首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A lipase gene (lip3) was cloned from the Pseudomonas aeruginosa strain LST-03 (which tolerates organic solvents) and expressed in Escherichia coli. The cloned sequence includes an ORF consisting of 945 nucleotides, encoding a protein of 315 amino acids (Lip3 lipase, 34.8 kDa). The predicted Lip3 lipase belongs to the class of serine hydrolases; the catalytic triad consists of the residues Ser-137, Asp-258, and His-286. The gene cloned in the present study does not encode the LST-03 lipase, a previously isolated solvent-stable lipase secreted by P. aeruginosa LST-03, because the N-terminal amino acid sequence of the Lip3 lipase differs from that of the LST-03 lipase. Although the effects of pH on the activity and stability of the Lip3 lipase, and the temperature optimum of the enzyme, were similar to those of the LST-03 lipase, the relative activity of the Lip3 lipase at lower temperatures (0–35°C) was higher than that of the LST-03 lipase. In the absence of organic solvents, the half-life of the Lip3 lipase was similar to that of the LST-03 lipase. However, in the presence of most of the organic solvents tested in this study (the exceptions were ethylene glycol and glycerol), the stability of the Lip3 lipase was lower than that of the LST-03 lipase.Communicated by H. Ikeda  相似文献   

2.
Organic solvent-tolerant Pseudomonas aeruginosa LST-03 secretes an organic solvent-stable lipase, LST-03 lipase. The gene of the LST-03 lipase (Lip9) and the gene of the lipase-specific foldase (Lif9) were cloned and expressed in Escherichia coli. In the cloned 2.6 kbps DNA fragment, two open reading frames, Lip9 consisting of 933 nucleotides which encoded 311 amino acids and Lif9 consisting of 1,020 nucleotides which encoded 340 amino acids, were found. The overexpression of the lipase gene (lip9) was achieved when T7 promoter was used and the signal peptide of the lipase was deleted. The expressed amount of the lipase was greatly increased and overexpressed lipase formed inclusion body in E. coli cell. The collected inclusion body of the lipase from the cell was easily solubilized by urea and activated by using lipase-specific foldase of which 52 or 58 amino acids of N-terminal were deleted. Especially, the N-terminal methionine of the lipase of which the signal peptide was deleted was released in E. coli and the amino acid sequence was in agreement with that of the originally-produced lipase by P. aeruginosa LST-03. Furthermore, the overexpressed and solubilized lipase of which the signal peptide was deleted was more effectively activated by lipase-specific foldase.  相似文献   

3.
A lipolytic enzyme gene (lip8) was cloned from organic solvent-tolerant Pseudomonas aeruginosa LST-03 and sequenced. In the sequenced nucleotides, an open reading frame consisting of 1,173 nucleotides and encoding 391 amino acids was found. Lip8 is considered to belong to the family VIII of lipolytic enzymes whose serine in the consensus sequence of -Ser-Xaa-Xaa-Lys- acts as catalytic nucleophile. The gene was expressed in Escherichia coli and purified by a combination of ammonium sulfate fractionation and hydrophobic interaction and ion-exchange chromatographies to homogeneity on SDS-PAGE analysis. The optimum temperature and heat stability of Lip8 were not as high as those of Lip3 and LST-03 lipase, two other lipolytic enzymes from the same strain. Addition of glycerol to a solution containing Lip8 stabilized this enzyme. By measuring the activities against various triacylglycerols and fatty acid methyl esters having carbon chains of different lengths, Lip8 was categorized as an esterase which has higher activities against fatty acid methyl esters with short-chain fatty acids.  相似文献   

