首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
AMP-activated protein kinase (AMPK) stimulates energy production via glucose and lipid metabolism, whereas it inhibits energy consuming functions, such as protein and cholesterol synthesis. Increased cytoplasmic AMP and Ca(2+) levels are the major activators of neuronal AMPK signaling. Interestingly, Alzheimer's disease (AD) is associated with several abnormalities in neuronal energy metabolism, for example, decline in glucose uptake, mitochondrial dysfunctions and defects in cholesterol metabolism, and in addition, with problems in maintaining Ca(2+) homeostasis. Epidemiological studies have also revealed that many metabolic and cardiovascular diseases are risk factors for cognitive impairment and sporadic AD. Emerging studies indicate that AMPK signaling can regulate tau protein phosphorylation and amyloidogenesis, the major hallmarks of AD. AMPK is also a potent activator of autophagic degradation which seems to be suppressed in AD. All these observations imply that AMPK is involved in the pathogenesis of AD. However, the responses of AMPK activation are dependent on stimulation and the extent of activating stress. Evidently, AMPK signaling can repress and delay the appearance of AD pathology but later on, with increasing neuronal stress, it can trigger detrimental effects that augment AD pathogenesis. We will outline the potential role of AMPK function in respect to various aspects affecting AD pathogenesis.  相似文献   

2.
There is ample evidence from experimental models and human metabolic disorders indicating that cholesterol and sphingomyelin (SM) levels are coordinately regulated. Generally it has been observed that altering the cellular content of sphingomyelin or cholesterol results in corresponding changes in mass and/or synthesis of the other lipid. In the case of cholesterol synthesis and trafficking, SM regulates the capacity of membranes to absorb cholesterol and thereby controls sterol flux between the plasma membrane and regulatory pathways in the endoplasmic reticulum. This relationship exemplifies the importance of cholesterol/sphingolipid-rich domains in cholesterol homeostasis, as well as other aspects of cell signaling and transport. Evidence for regulation of sphingomyelin metabolism by cholesterol is less convincing and dependent on the model system under study. Sphingomyelin biosynthetic rates are not dramatically affected by alterations in cholesterol balance suggesting that sphingomyelin or its metabolites serve other indispensable functions in the cell. A notable exception is the robust and specific regulation of both SM and cholesterol synthesis by 25-hydroxycholesterol. This finding is reviewed in the context of the role of oxysterol binding protein and its putative role in cholesterol and SM trafficking between the plasma membrane and Golgi apparatus.  相似文献   

3.
IntroductionImbalanced cholesterol metabolism in the brain is one of the main pathophysiological mechanisms involved in Alzheimer's disease. We investigated the effect of amyloid-beta (Aβ) on the main proteins involved in regulation of cholesterol metabolism along with cholesterol content in astrocytes and neurons.MethodsAstrocytes and neurons were cultured and treated with Aβ. Apolipoprotein E (apoE) level in the cells and conditioned media, 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase (HMGCR), ATP-binding cassette transporter A1 (ABCA1), and cytochrome P450 46A1 (CYP46A1) in cell lysates were determined using immunoblotting. Astrocyte media was added to the Aβ-pretreated neurons then, HMGCR was assessed. Cholesterol was measured in both cells and media.ResultsAβ caused a significant increase in HMGCR and ABCA1 protein levels and cholesterol content in both cells without increasing cholesterol efflux. A similar increase was seen for cellular apoE level in astrocytes with no changes in media with a significant reduction of cholesterol efflux. HMGCR level was restored to near control level when Aβ-pretreated neurons were exposed to media from culture astrocytes.ConclusionAlmost all events related to cholesterol homeostasis in neurons and astrocytes, are somehow affected by Aβ. However, because ABCA1 has the most important role(s) in brain cholesterol homeostasis, all subsequent events associated with astrocytes-cholesterol synthesis and its shuttling to neurons are influenced by the effects of Aβ on ABCA1 which could likely be responsible for altered brain cholesterol metabolism in Alzheimer's disease.  相似文献   

4.
Neuronal maturation is a gradual process; first axons and dendrites are established as distinct morphological entities; next the different intracellular organization of these processes occurs; and finally the specialized plasma membrane domains of these two compartments are formed. Only when this has been accomplished does proper neuronal function take place. In this work we present evidence that the correct distribution of a class of axonal membrane proteins requires a mechanism which involves formation of protein-lipid (sphingomyelin/cholesterol) detergent-insoluble complexes (DIGs). Using biochemistry and immunofluorescence microscopy we now show that in developing neurons the randomly distributed Thy-1 does not interact with lipids into DIGs (in fully developed neurons the formation of such complexes is essential for the correct axonal targeting of this protein). Using lipid mass spectrometry and thin layer chromatography we show that the DIG lipid missing in the developing neurons is sphingomyelin, but not cholesterol or glucosylceramide. Finally, by increasing the intracellular levels of sphingomyelin in the young neurons the formation of Thy-1/DIGs was induced and, consistent with a role in sorting, proper axonal distribution was facilitated. These results emphasize the role of sphingomyelin in axonal, and therefore, neuronal maturation.  相似文献   

