首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Galleria mellonella L. larvae were infected with three species (seven strains) of Steinernema spp. or three species (three strains) of Heterorhabditis spp. Infected larvae were incubated at 22, 27, and 32 degrees C. Larvae were dorsally dissected every 6h over a 48-h period. Hemolymph was collected and streaked on tryptic soy agar plates. Several non-symbiotic bacterial species were identified from infected insect cadavers: Enterobacter gergoviae, Vibrio spp., Pseudomonas fluorescens type C, Serratia marcescens, Citrobacter freundii, and Serratia proteomaculans. At 18-24 h incubation, the nematode-associated symbiont occurred almost exclusively. Bacterial associates generally appeared outside the 18-24 h window. Infective juveniles of Steinernema feltiae (Filipjev) (27), Steinernema riobrave Cabanillas, Poinar, and Raulston (Oscar), or Steinernema carpocapsae (Weiser) (Kapow) were left untreated, or surface sterilized using thimerosal, then pipetted under sterile conditions onto tryptic soy agar plates. Several additional species of associated bacteria were identified using this method compared with the less extensive range of species isolated from infected G. mellonella. There was no difference in bacterial species identified from non-sterile or surface sterilized nematodes, suggesting that the bacteria identified originated from either inside the nematode or between second and third stage juvenile cuticles. Infective juveniles of S. feltiae (Cowles), S. carpocapsae (Cowles), and H. bacteriophora Poinar (Cowles) were isolated from field samples. Nematodes were surface-sterilized using sodium hypochlorite, mixed with G. mellonella hemolymph, and pipetted onto Biolog BUG (with blood) agar. Only the relevant symbionts were isolated from the limited number of samples available. The nematodes were then cultured in the laboratory for 14 months (sub-cultured in G. mellonella 7-times). Other Enterobacteriaceae could then be isolated from the steinernematid nematodes including S. marcescens, Salmonella sp., and E. gergoviae, indicating the ability of the nematodes to associate with other bacteria in laboratory culture.  相似文献   

2.
The diversity and distribution of entomopathogenic nematodes in thefamilies Steinernematidae and Heterorhabditidae were assessed throughout anextensive soil survey in Turkey during 1999 and 2000. Entomopathogenic nematodeswere recovered from six out of seven regions sampled, with 22 positive sites(2%) out of 1080 sites sampled. A single nematode isolate was recovered at eachof the positive sites, of which 15 were steinernematid isolates and seven wereheterorhabditid isolates representing a total of four species. Based onmorphometric and molecular data, the nematode species were identified asHeterorhabditis bacteriophora, Steinernemafeltiae, S. affine, andSteinernema n. sp. The most common species was S.feltiae, which was isolated from 10 sites in six regions, followed byH. bacteriophora from seven sites in five regions,S. affine from four sites in two regions, andSteinernema n. sp. from one site. Heterorhabditisbacteriophora and S. feltiae have been found inmany parts of the world, whereas S. affine, so far, hasonly been recovered in Europe until our survey. Steinernemaaffine was isolated from the European (Marmara) as well as theAsiatic region (Middle Anatolia) of Turkey. A new undescribedSteinernema sp. was isolated from the most eastern region(East Anatolia) of Turkey. Soils of the positive sites were classified as sandy,sandy loam, or loam (68.2%) and sandy–clay–loam or clay loam (31.8%) and the pHranged from 5.6 to 7.9. The habitats from which the entomopathogenic nematodeswere isolated were broadly classified as disturbed (59.1%), which includedagricultural fields and poplar planted for lumber and wind breaks, andundisturbed (40.9%), which included pine forest, grassland, marsh and reed sites.Steinernema feltiae, S. affine, andH. bacteriophora were recovered from both disturbed andundisturbed habitats. The new Steinernema sp. was recoveredfrom grassland. Our survey showed that these nematodes occur widely throughoutTurkey, but at a frequency below that reported for other parts of the world.  相似文献   