4.
The organic anion transporter SLC21A6 (also known as OATP2, OATP-C, or LST-1) is involved in the hepatocellular uptake of a variety of endogenous and xenobiotic substances and drugs. We analyzed 81 human liver samples by immunoblotting and found one with a strongly reduced amount of SLC21A6 protein suggesting mutations in the SLC21A6 gene. The SLC21A6 cDNA from this sample contained five base pair changes in one allele; three of the mutations resulted in amino acid substitutions designated SLC21A6-N130D, SLC21A6-P155T, and SLC21A6-L193R. The former two were polymorphisms (SLC21A6*1b and SLC21A6*4), whereas SLC21A6-L193R represents the first naturally occurring mutation identified in one allele of the SLC21A6 gene, which affects protein maturation and organic anion transport. We introduced each of the mutations into the SLC21A6 cDNA and established stably transfected MDCKII cells expressing the respective mutant SLC21A6 protein. Immunofluorescence microscopy and uptake measurements were used to study localization and transport properties of the mutated proteins. Both proteins carrying the polymorphisms were sorted to the lateral membrane like wild-type SLC21A6, but their transport properties for the substrates cholyltaurine and 17beta-glucuronosyl estradiol were altered. Importantly, most of the mutant protein SLC21A6-L193R was retained intracellularly, and this single amino acid exchange abolished transport function.  相似文献   

5.
A novel lipase has been recently isolated from a local Pseudomonas sp. (GQ243724). In the present study, we have tried to increase the organic solvent stability of this lipase using site-directed mutagenesis. Eight variants N219L, N219I, N219P, N219A, N219R, N219D, S251L, and S251K were designed to change the surface hydrophobicity of this enzyme with respect to the wild-type. Among these variants, the stability of N219L and N219I significantly increased in the presence of all tested organic solvents, whereas two mutants (N219R and N219D) significantly exhibited decreased stabilities in all the organic solvent studied, suggesting that improvement of hydrophobic patches on the enzyme surface enhances the stability in organic media. Furthermore, replacing Ser251 with hydrophobic residues on the enzyme surface dramatically diminished its stability in the tested condition. In spite of the distance of the mutated sites from the active site, the values of k cat and K m were affected. Finally, structural analysis of the wild-type and mutated variants was carried out in the presence and absence of some organic solvents using circular dichroism and fluorescence spectroscopy.  相似文献   

6.
LST‐03 lipase from an organic solvent‐tolerant Pseudomonas aeruginosa LST‐03 has high stability and activity in the presence of various organic solvents. In this research, enhancement of organic solvent‐stability of LST‐03 lipase was attempted by directed evolution. The structural gene of the LST‐03 lipase was amplified by the error prone‐PCR method. Organic solvent‐stability of the mutated lipases was assayed by formation of a clear zone of agar which contained dimethyl sulfoxide (DMSO) and tri‐n‐butyrin and which overlaid a plate medium. And the organic solvent‐stability was also confirmed by measuring the half‐life of activity in the presence of DMSO. Four mutated enzymes were selected on the basis of their high organic solvent‐stability in the presence of DMSO. The organic solvent‐stabilities of mutated LST‐03 lipase in the presence of various organic solvents were measured and their mutated amino acid residues were identified. The half‐lives of the LST‐03‐R65 lipase in the presence of cyclohexane and n‐decane were about 9 to 11‐fold longer than those of the wild‐type lipase, respectively. Some substituted amino acid residues of mutated LST‐03 lipases have been located at the surface of the enzyme molecules, while some other amino acid residues have been changed from neutral to basic residues. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009  相似文献   

7.
Single amino acid substitutions increase the activity and stability of subtilisin E in mixtures of organic solvents and water, and the effects of these mutations are additive. A variant of subtilisin E that exhibits higher activity in mixtures of dimethylformamide (DMF) and water (Q103R) was created by random mutagenesis combined with screening for improved activity (K. Chen and F. H. Arnold, in preparation). Another mutation, N218S, known to improve both the activity and stability of subtilisin BPN', also improves the activity and stability of subtilisin E in the presence of DMF. The effects of the two substitutions on transition-state stabilization are additive. Furthermore, the Q103R mutation that improves activity has no deleterious effect on subtilisin stability. The double mutant Q103R+N218S is 10 times more active than the wild-type enzyme in 20% (v/v) DMF and twice as stable in 40% DMF. Although the effects of single mutations can be impressive, a practical strategy for engineering enzymes that function in nonaqueous solvents will most likely require multiple changes in the amino acid sequence. These results demonstrate the excellent potential for engineering nonaqueous-solvent-compatible enzymes.  相似文献   