5.
For the past 20 years, the majority of cell culture studies reported that increasing cholesterol level increases amyloid-β (Aβ) production. Conversely, other studies and genetic evidences support that cellular cholesterol loss leads to Aβ generation. As a highly controversial issue in Alzheimer’s disease pathogenesis, the apparent contradiction prompted us to again explore the role of cellular cholesterol in Aβ production. Here, we adopted new neuronal and astrocytic cell models induced by 3β-hydroxysterol-Δ24 reductase (DHCR24), which obviously differ from the widely used cell models with overexpressing amyloid precursor protein (APP) in the majority of previous studies. In neuronal and astrocytic cell model, we found that deficiency of cellular cholesterol by DHCR24 knockdown obviously increased intracellular and extracellular Aβ generation. Importantly, in cell models with overexpressing APP, we found that APP overexpression could disrupt cellular cholesterol homeostasis and affect function of cells, coupled with the increase of APP β-cleavage product, 99-residue transmembrane C-terminal domain. Therefore, we suppose the results derived from the APP knockin models will need to be re-evaluated. One rational explanation for the discrepancy between our outcomes and the previous studies could be attributed to the two different cell models. Mechanistically, we showed that cellular cholesterol loss obviously altered APP intracellular localization by affecting cholesterol-related trafficking protein of APP. Therefore, our outcomes strongly support cellular cholesterol loss by DHCR24 knockdown leads to Aβ production.  相似文献   

6.
The possible role of the AMP-activated protein kinase (AMPK), a highly conserved stress-activated kinase, in the regulation of ketone body production by astrocytes was studied. AMPK activity in rat cortical astrocytes was three times higher than in rat cortical neurons. AMPK in astrocytes was shown to be functionally active. Thus, incubation of astrocytes with 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR), a cell-permeable activator of AMPK, stimulated both ketogenesis from palmitate and carnitine palmitoyltransferase I. This was concomitant to a decrease of intracellular malonyl-CoA levels and an inhibition of acetyl-CoA carboxylase/fatty acid synthesis and 3-hydroxy-3-methylglutaryl-CoA reductase/cholesterol synthesis. Moreover, in microdialysis experiments AICAR was shown to stimulate brain ketogenesis markedly. The effect of chemical hypoxia on AMPK and the ketogenic pathway was studied subsequently. Incubation of astrocytes with azide led to a remarkable drop of fatty acid beta-oxidation. However, activation of AMPK during hypoxia compensated the depression of beta-oxidation, thereby sustaining ketone body production. This effect seemed to rely on the cascade hypoxia --> increase of the AMP/ATP ratio --> AMPK stimulation --> acetyl-CoA carboxylase inhibition --> decrease of malonyl-CoA concentration --> carnitine palmitoyltransferase I deinhibition --> enhanced ketogenesis. Furthermore, incubation of neurons with azide blunted lactate oxidation, but not 3-hydroxybutyrate oxidation. Results show that (a) AMPK plays an active role in the regulation of ketone body production by astrocytes, and (b) ketone bodies produced by astrocytes during hypoxia might be a substrate for neuronal oxidative metabolism.  相似文献   

7.
8.
Modification of hypothalamic fatty acid (FA) metabolism can improve energy homeostasis and prevent hyperphagia and excessive weight gain in diet-induced obesity (DIO) from a diet high in saturated fatty acids. We have shown previously that C75, a stimulator of carnitine palmitoyl transferase-1 (CPT-1) and fatty acid oxidation (FAOx), exerts at least some of its hypophagic effects via neuronal mechanisms in the hypothalamus. In the present work, we characterized the effects of C75 and another anorexigenic compound, the glycerol-3-phosphate acyltransferase (GPAT) inhibitor FSG67, on FA metabolism, metabolomics profiles, and metabolic stress responses in cultured hypothalamic neurons and hypothalamic neuronal cell lines during lipid excess with palmitate. Both compounds enhanced palmitate oxidation, increased ATP, and inactivated AMP-activated protein kinase (AMPK) in hypothalamic neurons in vitro. Lipidomics and untargeted metabolomics revealed that enhanced catabolism of FA decreased palmitate availability and prevented the production of fatty acylglycerols, ceramides, and cholesterol esters, lipids that are associated with lipotoxicity-provoked metabolic stress. This improved metabolic signature was accompanied by increased levels of reactive oxygen species (ROS), and yet favorable changes in oxidative stress, overt ER stress, and inflammation. We propose that enhancing FAOx in hypothalamic neurons exposed to excess lipids promotes metabolic remodeling that reduces local inflammatory and cell stress responses. This shift would restore mitochondrial function such that increased FAOx can produce hypothalamic neuronal ATP and lead to decreased food intake and body weight to improve systemic metabolism.  相似文献   

