首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tissue engineering and regenerative medicine are rapidly developing fields that use cells or cell-based constructs as therapeutic products for a wide range of clinical applications. Efforts to commercialise these therapies are driving a need for capable, scaleable, manufacturing technologies to ensure therapies are able to meet regulatory requirements and are economically viable at industrial scale production. We report the first automated expansion of a human bone marrow derived mesenchymal stem cell population (hMSCs) using a fully automated cell culture platform. Differences in cell population growth profile, attributed to key methodological differences, were observed between the automated protocol and a benchmark manual protocol. However, qualitatively similar cell output, assessed by cell morphology and the expression of typical hMSC markers, was obtained from both systems. Furthermore, the critical importance of minor process variation, e.g. the effect of cell seeding density on characteristics such as population growth kinetics and cell phenotype, was observed irrespective of protocol type. This work highlights the importance of careful process design in therapeutic cell manufacture and demonstrates the potential of automated culture for future optimisation and scale up studies required for the translation of regenerative medicine products from the laboratory to the clinic.  相似文献   

2.
We present a mathematical model for the proliferation and differentiation of human mesenchymal stem cells grown inside artificial porous scaffolds under different oxygen concentrations. The values of parameters in the model are determined by comparison of the model solutions to published experimental data, complemented with a sensitivity analysis of the fitted parameters. It is shown that a simple hypothesis whereby the secretion of extra-cellular matrix (ECM) is oxygen dependent and that ECM itself stimulates cell proliferation is sufficient to explain the experimental data, which under conditions of low oxygen reveals increased total cell proliferation, upregulation of the numbers of undifferentiated cells, and extended lag phase. These results may help further to understand how cells proliferate inside artificial materials and are of importance to the field of tissue engineering.  相似文献   

3.
Production of human mesenchymal stem cells for allogeneic cell therapies requires scalable, cost‐effective manufacturing processes. Microcarriers enable the culture of anchorage‐dependent cells in stirred‐tank bioreactors. However, no robust, transferable methodology for microcarrier selection exists, with studies providing little or no reason explaining why a microcarrier was employed. We systematically evaluated 13 microcarriers for human bone marrow‐derived MSC (hBM‐MSCs) expansion from three donors to establish a reproducible and transferable methodology for microcarrier selection. Monolayer studies demonstrated input cell line variability with respect to growth kinetics and metabolite flux. HBM‐MSC1 underwent more cumulative population doublings over three passages in comparison to hBM‐MSC2 and hBM‐MSC3. In 100 mL spinner flasks, agitated conditions were significantly better than static conditions, irrespective of donor, and relative microcarrier performance was identical where the same microcarriers outperformed others with respect to growth kinetics and metabolite flux. Relative growth kinetics between donor cells on the microcarriers were the same as the monolayer study. Plastic microcarriers were selected as the optimal microcarrier for hBM‐MSC expansion. HBM‐MSCs were successfully harvested and characterised, demonstrating hBM‐MSC immunophenotype and differentiation capacity. This approach provides a systematic method for microcarrier selection, and the findings identify potentially significant bioprocessing implications for microcarrier‐based allogeneic cell therapy manufacture.  相似文献   

4.
Myocardial cell sheets (MCS) are a potentially valuable tool for tissue engineering aimed at heart regeneration. Several methods have recently been established for the fabrication of MCS. However, the lack of a sufficient blood supply has inhibited functional recovery of the MCS. To address this challenge, we combined MCS transplantation with omentopexy (OP), which utilizes omental tissue as a surgical flap. Rats were divided into five groups: sham, myocardial infarction (MI), MCS transplantation, OP, and MCS + OP. Histologic analysis revealed that MCS + OP drastically reversed MI-induced cardiac remodeling. Echocardiography revealed that MCS increased cardiac function, while OP had a synergistic beneficial effect with MCS transplantation. Immunofluorescence imaging showed that OP increased the survival of transplanted cardiomyocytes, and increased the blood supply through enhancement of angiogenesis and migration of small arteries into the MCS. Taken together, we concluded that OP is a promising strategy for the enhancement of graft function in MCS transplantation.  相似文献   