8.
Rational and in vitro evolutionary approaches to improve either protein stability or aggregation resistance were successful, but empirical rules for simultaneous improvement of both stability and aggregation resistance under denaturing conditions are still to be ascertained. We have created a robust variant of a lipase from Bacillus subtilis named “6B” using multiple rounds of in vitro evolution. Tm and optimum activity temperature of 6B is 78 °C and 65 °C, respectively, which is ∼ 22 °C and 30 °C higher than that of wild-type lipase. Most significantly, 6B does not aggregate upon heating. Physical basis of remarkable thermostability and non-aggregating behavior of 6B was explored using X-ray crystallography, NMR and differential scanning calorimetry. Our structural investigations highlight the importance of tightening of mobile regions of the molecule such as loops and helix termini to attain higher thermostability. Accordingly, NMR studies suggest a very rigid structure of 6B lipase. Further investigation suggested that reduction/perturbation of the large hydrophobic patches present in the wild-type protein structure, decreased propensity of amino acid sequence for aggregation and absence of aggregation-prone intermediate during thermal unfolding of 6B can account for its resistance to aggregation. Overall, our study suggest that better anchoring of the loops with the rest of the protein molecule through mutations particularly on the sites that perturb/disturb the exposed hydrophobic patches can simultaneously increase protein stability and aggregation resistance.  相似文献   

9.
Commercial lipase (triacylglycerol lipase, EC 3.1.1.3) of Pseudomonas cepacia (Amano) has been purified to homogeneity by a single chromatography on phenyl Sepharose. The eluted lipase crystallized spontaneously at 4°C in the eluent, containing 58–69% 2-propanol. The yield of the lipase was 87–100% and the specific activity during the hydrolysis of triolein 5800 U/mg protein. This protein has a molecular weight of 34.1 kDa as analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Its purity was determined by SDS-Page and capillary zone electrophoresis to be ≥ 99%. Immobilization on Sepharose increased its stability in organic solvents. This lipase of P. cepacia differs from that of other Pseudomonas strains in respect of substrate specificity and during crystallization. It exhibits a high stability in organic solvents and supercritical carbon dioxide.  相似文献   

10.
The enzyme UDP-galactose 4′-epimerase (GALE) catalyses the reversible epimerisation of both UDP-galactose and UDP-N-acetyl-galactosamine. Deficiency of the human enzyme (hGALE) is associated with type III galactosemia. The majority of known mutations in hGALE are missense and private thus making clinical guidance difficult. In this study a bioinformatics approach was employed to analyse the structural effects due to each mutation using both the UDP-glucose and UDP-N-acetylglucosamine bound structures of the wild-type protein. Changes to the enzyme's overall stability, substrate/cofactor binding and propensity to aggregate were also predicted. These predictions were found to be in good agreement with previous in vitro and in vivo studies when data was available and allowed for the differentiation of those mutants that severely impair the enzyme's activity against UDP-galactose. Next this combination of techniques were applied to another twenty-six reported variants from the NCBI dbSNP database that have yet to be studied to predict their effects. This identified p.I14T, p.R184H and p.G302R as likely severely impairing mutations. Although severely impaired mutants were predicted to decrease the protein's stability, overall predicted stability changes only weakly correlated with residual activity against UDP-galactose. This suggests other protein functions such as changes in cofactor and substrate binding may also contribute to the mechanism of impairment. Finally this investigation shows that this combination of different in silico approaches is useful in predicting the effects of mutations and that it could be the basis of an initial prediction of likely clinical severity when new hGALE mutants are discovered.  相似文献   