3.
《Biological Control》2009,48(3):315-321
Biological control potential of nine entomopathogenic nematodes, Heterorhabditis bacteriophora CLO51 strain (HbCLO51), H. megidis VBM30 strain (HmVBM30), H. indica, Steinernema scarabaei, S. feltiae, S. arenarium, S. carpocapsae Belgian strain (ScBE), S. glaseri Belgian strain (SgBE) and S. glaseri NC strain (SgNC), was tested against second-, and third-instar larvae and pupae of Hoplia philanthus in laboratory and greenhouse experiments. The susceptibility of the developmental stages of H. philanthus differed greatly among tested nematode species/strains. In the laboratory experiments, SgBE, SgNC, HbCLO51 and HmVBM30 were highly virulent to third-instar larvae and pupae while SgBE was only virulent to second-instar larvae. Pupae were highly susceptible to HbCLO51, HmVBM30, SgBE and SgNC (57–100%) followed by H. indica and S. scarabaei (57–76%). In pot experiments, HbCLO51, SgBE and S. scarabaei were highly virulent to the third-instar larvae compared to the second-instar larvae. Our observations, combined with those of previous studies on other nematode and white grub species, show that nematode virulence against white grub developmental stages varies with white grub and nematode species.  相似文献   

4.
Entomopathogenic nematode species of Steinernema carpocapsae, Steinernema riobrave, or Heterorhabditis bacteriophora were used to compare survival and infectivity among infective juveniles (IJs) emerging in water from hosts in White traps (treatment a), emerging in sand from hosts placed in sand (treatment c), and emerging from hosts placed on a mesh suspended over sand (treatment m). Nematode survival and infectivity was recorded in sand at three-day intervals during 21 days of storage in desiccators at 75% relative humidity and 25 degrees C. Infectivity was measured by exposing 5 Galleria mellonella for 16 h to IJs. Treatment did not affect percent survival of H. bacteriophora IJs. Percent survival of S. riobrave and S. carpocapsae IJs was lowest in treatment a. Across all treatments, by 10 days after the beginning of the experiments, IJ survival declined to 93, 43, and 28% of levels on day 1 for H. bacteriophora, S. riobrave, and S. carpocapsae, respectively. For the three treatments, infection rate over time was described by a negative exponential function for S. riobrave and S. carpocapsae and by a sigmoid function for H. bacteriophora.  相似文献   

5.
The European crane fly (ECF), Tipula paludosa Meigen feeds on leaves, crowns, and roots of cool-season turfgrasses causing damage to residential lawns and golf courses. A laboratory study was conducted to determine the susceptibility of ECF larvae to four commercial entomopathogenic nematode (EPN) species (Heterorhabditis marelatus, H. megidis, Steinernema carpocapsae and S. feltiae). The virulence of four S. feltiae isolates recovered from golf courses in Quebec and Ontario were also compared to a commercial strain. LC50 values of EPN against late instar ECF larvae were 152, 562, 763, and 3584 for S. feltiae, H. megidis, H. marelatus and S. carpocapsae, respectively. When non-feeding (without grass seedling), ECF larvae mortalities decreased for all nematode species and concentrations tested. At 25°C, LC50 values for the two most virulent indigenous S. feltiae were 129 and 187 nematodes/larva, not different from the commercial strain. At 5°C, the commercial S. feltiae was more effective than both BIC14A and RE6A isolates against ECF larvae. However, at 15°C, BIC14A was the most virulent at the low concentration of 200 IJs/larva.  相似文献   

6.
Citrus peel essential oils are considered to constitute the most important resistance factor of citrus fruits against fruit flies. Essential oils were obtained from three sweet orange varieties, one bitter orange and one lemon variety. Yield, chemical composition and toxicity against neonates of the Mediterranean fruit fly were determined. Based on chemical analysis, the toxicity of commercially purchased major and minor components (monoterpenes and sesquiterpenes) of essential oils was determined. In addition, fractions were prepared to evaluate the role of minor components in the toxicity of crude essential oils. Limonene was by far the most abundant ingredient (96.2–97.4%) in all sweet orange varieties and in bitter orange, while the concentration of limonene was much lower in lemon essential oils (74.3%). Orange and bitter orange essential oils were more toxic than lemon essential oils. The toxicity of orange and bitter orange essential oils was similar to that of their major component limonene. In tests of commercially purchased chemicals, the oxygenated components of essential oils were more toxic than hydrocarbons but their low concentration in citrus essential oils could not affect the toxic activity of essential oils. The presence of α-pinene and β-pinene seems to account for the lower toxicity of lemon essential oils in relation to other citrus essential oils. The importance of understanding the toxicity of essential oils in relation to their composition and their role regarding the resistance of citrus fruits to Ceratitis capitata infestation is discussed.  相似文献   

