首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
The reduction of Hansenula anomala yeast cytochrome c by e-aq and CO-.2 was investigated by pulse radiolysis, at a high reductant to protein concentration ratio. The reactivity of the radicals was studied by observing absorbance changes in the cytochrome c spectrum over the wavelength range 280-600 nm. At pH 7, over the time scale of the radical decays (i.e. 0-4 microseconds for e-aq; 0-40 microseconds for CO-.2s) and beyond, the hemoprotein was reduced without any spectrally detected intermediate between ferri-and ferro-forms. This conclusion was reached by simulation studies based on the direct reduction of the yeast cytochrome c from the ferri- to the ferro-form, yielding a correct fit between experimental and calculated absorbance curves. The reduction rate constants were determined to be 1.0 +/- 01 X 10(10) M-1 S-1 for e-aq and 0.7 +/- 0.05 X 10(9) M-1 S-1 for CO-.2 at 0.16 M ionic strength, pH 7.0 and 20 degrees C, thus not significantly different from other values reported for horse heart cytochrome c. However, in the 360-390 nm region the generation of an additional radical species was noticed. The present experimental data were compared with previously published reports.  相似文献   

5.
Summary Transport and utilization of malic acid by the yeast Hansenula anomala are subject to glucose repression. Derepressed diploid mutant strains were obtained by hybridization of derepressed haploid mutant strains of opposite mating type. Six diploid mutant strains displayed derepressed behaviour with respect to malic acid utilization in the presence of glucose up to 30% (w/v). Three of these diploid mutant strains, as compared with the parent strain, were able to degrade completely malic acid in grape juice without fermenting the sugars. In addition, using one diploid mutant strain together with a strain of the wine yeast Saccharomyces cerevisiae, it was possible to carry out a mixedmicrovinification in which deacidification occurred simultaneously with alcoholic fermentation.  相似文献   

6.
DL-Malic acid-grown cells of the yeast Hansenula anomala formed a saturable transport system that mediated accumulative transport of L-malic acid with the following kinetic parameters at pH 5.0: Vmax, 0.20 nmol.s-1.mg (dry weight)-1; Km, 0.076 mM L-malate. Uptake of malic acid was accompanied by proton disappearance from the external medium with rates that followed Michaelis-Menten kinetics as a function of malic acid concentration. Fumaric acid, alpha-ketoglutaric acid, oxaloacetic acid, D-malic acid, and L-malic acid were competitive inhibitors of succinic acid transport, and all induced proton movements that followed Michaelis-Menten kinetics, suggesting that all of these dicarboxylates used the same transport system. Maleic acid, malonic acid, oxalic acid, and L-(+)-tartaric acid, as well as other Krebs cycle acids such as citric and isocitric acids, were not accepted by the malate transport system. Km measurements as a function of pH suggested that the anionic forms of the acids were transported by an accumulative dicarboxylate proton symporter. The accumulation ratio at pH 5.0 was about 40. The malate system was inducible and was subject to glucose repression. Undissociated succinic acid entered the cells slowly by simple diffusion. The permeability of the cells by undissociated acid increased with pH, with the diffusion constant increasing 100-fold between pH 3.0 and 6.0.  相似文献   

7.
A host-vector system for the yeast Hansenula anomala was developed. The system was based on an auxotrophic mutant host of H. anomala which was defective in orotidine-5′-phosphate decarboxylase (ODCase) activity. The H. anomala ODCase-negative mutant strains (ura3 strains) were isolated based on 5-fluoroorotic acid (5-FOA) resistance. A plasmid vector containing the H. anomala URA3 gene was used for transformation. Using this plasmid, all of the H. anomala ura3 strains tested could be transformed to Ura+ phenotypes. In all of Ura+ transformants, the introduced plasmid was integrated into the chromosomal URA3 locus by homologous recombination. The Ura+ phenotype of the transformants was stably maintained after nonselective growth.  相似文献   