11.
SQSTM1 mutations are common in patients with Paget disease of bone (PDB), with most affecting the C-terminal ubiquitin-associated (UBA) domain of the SQSTM1 protein. We performed structural and functional analyses of two UBA domain mutations, an I424S mutation relatively common in UK PDB patients, and an A427D mutation associated with a severe phenotype in Southern Italian patients. Both impaired SQSTM1's ubiquitin-binding function in pull-down assays and resulted in activation of basal NF-κB signalling, compared to wild-type, in reporter assays. We found evidence for a relationship between the ability of different UBA domain mutants to activate NF-κB signalling in vitro and number of affected sites in vivo in 1152 PDB patients from the UK and Italy, with A427D-SQSTM1 producing the greatest level of activation (relative to wild-type) of all PDB mutants tested to date. NMR and isothermal titration calorimetry studies were able to demonstrate that I424S is associated with global structural changes in the UBA domain, resulting in 10-fold weaker UBA dimer stability than wild-type and reduced ubiquitin-binding affinity of the UBA monomer. Our observations provide insights into the role of SQSTM1-mediated NF-κB signalling in PDB aetiology, and demonstrate that different mutations in close proximity within loop 2/helix 3 of the SQSTM1 UBA domain exert distinct effects on protein structure and stability, including indirect effects at the UBA/ubiquitin-binding interface.  相似文献   

12.
The ABC transporter (TliDEF) from Pseudomonas fluorescens SIK W1, which mediated the secretion of a thermostable lipase (TliA) into the extracellular space in Escherichia coli, was engineered using directed evolution (error-prone PCR) to improve its secretion efficiency. TliD mutants with increased secretion efficiency were identified by coexpressing the mutated tliD library with the wild-type tliA lipase in E. coli and by screening the library with a tributyrin-emulsified indicator plate assay and a microtiter plate-based assay. Four selected mutants from one round of error-prone PCR mutagenesis, T6, T8, T24, and T35, showed 3.2-, 2.6-, 2.9-, and 3.0-fold increases in the level of secretion of TliA lipase, respectively, but had almost the same level of expression of TliD in the membrane as the strain with the wild-type TliDEF transporter. These results indicated that the improved secretion of TliA lipase was mediated by the transporter mutations. Each mutant had a single amino acid change in the predicted cytoplasmic regions in the membrane domain of TliD, implying that the corresponding region of TliD was important for the improved and successful secretion of the target protein. We therefore concluded that the efficiency of secretion of a heterologous protein in E. coli can be enhanced by in vitro engineering of the ABC transporter.  相似文献   

13.
The Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) is an ABC transporter containing two transmembrane domains forming a chloride ion channel, and two nucleotide binding domains (NBD1 and NBD2). CFTR has presented a formidable challenge to obtain monodisperse, biophysically stable protein. Here we report a comprehensive study comparing effects of single and multiple NBD1 mutations on stability of both the NBD1 domain alone and on purified full length human CFTR. Single mutations S492P, A534P, I539T acted additively, and when combined with M470V, S495P, and R555K cumulatively yielded an NBD1 with highly improved structural stability. Strategic combinations of these mutations strongly stabilized the domain to attain a calorimetric Tm > 70 °C. Replica exchange molecular dynamics simulations on the most stable 6SS-NBD1 variant implicated fluctuations, electrostatic interactions and side chain packing as potential contributors to improved stability. Progressive stabilization of NBD1 directly correlated with enhanced structural stability of full-length CFTR protein. Thermal unfolding of the stabilized CFTR mutants, monitored by changes in intrinsic fluorescence, demonstrated that Tm could be shifted as high as 67.4 °C in 6SS-CFTR, more than 20 °C higher than wild-type. H1402S, an NBD2 mutation, conferred CFTR with additional thermal stability, possibly by stabilizing an NBD-dimerized conformation. CFTR variants with NBD1-stabilizing mutations were expressed at the cell surface in mammalian cells, exhibited ATPase and channel activity, and retained these functions to higher temperatures. The capability to produce enzymatically active CFTR with improved structural stability amenable to biophysical and structural studies will advance mechanistic investigations and future cystic fibrosis drug development.  相似文献   

