM kinase II are involved in the expression of brain-derived neurotrophic factor (BDNF), we transiently overexpressed the delta3 isoform in NG108-15 cells. The quantitative RT-PCR analysis revealed that rat cerebellum and NG108-15 cells expressed the exon IV-containing mRNA of BDNF (exon IV-BDNF mRNA) more than the exon III-BDNF mRNA. Treatment of NG108-15 cells with Bay K 8644 increased both exon III- and exon IV-BDNF mRNAs, and overexpression of the 83 isoform potentiated the expression of the exon IV-BDNF mRNA. The potentiation was not observed in the cells that were overexpressed with either the 61 isoform, a nonnuclear isoform, or the inactive mutant of the delta3 isoform. We constructed the luciferase reporter gene following the promoter upstream of exon IV and confirmed that overexpression of the delta3 isoform increased luciferase gene expression. Double-immunostaining of NG108-15 cells with the antibodies to CaM kinase II and BDNF clearly showed that BDNF was highly expressed in the cells that were overexpressed with the delta3 isoform or the alphaB isoform, another nuclear isoform of CaM kinase II. These results suggest that the nuclear isoforms of CaM kinase II are involved in the expression of BDNF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号