8.
9.
DL-Malic acid-grown cells of the yeast Hansenula anomala formed a saturable transport system that mediated accumulative transport of L-malic acid with the following kinetic parameters at pH 5.0: Vmax, 0.20 nmol.s-1.mg (dry weight)-1; Km, 0.076 mM L-malate. Uptake of malic acid was accompanied by proton disappearance from the external medium with rates that followed Michaelis-Menten kinetics as a function of malic acid concentration. Fumaric acid, alpha-ketoglutaric acid, oxaloacetic acid, D-malic acid, and L-malic acid were competitive inhibitors of succinic acid transport, and all induced proton movements that followed Michaelis-Menten kinetics, suggesting that all of these dicarboxylates used the same transport system. Maleic acid, malonic acid, oxalic acid, and L-(+)-tartaric acid, as well as other Krebs cycle acids such as citric and isocitric acids, were not accepted by the malate transport system. Km measurements as a function of pH suggested that the anionic forms of the acids were transported by an accumulative dicarboxylate proton symporter. The accumulation ratio at pH 5.0 was about 40. The malate system was inducible and was subject to glucose repression. Undissociated succinic acid entered the cells slowly by simple diffusion. The permeability of the cells by undissociated acid increased with pH, with the diffusion constant increasing 100-fold between pH 3.0 and 6.0.  相似文献   

10.
11.
Regulation of alternative oxidase gene expression in soybean   总被引:13,自引:0,他引:13  
Soybean (Glycine max cv. Stevens) suspension cells were used to investigate the expression of the alternative oxidase (Aox) multigene family. Suspension cells displayed very high rates of cyanide-insensitive respiration, but Aox3 was the only isoform detected in untreated cells. Incubation with antimycin A, citrate, salicylic acid or at low temperature (10 °C) specifically induced the accumulation of the Aox1 isoform. Aox2 was not observed under any conditions in the cells. Increases in Aox1 protein correlated with increases in Aox1 mRNA. Treatment of soybean cotyledons with norflurazon also induced expression of Aox1. Reactive oxygen species (ROS) were detected upon incubation of cells with antimycin, salicylic acid or at low temperature, but not during incubation with citrate. Aox1 induction by citrate, but not by antimycin, was prevented by including the protein kinase inhibitor staurosporine in the medium. The results suggest that multiple pathways exist in soybean to regulate expression of Aox genes and that Aox1 specifically is induced by a variety of stress and metabolic conditions via at least two independent signal transduction pathways.  相似文献   

12.
Levels of nitrate reductase (NR) protein in Hansenula anomala and Hansenula wingei were determined using specific antiserum raised against the enzyme from H. anomala. Extracts from nitrate-grown cells contained NR protein, while in those from cells grown on ammonium, glutamine or peptone, no cross-reacting material could be observed. Enzyme activity correlated with the levels of cross-reacting material. When nitrate was used as nitrogen source, NR was always present, even in cultures with ammonium, glutamine or peptone, although in these cases both the levels of activity and protein were lower. NR activity was consistently two to four times higher in cells grown in glucose than in cells grown in ethanol. Nitrate was required for NR induction, and deprivation of nitrate from nitrate-grown cells resulted in a rapid loss of NR activity.  相似文献   

13.
Summary Control of oxygen concentration in the culture medium during growth of the yeast Hansenula anomala on l-lactate as sole carbon source allows induction of the synthesis of flavocytochrome b2 or l-lactate cytochrome-c oxydoreductase (E.C. 1.1.2.3.). This phenomenon is accompanied by an important change in the yeast doubling time.  相似文献   

14.
To establish a basis for genetic and molecular studies of nitrite assimilation in the methylotrophic yeast Hansenula polymorpha, we isolated and characterised six nitrite-negative mutants still capable of growing on nitrate. Gene isolation work yielded the NII2 gene, encoding a membrane protein homologous to the Saccharomyces cerevisiae Pho86p. Sequence analysis revealed an ORF of 860 bp encoding a 286-amino-acid protein with a predicted molecular mass of 32.8 kDa. This protein is shorter than its S. cerevisiae homologue, and is predicted to lack an ER-retention signal. Cell suspension work revealed that the null mutant is unable to take up nitrite from the medium.  相似文献   

15.
The binding of cytochrome c to the cytochrome b2 core, both extracted from the yeast, Hansenula anomala, has been studied. Cytochrome b2 core heme is extracted and replaced by the fluorescent probe, 2-p-toluidinylnaphthalene-6-sulfonate (TNS). A dissociation constant in the range of 85 microM is found for the TNS-apoprotein complex with a stoichiometry of 1:1. The interaction between the two proteins is followed by monitoring changes in the TNS fluorescence. We find the interaction between the cytochrome c and the apocytochrome b2 core to be dependent upon the ionic strength. The dissociation constant of this complex at 20 mM ionic strength is 6 +/- 2 microM with a 1:1 stoichiometry. This dissociation constant is similar to that estimated, by other researchers, for the dimer Zn cytochrome c-cytochrome b2 core complex.  相似文献   