14.
Ji F  Jung J  Gronenborn AM 《Biochemistry》2012,51(12):2588-2596
Although a number of γD-crystallin mutations are associated with cataract formation, there is not a clear understanding of the molecular mechanism(s) that lead to this protein deposition disease. As part of our ongoing studies on crystallins, we investigated the recently discovered Arg76 to Ser (R76S) mutation that is correlated with childhood cataract in an Indian family. We expressed the R76S γD-crystallin protein in E. coli, characterized it by CD, fluorescence, and NMR spectroscopy, and determined its stability with respect to thermal and chemical denaturation. Surprisingly, no significant biochemical or biophysical differences were observed between the wild-type protein and the R76S variant, except a lowered pI (6.8 compared to the wild-type value of 7.4). NMR assessment of the R76S γD-crystallin solution structure, by RDCs, and of its motional properties, by relaxation measurements, also revealed a close resemblance to wild-type crystallin. Further, kinetic unfolding/refolding experiments for R76S and wild-type protein showed similar degrees of off-pathway aggregation suppression by αB-crystallin. Overall, our results suggest that neither structural nor stability changes in the protein are responsible for the R76S γD-crystallin variant's association with cataract. However, the change in pI and the associated surface charge or the altered nature of the amino acid could influence interactions with other lens protein species.  相似文献   

15.
Most cases of Rett syndrome (RTT) are caused by mutations in the methylated DNA-binding protein, MeCP2. Here, we have shown that frequent RTT-causing missense mutations (R106W, R133C, F155S, T158M) located in the methylated DNA-binding domain (MBD) of MeCP2 have profound and diverse effects on its structure, stability, and DNA-binding properties. Fluorescence spectroscopy, which reports on the single tryptophan in the MBD, indicated that this residue is strongly protected from the aqueous environment in the wild type but is more exposed in the R133C and F155S mutations. In the mutant proteins R133C, F155S, and T158M, the thermal stability of the domain was strongly reduced. Thermal stability of the wild-type protein was increased in the presence of unmethylated DNA and was further enhanced by DNA methylation. DNA-induced thermal stability was also seen, but to a lesser extent, in each of the mutant proteins. Circular dichroism (CD) of the MBD revealed differences in the secondary structure of the four mutants. Upon binding to methylated DNA, the wild type showed a subtle but reproducible increase in alpha-helical structure, whereas the F155S and R106W did not acquire secondary structure with DNA. Each of the mutant proteins studied is unique in terms of the properties of the MBD and the structural changes induced by DNA binding. For each mutation, we examined the extent to which the magnitude of these differences correlated with the severity of RTT patient symptoms.  相似文献   

16.
With the hydrolytic resolution of (R,S)-naproxen 2,2,2-trifluoroethyl thioesters in water-saturated isooctane as a model system, improvements of the specific lipase activity and thermal stability were found when a crude Carica papaya lipase (CPL) was partially purified and employed as the biocatalyst. The partially purified Carica papaya lipase (PCPL) was furthermore explored as an effective enantioselective biocatalyst for the hydrolytic resolution of (R,S)-profen thioesters in water-saturated organic solvents. The kinetic analysis in water-saturated isooctane indicated that both acyl donor and acyl acceptor have profound influences on the lipase activity, E-value, and enantioselectivity. Inversion of the enantioselectivity from (S)- to (R)-thioester was found for (R,S)-fenoprofen and (R,S)-ketoprofen thioesters that contained a bulky substituent at the meta-position of 2-phenyl moiety of the acyl part. Kinetic constants for the acylation step were furthermore estimated for elucidating the kinetic data and postulating an active site model. The thermodynamic analysis indicated that the enantiomer discrimination was driven by the difference of activation enthalpy (DeltaDeltaH) and that of activation entropy (DeltaDeltaS), yet the latter was dominated for most of the reacting systems. The postulated active site model was supported from the variation of DeltaDeltaH and DeltaDeltaS with the acyl moiety, in which a good linear enthalpy-entropy compensation relationship was also illustrated. A comparison of the performances between Candida rugosa lipase (CRL) and PCPL indicated that PCPL was superior to CRL in terms of the better thermal stability, similar or better lipase activity for the fast-reacting substrate, time-course-stability, and lower enzyme cost.  相似文献   