5.
The NucleoCounter is a novel, portable cell counting device based on the principle of fluorescence microscopy. The present work establishes its use with animal cells and checks its reliability, consistency and accuracy in comparison with other cytometric techniques. The main advantages of this technique are its ability to handle a large number of samples with a high degree of precision and its simplicity and specificity in detecting viable cells quantitatively in a heterogeneous culture. The work addresses and overcomes the problems of subjectivity, and some of the inherent sampling errors associated with using the traditional haemocytometer and Trypan Blue exclusion method. NucleoCounter offers reduced intra- and inter-observer variation as well as consistency in repetitive analysis that establishes it as an efficient and highly potential device for at-line monitoring of animal cell processes. Furthermore, since the only manual steps required are sample aspiration and mixing with two reagents, it is feasible that the whole method could be automated and brought on-line for process monitoring and control.  相似文献   

6.
The synthetic gene (sPI-II) harboring the chymotrypsin (C1) and trypsin (T1) inhibitor domains of the Nicotiana alata serine proteinase inhibitor II gene has been previously expressed, and extracellular protease activity was shown to be reduced in the suspension culture medium. In this study, the sPI-II gene was introduced into transgenic rice cells expressing rhGM-CSF (recombinant human granulocyte–macrophage colony-stimulating factor), in an effort to reduce protease activity and increase rhGM-CSF accumulation in the suspension culture medium. The integration and expression of the introduced sPI-II gene in the transgenic rice cells were verified via genomic DNA PCR amplification and Northern blot analysis, respectively. Relative protease activity was found to have been reduced and rhGM-CSF production was increased 2-fold in the co-transformed cell suspension culture with rhGM-CSF and the sPI-II gene, as compared with that observed in the transformed cell suspension culture expressing rhGM-CSF only. These results indicate that a transformed plant cell suspension culture system expressing the proteinase inhibitor can be a useful tool for increasing recombinant protein production.  相似文献   

7.
Studies on Cryptosporidium species have been hampered by the limited amount of parasitic stages available for research. One of the major objectives of many laboratories is to develop a reproducible culture model for this important parasite. Recent research has resulted in long-term culturing of Cryptosporidium in cell culture using pH modification, sub-culturing and gamma irradiation. Further advances in the in vitro culturing of Cryptosporidium revealed that this parasite can complete its life cycle in culture medium overcoming the problem of using the host cells, as host cell overgrowth and aging resulted in the termination of the Cryptosporidium life cycle prior to its completion. Improved methods for visualizing life cycle stages in cell-free culture have also been developed. This review will discuss factors that can influence the success of Cryptosporidium culture in vitro and propose new ideas for the future optimization of the cell-free culture system.  相似文献   

8.
体外细胞培养是子宫内膜异位性疾病研究的重要工具.本文回顾了细胞体外培养技术在分离、纯化环节的改良以及子宫内膜异位性疾病永生化细胞系改造中的研究进展,并总结了近几年来激素及细胞因子诱导培养、细胞共培养及三维培养技术在该疾病体外机制研究中的应用,并对其发展前景进行了展望.  相似文献   

9.
The growth of Lavandula vera MM cell suspension and the biosynthesis of rosmarinic acid (RA) were followed during its cultivation in Linsmayer–Skoog media, containing different concentrations of ammonium and nitrate ions. The results showed that cultivation in a medium with 0.09g ammonium ions/l (1/4 of standard medium) ensured intensive growth (16g dry biomass/l) and enhanced biosynthesis of RA (15mg/g dry biomass). Cultivation of L. vera MM cell culture in a medium with 1.2-fold concentration of nitrate ions led to accumulation of 11mg RA/g dry biomass which was twice as much as in the standard Linsmayer–Skoog medium.  相似文献   