7.
8.
Biological control potential of nine entomopathogenic nematodes, Heterorhabditis bacteriophora CLO51 strain (HbCLO51), H. megidis VBM30 strain (HmVBM30), H. indica, Steinernema scarabaei, S. feltiae, S. arenarium, S. carpocapsae Belgian strain (ScBE), S. glaseri Belgian strain (SgBE) and S. glaseri NC strain (SgNC), was tested against second-, and third-instar larvae and pupae of Hoplia philanthus in laboratory and greenhouse experiments. The susceptibility of the developmental stages of H. philanthus differed greatly among tested nematode species/strains. In the laboratory experiments, SgBE, SgNC, HbCLO51 and HmVBM30 were highly virulent to third-instar larvae and pupae while SgBE was only virulent to second-instar larvae. Pupae were highly susceptible to HbCLO51, HmVBM30, SgBE and SgNC (57–100%) followed by H. indica and S. scarabaei (57–76%). In pot experiments, HbCLO51, SgBE and S. scarabaei were highly virulent to the third-instar larvae compared to the second-instar larvae. Our observations, combined with those of previous studies on other nematode and white grub species, show that nematode virulence against white grub developmental stages varies with white grub and nematode species.  相似文献   

9.
The effects of soil depth, soil type and temperature on the activity of the nematode Steinernema carpocapsae (Filipjev) were examined using larvae of the West Indian fruit fly, Anastrepha obliqua (Macquart). Bioassays involved applying infective juveniles (IJs) to the surface of sterilized sand in PVC tubes previously inoculated with fly larvae of two ages. The 50% lethal concentration (LC50) values estimated for 6-day-old larvae were 9, 20 and 102 IJs/cm2 in tubes containing 2, 5 and 8 cm depth of sand, respectively, whereas for 8-day-old larvae, LC50 values were 16, 40 and 157 IJs/cm2, respectively. The effect of soil texture on the activity of S. carpocapsae was tested by applying the corresponding LC50 concentrations of nematodes to sand, sand–clay and loamy–sand soils. For 6-day-old larvae, soil type had a highly significant effect on infection with the highest percentages of infection observed in the sand–clay mixture (60–82% depending on depth) compared to 45–64% infection in sand and 23–30% infection in loamy–sand soil. A very similar pattern was observed in 8-day-old larvae except that infection rates were significantly lower than in younger larvae. There was a significant interaction between soil type and soil depth. The effect of three temperatures (19, 25 and 30°C) on infection was examined in sand–clay soil. The infectivity of S. carpocapsae was affected by temperature and soil depth and by the interaction of these two factors. Response surface analysis applied to second order multiple linear regression models indicated that the optimal temperature for infection of larvae of both ages was ~26°C, at a depth of 7.9 cm for 6-day-old larvae and <2 cm for 8-day-old larvae, resulting in a predicted 91.4% infection of 6-day-old larvae and 61.2% infection of 8-day-old larvae. These results suggest that S. carpocapsae may have the potential to control fruit fly pests in tropical ecosystems with warm temperatures and high soil moisture levels, although this assertion requires field testing.  相似文献   

10.
The biocontrol potential of South African isolates of Heterorhabditis zealandica, Steinernema citrae, S. khoisanae, S. yirgalemense, and Steinernema sp., was evaluated against codling moth, Cydia pomonella. Codling moth was susceptible to all six nematode isolates at a concentration of 50 infective juveniles/insect (78–100% mortality). Low temperatures (10 h at 17°C; 14 h at 12°C) negatively affected larvicidal activity (≤3%) for all isolates. All tested isolates were most effective at higher levels of water activity (a w=1). The average a w50-values for all isolates tested was 0.94 (0.93–0.95), except S. khoisanae 0.97 (0.97–0.98). Regarding host-seeking ability, no positive attraction to host cues could be detected amongst isolates, except for H. zealandica. Three of the isolates, H. zealandica, S. khoisanae, and the undescribed Steinernema sp., were selected for field-testing and proven to be effective (mortality >50%). Insect containment methods used during field experimentation was shown to influence larvacidal activity, as different levels of mortality were obtained using various containment methods (wooden planks vs. pear tree logs vs. mesh cages). Pear tree logs were impractical. Predictive equations were subsequently developed, enabling future trials to be conducted using either planks or cages, enabling the prediction of the expected level of control on tree logs. All tested isolates therefore showed a certain degree of biological control potential, however, none of the experiments showed clear efficacy-differences amongst isolates. The study highlighted the importance of environmental factors to ensure the successful application of these nematodes for the control of diapausing codling moth larvae in temperate regions.  相似文献   