9.
Since the discovery that apolipoprotein E, a cholesterol transport protein, is a major risk factor for Alzheimer's disease (AD) development, there has been a remarkable interest in understanding the many facets of the relationship between cholesterol and AD. Several lines of evidence have demonstrated the importance of cholesterol in amyloid beta peptide (Aβ) production and metabolism, as well as the involvement of Aβ in cholesterol homeostasis. The emerging picture is complex and still incomplete. This review discusses findings that indicate that a reciprocal regulation exists between Aβ and cholesterol at the subcellular level. The pathological impact of such regulation is highlighted.  相似文献   

10.
Ectopic accumulation of lipids in peripheral tissues, such as pancreatic β cells, liver, heart and skeletal muscle, leads to lipotoxicity, a process that contributes substantially to the pathophysiology of insulin resistance, type 2 diabetes, steatotic liver disease and heart failure. Current evidence has demonstrated that hypothalamic sensing of circulating lipids and modulation of hypothalamic endogenous fatty acid and lipid metabolism are two bona fide mechanisms modulating energy homeostasis at the whole body level. Key enzymes, such as AMP-activated protein kinase (AMPK) and fatty acid synthase (FAS), as well as intermediate metabolites, such as malonyl-CoA and long-chain fatty acids-CoA (LCFAs-CoA), play a major role in this neuronal network, integrating peripheral signals with classical neuropeptide-based mechanisms. However, one key question to be addressed is whether impairment of lipid metabolism and accumulation of specific lipid species in the hypothalamus, leading to lipotoxicity, have deleterious effects on hypothalamic neurons. In this review, we summarize what is known about hypothalamic lipid metabolism with focus on the events associated to lipotoxicity, such as endoplasmic reticulum (ER) stress in the hypothalamus. A better understanding of these molecular mechanisms will help to identify new drug targets for the treatment of obesity and metabolic syndrome.  相似文献   

11.
12.
Hypothalamic controls of energy balance rely on the detection of circulating nutrients such as glucose and long-chain fatty acids (LCFA) by the mediobasal hypothalamus (MBH). LCFA metabolism in the MBH plays a key role in the control of food intake and glucose homeostasis, yet it is not known if glucose regulates LCFA oxidation and esterification in the MBH and, if so, which hypothalamic cell type(s) and intracellular signaling mechanisms are involved. The aim of this study was to determine the impact of glucose on LCFA metabolism, assess the role of AMP-activated Kinase (AMPK), and to establish if changes in LCFA metabolism and its regulation by glucose vary as a function of the kind of LCFA, cell type, and brain region. We show that glucose inhibits palmitate oxidation via AMPK in hypothalamic neuronal cell lines, primary hypothalamic astrocyte cultures, and MBH slices ex vivo but not in cortical astrocytes and slice preparations. In contrast, oleate oxidation was not affected by glucose or AMPK inhibition in MBH slices. In addition, our results show that glucose increases palmitate, but not oleate, esterification into neutral lipids in neurons and MBH slices but not in hypothalamic astrocytes. These findings reveal for the first time the metabolic fate of different LCFA in the MBH, demonstrate AMPK-dependent glucose regulation of LCFA oxidation in both astrocytes and neurons, and establish metabolic coupling of glucose and LCFA as a distinguishing feature of hypothalamic nuclei critical for the control of energy balance.  相似文献   

13.
Bioenergy homeostasis constitutes one of the most crucial foundations upon which other cellular and organismal processes may be executed. AMP-activated protein kinase (AMPK) has been shown to be the key player in the regulation of energy metabolism, and thus is becoming the focus of research on obesity, diabetes and other metabolic disorders. However, its role in the brain, the most energy-consuming organ in our body, has only recently been studied and appreciated. Widely expressed in the brain, AMPK activity is tightly coupled to the energy status at both neuronal and whole-body levels. Importantly, AMPK signaling is intimately implicated in multiple aspects of brain development and function including neuronal proliferation, migration, morphogenesis and synaptic communication, as well as in pathological conditions such as neuronal cell death, energy depletion and neurodegenerative disorders.  相似文献   