16.
Systemic infections caused by opportunistic fungi have shown an increased frequency in the past 10 years, particularly in immunocompromised patients. Hansenula anomala is an ascosporogenous yeast of the Ascomycetes class found in the skin, throat, and digestive tract transient normal flora. This study was conducted to compare the pathogenicity of H. anomala and Candida albicans in a model of immunocompromised mice. Thirty-eight Swiss mice were divided into two groups as follows: 30 animals received an intraperitoneal (i.p.) injection of cyclophosphamide (200 mg/kg) four days before the induction of infection with H. anomala (1 × 106 yeasts/mL), and 8 animals received 100 mg/kg of cyclophosphamide at 3-day intervals during 3 weeks before inoculation of 1 × 107 yeasts/mL. All animals were treated with amoxicillin/clavulanic acid (40 mg/kg) four days before induction of infection. A group of mice inoculatd with C. albicans (ATCC 64548) served as control. Tissue samples from the lung, spleen, liver, and kidney for histological and mycologic studies were obtained at necropsy. In each animal, the number of viable yeasts per gram of kidney was determined. The organs most frequently infected by H. anomala were the kidneys and the liver (20%), and the lung (10%). However, in conditions of sustained immunosuppression, H. anomala was found in 65.5% of the organs examined. It is concluded that in an experimental model of immunocompromised mice, the pathogenicity of H. anomala was low. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

17.
In this study, the role of Brassinosteroids (BRs) and the relationship between the mitochondrial alternative oxidase (AOX) and ROS in the BR-induced defence response to salt stress was studied in mustard plants. Salt stress induced a significant activation of AOX. Exogenous BR significantly enhanced the capacity of the cyanide-resistant pathway, and reduced the damage of cell membrane. Pretreatment with brassinazole (Brz, an inhibitor of the BR biosynthesis pathway) significantly blocked the capacity of the cyanide-resistant pathway. BR could partly recover the AOX inactivation under salicylhydroxamic acid (SHAM, an inhibitor of the cyanide-resistant pathway) pretreatment. It was also found that BR could enhance the ROS accumulation and the antioxidant enzyme activities, while the AOX could eliminate the excessive ROS and enhance the antioxidant enzyme activities. Furthermore, the suppression of the cyanide-resistant pathway significantly increased the MDA content and the electrolyte leakage in mustard leaves, and the suppression of the BR biosynthesis had little effect on their recovering. Taken together, the cyanide-resistant pathway was involved in BR-induced salt tolerance and played an important role in maintaining the permeability of the cell membrane.  相似文献   

18.
19.
An NADPH oxidase is thought to be a main source of vascular superoxide (O(2)(-)) production. The functional role of this oxidase, however, and the contribution of the different subunits of the enzyme to cellular signaling are still incompletely understood. We determined the role of the p47phox subunit of the oxidase in O(2)(-) generation and signaling in aortic rings and cultured smooth muscle cells (SMC) from wild-type (WT) and p47phox-deficient (p47phox -/-) mice. Basal O(2)(-) levels in aortae of p47phox -/- mice were lower than those in WT aortae. Infusion of [val(5)]-angiotensin II increased O(2)(-) levels in aortae from WT more than in aortae from p47phox -/- mice. O(2)(-) generation was similar in quiescent SMC from WT and p47phox -/- mice. However, exposure to thrombin selectively increased O(2)(-) generation in VSMC from WT, but not from p47phox -/- mice. Thrombin-activated redox-mediated signal transduction and gene expression was attenuated in VSMC from p47phox -/- compared to cells from WT mice as determined by p38 MAP kinase activation and VEGF gene expression. We conclude that p47phox is important for vascular ROS production and redox-modulated signaling and gene expression in VSMC.  相似文献   

20.
The induction of cyanide-resistant respiration in Hansenula anomala   总被引:3,自引:0,他引:3  
Cyanide-resistant respiration was induced in the yeast, Hansenula anomala in the presence of cyanide or antimycin A, which blocks the electron transport after ubiquinone. The de novo protein synthesis in cytosol and oxygen were deduced to be involved in this induction process. The period required for the induction varied during the growth stage, suggesting that involvement of additional physiological factor(s) in this induction process. The organism could multiply in the presence of antimycin A by developing cyanide-resistant respiration despite a decreased growth rate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号