11.
Laboratory, greenhouse, and field experiments were performed with the objective of selecting efficient indigenous strains of entomopathogenic nematodes (EPNs) from Rio Grande do Sul (RS) state, Brazil, for controlling the South American fruit fly, Anastrepha fraterculus (Wied.). Laboratory experiments were conducted in 24 well-plates filled with sterile sand and one insect per well. In greenhouse experiments, plastic trays filled with soil collected from the field were used, while in field experiments, holes were made in soil under the edge of peach tree canopies. Among 19 EPN strains tested, Heterorhabditis bacteriophora Poinar RS88 and Steinernema riobrave Cabanillas, Poinar, & Raulston RS59 resulted in higher A. fraterculus larval (pre-pupal) and pupal mortality, with LD90 of 1630, 457 and 2851, 423 infective juveniles (IJs)/cm2, respectively. Greenhouse experiments showed no differences in pupal mortality at 250 and 500 IJs/cm2 of either nematode. In the field, H. bacteriophora RS88 and S. riobravae RS59 sprayed individually over natural and artificially infested fruit (250 IJs/cm2) resulted in A. fraterculus larval mortality of 51.3%, 28.1% and 20%, 24.3%, respectively. There was no significant difference in A. fraterculus pupal mortality sprayed with an aqueous suspension of either nematode; however, when using infected insect cadavers, H. bacteriophora RS88 was more efficient than S. riobrave RS59. Our results showed that H. bacteriophora RS88 was more virulent to insect larvae, with an efficient host search inside the infested fruit and control of pupae in the soil after being applied by aqueous suspension or infected cadavers.  相似文献   

12.
Abstract  The Mediterranean fruit fly (Medfly), Ceratitis capitata (Wiedemann) is a pest of citrus in parts of Western Australia. Three citrus cultivars: Valencia oranges, Eureka lemons and Imperial mandarins, as well as non-citrus control fruits, were examined for attractiveness and suitability to Medfly in the field and in the laboratory using choice and no-choice experiments. Oranges were more susceptible to Medfly than mandarins and lemons. Punctures in the skin had a significant impact on the degree of infestation in both citrus and non-citrus control fruit. Artificial infestation and larval survivorship were used to investigate the suitability of each cultivar to Medfly under laboratory conditions. Oranges and mandarins were suitable for the development of Medfly, but lemons were a poor host. When each cultivar was in season, field cage trials demonstrated that infestation occurred in oranges and mandarins but not in lemons.  相似文献   

13.
The Sterile Insect Technique (SIT) involving area-wide release of mass-reared and sterilized pest insects has proven successful to reduce, control and eradicate economically important pest species, such as the Mediterranean fruit fly (medfly). For the efficient application, effective monitoring to assess the number and mating success of the released medflies is essential. Here, we report sperm-specific marking systems based on the spermatogenesis-specific Ceratitis capitata beta2-tubulin (Ccbeta2t) promoter. Fluorescent sperm can be isolated from testes or spermathecae. The marking does not cause general disadvantages in preliminary laboratory competitiveness assays. Therefore, transgenic sperm marking could serve as a major improvement for monitoring medfly SIT programs. The use of such harmless transgenic markers will serve as an ideal initial condition to transfer insect transgenesis technology from the laboratory to field applications. Moreover, effective and easily recognizable sperm marking will make novel studies possible on medfly reproductive biology which will help to further improve SIT programs.  相似文献   