10.
Callus formation from protoplasts of a maize cell culture   总被引:3,自引:0,他引:3  
Summary A finely dispersed cell suspension culture from the friable callus of the Black Mexican Sweet line of maize was obtained. Protoplasts from this cell culture, when grown in a simplified medium described here, showed sustained cell divisions and gave rise to callus.Abbreviations 2,4-D 2,4-dichlorophenoxyaceticacid - SDS sodium dodecyl sulfate Cooperative Investigation, United States Department of Agriculture and Institute of Food and Agricultural Sciences, University of Florida, Florida Agricultural Experiment Station Journal Series No. 2453. Mention of a trademark, proprietary, product, or vendor does not constitute a guarantee or warrantly of the product by the U.S. Department of Agriculture and does not imply its approval to the exclusion of other products or vendors that may also be suitable  相似文献   

11.
Wang W  Wang H  Ren C  Wang J  Tan M  Shen J  Yang Z  Wang PG  Wang L 《Carbohydrate research》2011,346(8):1013-1017
It is well known that the saccharides forming the intricate sugar coat that surrounds the cells play important biological roles in intercellular communication and cell differentiation. Therefore, it is worthwhile developing saccharide-based hydrogels for cell culture study. In this study, three novel saccharide-based compounds were designed and synthesized. It was found that one of them could form hydrogels efficiently, while the other two precipitated from water. The stability of the resulting hydrogel was tested, and the supramolecular nanofiber with fiber diameters in the range of 80–300 nm was characterized as the structural element by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Fluorescence microscopy revealed that extensive hydrogen bonds between sugar rings assisted the formation of efficient π–π stacking between aromatic naphthalene groups, thus resulting in the formation of a stable hydrogel in aqueous solution. When the gel was applied for mouse embryonic fibroblast (NIH 3T3), human hepatocellular carcinoma (HepG2), AD293 and HeLa cells culture in two dimensional environments, all of them showed a very good adhesion and good proliferation rate on the top of the hydrogel. These results indicates that the biocompatible hydrogel reported here has a potential to be developed into useful materials for in vitro cell culture, drug delivery, and tissue engineering.  相似文献   

12.
Regenerative medicine is not new; it has not sprung anew out of stem cell science as has often been suggested. There is a rich history of study of regeneration, of development, and of the ways in which understanding regeneration advances study of development and also has practical and medical applications. This paper explores the history of regenerative medicine, starting especially with T.H. Morgan in 1901 and carrying through the history of transplantation research in the 20th century, to an emphasis on translational medicine in the late 20th century.  相似文献   

13.
Turnover of cell wall polysaccharides of a Vinca rosea suspension culture   总被引:1,自引:0,他引:1  
Turnover of cell wall components was examined in two growth phases of a batch suspension culture of Vinca rosea L. Three-day-cultured cells (cell division phase) and 5-day-cultured cells (cell expansion phase) were incubated with d -[U-14C]glucose. After various periods of incubation, extra-cellular polysaccharides (ECP) and cell walls were isolated, and then the cell walls were fractionated to pectic substance, hemicellulose, and cellulose fractions. The results of the measurement of radioactivities and amounts of total carbohydrate in the ECP and cell wall fractions indicated that synthesis of pectic substance was more active in the cell division phase than in the cell expansion phase. From the results of the pulse-chase experiments, in which cells prelabelled by incubation with d -[U-14C]glucose for 3 h were incubated in a medium containing unlabelled glucose for various periods, the gross degradation, net synthesis, and gross synthesis of cell wall components were estimated. Active degradation and synthesis were observed in the hemicellulose fraction, indicating that active turnover occurred in the hemicellulose fraction, while little degradation was found in the pectic substance and cellulose fractions.  相似文献   