14.
Bioenergy homeostasis constitutes one of the most crucial foundations upon which other cellular and organismal processes may be executed. AMP-activated protein kinase (AMPK) has been shown to be the key player in the regulation of energy metabolism, and thus is becoming the focus of research on obesity, diabetes and other metabolic disorders. However, its role in the brain, the most energy-consuming organ in our body, has only recently been studied and appreciated. Widely expressed in the brain, AMPK activity is tightly coupled to the energy status at both neuronal and whole-body levels. Importantly, AMPK signaling is intimately implicated in multiple aspects of brain development and function including neuronal proliferation, migration, morphogenesis and synaptic communication, as well as in pathological conditions such as neuronal cell death, energy depletion and neurodegenerative disorders.Key words: AMPK, energy, neuron, brain, metabolism, glucose, neurodegenerative disease, cell death, neural development, polarization  相似文献   

15.
Brain accumulation of the amyloid-β peptide (Aβ) and oxidative stress underlie neuronal dysfunction and memory loss in Alzheimer's disease (AD). Hexokinase (HK), a key glycolytic enzyme, plays important pro-survival roles, reducing mitochondrial reactive oxygen species (ROS) generation and preventing apoptosis in neurons and other cell types. Brain isozyme HKI is mainly associated with mitochondria and HK release from mitochondria causes a significant decrease in enzyme activity and triggers oxidative damage. We here investigated the relationship between Aβ-induced oxidative stress and HK activity. We found that Aβ triggered HKI detachment from mitochondria decreasing HKI activity in cortical neurons. Aβ oligomers further impair energy metabolism by decreasing neuronal ATP levels. Aβ-induced HKI cellular redistribution was accompanied by excessive ROS generation and neuronal death. 2-deoxyglucose blocked Aβ-induced oxidative stress and neuronal death. Results suggest that Aβ-induced cellular redistribution and inactivation of neuronal HKI play important roles in oxidative stress and neurodegeneration in AD.  相似文献   

16.
Leptin is a pleiotropic hormone primarily secreted by adipocytes. A high density of functional Leptin receptors has been reported to be expressed in the hippocampus and other cortical regions of the brain, the physiological significance of which has not been explored extensively. Alzheimer’s disease (AD) is marked by impaired brain metabolism with decreased glucose utilization in those regions which often precede pathological changes. Recent epidemiological studies suggest that plasma Leptin is protective against AD. Specifically, elderly with plasma Leptin levels in the lowest quartile were found to be four times more likely to develop AD than those in the highest quartile. We have previously reported that Leptin modulates AD pathological pathways in vitro through a mechanism involving the energy sensor, AMP-activated protein kinase (AMPK). To this end, we investigated the extent to which activation of AMPK as well as another class of sensors linking energy availability to cellular metabolism, the sirtuins (SIRT), mediate Leptin’s biological activity. Leptin directly activated neuronal AMPK and SIRT in cell lines. Additionally, the ability of Leptin to reduce tau phosphorylation and β-amyloid production was sensitive to the AMPK and sirtuin inhibitors, compound C and nicotinamide, respectively. These findings implicate that Leptin normally acts as a signal for energy homeostasis in neurons. Perhaps Leptin deficiency in AD contributes to a neuronal imbalance in handling energy requirements, leading to higher Aβ and phospho-tau, which can be restored by replenishing low Leptin levels. This may also be a legitimate strategy for therapy.  相似文献   

17.
18.
19.
20.
The restoration of energy balance during ischemia is critical to cellular survival; however, relatively little is known concerning the regulation of neuronal metabolic pathways in response to central nervous system ischemia. AMP-activated protein kinase (AMPK), a master sensor of energy balance in peripheral tissues, is phosphorylated and activated when energy balance is low. We investigated whether AMPK might also modulate neuronal energy homeostasis during ischemia. We utilized two model systems of ischemia, middle cerebral artery occlusion in vivo and oxygen-glucose deprivation in vitro, to delineate changes in AMPK activity incurred from a metabolic stress. AMPK is highly expressed in cortical and hippocampal neurons under both normal and ischemic conditions. AMPK activity, as assessed by phosphorylation status, is increased following both middle cerebral artery occlusion and oxygen-glucose deprivation. Pharmacological inhibition of AMPK by either C75, a known modulator of neuronal ATP levels, or compound C reduced stroke damage. In contrast, activation of AMPK by 5-aminoimidazole-4-carboxamide ribonucleoside exacerbated damage. Mice deficient in neuronal nitric-oxide synthase demonstrated a decrease in both stroke damage and AMPK activation compared with wild type, suggesting a possible interaction between NO and AMPK activation in stroke. These data demonstrate a role for AMPK in the response of neurons during metabolic stress and suggest that in ischemia the activation of AMPK is deleterious. The ability to manipulate pharmacologically neuronal energy balance during ischemia represents an innovative approach to neuroprotection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号