14.
In laboratory bioassays, Steinernema riobrave Cabanillas, Poinar and Raulston (355 strain), Steinernema carpocapsae (Weiser) (Mexican 33 strain), Steinernemafeltiae (Filipjev) (UK76 strain), and Heterorhabditis bacteriophora Poinar (HP88 strain) were all capable of infecting and killing three termite species, Heterotermes aureus (Snyder), Gnathamitermes perplexus (Banks), and Reticulitermes flavipes (Kollar) in laboratory sand assays. S. riobrave and S. feltiae caused low levels of Reticulitermes virginicus (Banks) mortality under the same conditions. At 22 degrees C, significant mortality (> or = 80%) of worker H. aureus and G. perplexus was caused by S. riobrave, in sand assays, indicating the need for further study. Because of the short assay time (3 d maximum), reproduction of the nematodes in the target host species was not recorded. All nematode species were observed to develop to fourth-stage juveniles, preadult stages, or adults in all termite species with the exception of R. virginicus. Only S. riobrave developed in R. virginicus. Nematode concentration and incubation time had significant effects on the mortality of worker H. aureus. S. riobrave consistently generated the highest infection levels and mortality of H. aureus in sand assays.  相似文献   

15.
In laboratory bioassays, Steinernema glaseri Steiner, Steinernema riobrave Cabanillas, Poinar & Raulston, Heterorhabditis bacteriophora Poinar, and Heterorhabditis marelatus Liu & Berry were capable of infecting and killing the bark scorpion, Centruroides exilicauda (Wood). Steinernema feltiae (Filipjev) and Steinernema carpocapsae (Weiser) failed to infect C. exilicauda at 22 degrees C. S. glaseri, H. marelatus, and H. bacteriophora caused significant mortality at 22 degrees C, indicating the potential role of these parasites as a biocontrol option. Efficacy of S. glaseri and H. bacteriophora was reduced in an assay conducted at 25 degrees C. Only S. glaseri was able to reproduce in the target host. Dissection of scorpions at the end of the experimental periods revealed inactive juvenile S. riobrave, H. marelatus, and H. bacteriophora nematodes. Both mermithid and oxyurid nematodes have been documented as nematode parasites of scorpions, but rhabditids have not been reported until now. Field studies are warranted to assess the usefulness of entomopathogenic nematodes as biocontrol agents of bark scorpions.  相似文献   

16.
The stages of morphogenesis of the acrosome of Ceratitis capitata are well defined. This organelle is formed by the Golgi complex and, as it matures, takes up a position laterally in relation to the anterior region of the sperm nucleus. An interstitial membrane marks the area of contact between nucleus and acrosome in the spermatid, and is found even in mature sperm cells. The acrosome contains hydrolytic enzymes, as detected by acid phosphatase reaction.  相似文献   

17.
Anhydrobiosis is considered to be an important means of achieving storage stability of entomopathogenic nematodes that are used in biological control. This study explored the effects of anhydrobiosis on longevity and infectivity of infective juveniles (IJs) of three species of entomopathogenic nematodes Steinernema carpocapsae, Steinernema feltiae, and Steinernema riobrave at 5 and 25 degrees C. Anhydrobiosis was induced in water-dispersible granules (WG) at 0.966-0.971 water activity and 25 degrees C following a 7-day preconditioning of IJs at 5 degrees C in tap water. Survival and infectivity of the desiccated (anhydrobiotic) IJs was compared with non-desiccated IJs stored in water for different periods. Anhydrobiosis increased longevity of S. carpocapsae IJs by 3 months and of S. riobrave by 1 month in WG at 25 degrees C as compared with IJs stored in water. However, desiccation decreased S. feltiae longevity at 25 degrees C and of all three species at 5 degrees C. These results demonstrate a shelf-life of 5 months for S. carpocapsae at 25 degrees C and 9 months at 5 degrees C in WG with over 90% IJ survival. For S. feltiae, over 90% survival occurred only for 2 months at 25 degrees C and 5 months at 5 degrees C in WG. Steinernema riobrave had over 90% survival only for 1 month at 25 degrees C and the survival dropped below 85% within 1 month at 5 degrees C. Induction of anhydrobiosis in WG resulted in 85, 79 and 76% reduction in oxygen consumption by S. carpocapsae, S. feltiae, and S. riobrave IJs, respectively. Differences in IJ longevity among three species in water at 25 degrees C were related both to the initial lipid content and the rate of lipid utilisation, but not at 5 degrees C. The one-on-one infection bioassays indicated that desiccation had no negative effect on the infectivity of any of the nematode species suggesting no harmful effect on the IJs and/or their symbiotic bacteria. The species differences in IJ longevity and desiccation survival at different temperatures are discussed in relation to their foraging strategy and temperature adaptation.  相似文献   