17.
18.
Human epidermal growth factor receptor (EGFR) has become a well-established target for the treatment of patients with non-small cell lung cancer (NSCLC). However, a large number of somatic mutations in such protein have been observed to cause drug resistance or sensitivity during pathological progression, limiting the application of reversible EGFR tyrosine kinase inhibitor therapy in NSCLC. In the current work, we describe an integration of in silico analysis and in vitro assay to profile six representative EGFR inhibitors against a panel of 71 observed somatic mutations in EGFR tyrosine kinase domain. In the procedure, the changes in interaction free energy of inhibitors with EGFR upon various mutations were calculated one by one using a rigorous computational scheme, which was pre-optimized based on a set of structure-solved, affinity-known samples to improve its performance in characterizing the EGFR-inhibitor system. This method was later demonstrated to be effective in inferring drug response to the classical L858R and G719S mutations that confer constitutive activation for the EGFR kinase. It is found that the Staurosporine, a natural product isolated from the bacterium Streptomyces staurosporeus, exhibits selective inhibitory activity on the T790M and T790M/L858R mutants. This finding was subsequently solidified by in vitro kinase assay experiment; the inhibitory IC50 values of Staurosporine against wild-type, T790M and T790M/L858R mutant EGFR were measured to be 937, 12 and 3 nM, respectively.  相似文献   

19.
The resolutions of racemic diastereomeric mixtures of menthyl propionate was performed by Pseudomonas alcaligenes lipase (PaL) to produce (2S, 5R) L-menthol. Because of the inherently low diastereopreference of PaL, covalent docking and molecular dynamic (MD) simulations were used to investigate possible avenues of improvement. Rational site-directed mutagenesis of PaL revealed residues V180 and A272 to be the hotspots for diastereopreference. The double V180L/A272F mutant exhibited the highest degree of diastereopreference, as the diastereomeric ratio of (2S, 5R) L-menthol increased towards both (2R, 5S) L-neomenthol (dr1) and (2R, 5R) D-isoneomenthol (dr2) (diastereomeric ratios dr1 and dr2 increased to 4.65 and 2.13 times that of wild-type PaL). MD simulation analysis indicated that these mutations decrease the flexibility of the surrounding protein regions. The combination of increased steric exclusion and decreased flexibility results in less favorable binding of the non-target substrates, (2R, 5S) L-neomenthyl propionate and (2R, 5R) D-isoneomenthyl propionate, to the V180L/A272F mutant. These results confirmed and further improved our previously proposed model of the diastereomer recognition mechanism based on the combined effect of steric exclusion and regional flexibility.  相似文献   

20.
The substitutions of the amino acid at the predetermined critical point at the C-terminal of L2 lipase may increase its thermostability and enzymatic activity, or even otherwise speed up the unfolding of the protein structure. The C-terminal of most proteins is often flexible and disordered. However, some protein functions are directly related to flexibility and play significant role in enzyme reaction. The critical point for mutation of L2 lipase structure was predicted at the position 385 of the L2 sequence, and the best three mutants were determined based on I-Mutant2.0 software. The best three mutants were S385E, S385I and S385V. The effects of the substitution of the amino acids at the critical point were analysed with molecular dynamics simulation by using Yet Another Scientific Artificial Reality Application software. The predicted mutant L2 lipases were found to have lower root mean square deviation value as compared to L2 lipase. It was indicated that all the three mutants had higher compactness in the structure, consequently enhanced the stability. Root mean square fluctuation analysis showed that the flexibility of L2 lipase was reduced by mutations. Purified S385E lipase had an optimum temperature of 80 °C in Tris–HCl pH 8. The highest enzymatic activity of purified S385E lipase was obtained at 80 °C temperature in Tris–HCl pH 8, while for L2 lipase it was at 70 °C in Glycine–NaOH pH 9. The thermal stability of S385V lipase was enhanced as compared to other protein since that the melting point (T m) value was at 85.96 °C. S385I lipase was more thermostable compared to recombinant L2 lipase and other mutants at temperature 60 °C within 16 h preincubation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号