18.
A laboratory bioassay was developed to determine both the chemical toxicity and the phototoxicity of the xanthene dye, phloxine B (D&C Red No 28), to the immature stages of the Mediterranean fruit fly, Certitis capitata (Wiedemann). An additional goal was to find out which main tissues are affected first. A low, but significant, level of toxicity was observed when the insects were maintained in the dark: at the point of adult ecdysis, the LC50 was 11.03 mM. As expected, after 8-h exposure of late larva III to light, a high level of mortality was produced (LC50 at ecdysis: 0.45 mM) as a dose-dependent function of dye concentration. At sublethal concentrations of the dye, the surviving insects showed a number of physiological abnormalities. Phloxine B appeared to mainly affect the larval longitudinal muscles as well as the abdominal muscles of ecdysing adults, giving rise to abnormal puparia and failed adult ecdysis, respectively. Moreover, a significant phloxine B-dependent delay in the jumping of surviving larvae for dispersal was documented. This could be attributed to a delay in attaining a threshold weight for jumping and/or to abnormalities in neuromuscular coordination, thus reinforcing the idea of pleiotropic effects of the dye.  相似文献   

19.
A total of 1506 soil samples from different habitats in seven geographic regions of South Africa were evaluated for the presence of entomopathogenic nematodes (EPN). Nematodes were isolated from 5% of the samples. Among the steinernematids, four Steinernema sp. were recovered including Steinernema khoisanae and three new undescribed species. Although steinernematids were recovered from both humid subtropical and semiarid regions, this family accounted for 80% of EPN recovered from the semiarid climate zones characterised by sandy, acidic soils. Eight isolates of S. khoisanae were recovered from the Western Cape province. One of the new undescribed steinernematids (Steinernema sp. 1) was recovered only from the Free State and KwaZulu-Natal provinces where humid subtropical conditions prevail and soils are generally less acidic with higher clay content. A high level of adaptation, however, was noted with Steinernema sp. 2, which was recovered from a wide range of soil conditions and habitats ranging from semiarid (Western Cape province) to humid subtropical (KwaZulu-Natal province). A third undescribed steinernematid, Steinernema sp. 3, seemed better adapted to heavier soils with more than 80% of isolates recovered from fruit orchards in the Free State province. Heterorhabditis bacteriophora was the only heterorhabditid recovered during this survey. This species was particularly prevalent in four provinces ranging from humid subtropical to semiarid regions. Isolation of EPN directly from insect cadavers included Steinernema sp. 2 and one H. bacteriophora from an unidentified white grub (Scarabaeidae) cadaver (i.e., dual infection) and H. bacteriophora from the black vine weevil, Otiorhynchus sulcatus.  相似文献   

20.
The micropylar apparatus (MA) in Ceratitis capitata (Diptera : Tephritidae) is a cone-like protrusion, 18 μm long, at the anterior pole of the egg, and exhibits about 40 follicle cell imprints externally. It consists of chorionic and vitelline membrane parts. The first contains at least a 3 μm wide micropylar canal; the tip of the MA is covered by a “tuft” and includes the micropyle, i.e. the entrance of the micropylar canal. The canal leads to the vitelline membrane part, where it forms a pocket. The sperm enters the oocyte by passing through the micropyle-micropylar canal-pocket route.At least 40 follicle cells participate in the formation of the micropylar apparatus. Two of these form 2 projections, which are tightly connected, and serve as a template for the formation of the canal and the pocket. Throughout their length, both projections have microtubules in parallel arrangement. During oogenesis, the remaining micropylar cells secrete the successive eggshell layers, i.e. the vitelline membrane, the wax layer, the innermost chorionic layer, the endochorion, and the exochorion. Towards the end of oogenesis, the 2 projections degenerate, and the canal becomes available for sperm passage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号