14.
IL-21 is known to enhance immunoglobulin production using human in vitro models. Using either PBMC or purified tonsilar B cells both stimulated with anti-CD40, IL-4+/-IL-21, this enhancement was shown to correlate with increased cell division especially for IgE and to a lesser extent for IgM and total IgG. Cell division was monitored by CFSE staining and maximum cell division was found at low initial cell plating densities. A correlation between increased cell division and IL-10-mediated enhancement of IgE production was also seen; however, increased cell division plays a smaller role with IL-10 than IL-21. This is further emphasized in that when IL-10 and IL-21 were added together there was a further synergistic increase in IgE seen, but no accompanying further increase in cell division. The mouse system was also examined for IL-21 effects as a function of cell concentration, and as in humans, IL-21 added to murine cells increased IgE production over IL-4/CD40 stimulated cells at lower cell concentrations; however, IL-21 significantly reduced IgE at higher plated cell concentrations.  相似文献   

15.
Three-day-cultured cells of Vinca rosea L. (in the cell division phase) and 5-day-cultured cells (in the cell expansion phase) prelabelled with d -[U-14C] glucose were incubated in a medium containing unlabelled glucose. After various periods of chase, extra-cellular polysaccharides (ECP) and cell walls were isolated, and cell walls were fractionated into pectic substances, hemicellulose, and cellulose fractions. After acid hydrolysis, the radioactive constituents in the pectic substances and hemicellulose fractions were analyzed. Active turnover was observed in arabinose and galactose in the hemicellulose fraction of cell walls, while the constituents of the pectic substances, and xylose and glucose in the hemicellulose fraction did not undergo active turnover. The proportion of radioactivities of arabinose and galactose in total radioactivity of ECP increased markedly after chasing. These results indicate that arabinogalactan was synthesized, deposited in the cell wall, degraded rapidly, and made soluble in the medium as a part of ECP.  相似文献   

16.
Embryonic stem cell therapy for diabetes mellitus   总被引:9,自引:0,他引:9  
There is a compelling need to develop novel therapies for diabetes mellitus. Recent successes in the transplantation of islets of Langerhans are seen as a major breakthrough. However, there is huge disparity between potential recipients and the availability of donor tissue. Human embryonic stem cells induced to form pancreatic beta cells could provide a replenishable supply of tissue. Early studies on the spontaneous differentiation of mouse embryonic stem cells have laid the foundation for a more directed approach based on recapitulating the events that occur during the development of the pancreas in the mouse. A high yield of definitive endoderm has been achieved, and although beta-like cells can be generated in a step-wise manner, the efficiency is still low and the final product is not fully differentiated. Future challenges include generating fully functional islet cells under Xeno-free and chemically defined conditions and circumventing the need for immunosuppression.  相似文献   

17.
In this study we examined the effect of the specific gravity of culture medium on the frequency of hematopoietic stem cell (HSC) maintenance. We used a newly developed high-specific-gravity media. Bone marrow cells were isolated and cultured, and HSC activity was evaluated. The number of hematopoietic progenitor/stem cells was markedly higher in the medium with high specific gravity. In high-specific-gravity media, cells did not precipitate, maintenance of HSCs was increased, and there was a concomitant accumulation of beta-catenin. This novel technique for maintaining HSC populations provides an important new tool for studies in regenerative medicine.  相似文献   

18.
Interaction between biomaterials and cells is a critical aspect for successful application of tissue engineering research. Technological advances within the past decade have enabled a number of studies to investigate how the spatial organization of cell-adhesive ligands impacts complex and rich cell behaviors ranging from adhesion to differentiation. Cells in their native environment are surrounded by chemical and physical factors spanning a range of length scales from nanometers to hundreds of microns. Furthermore, signals in the form of cell-adhesive ligands presented from this environment in different size scales and/or geometrical arrangements can change how a cell senses and responds to its surroundings. Biology can thus convey information not only in the concentration of a ligand but through its ability to change the spatial organization of these cues, raising questions both on the mechanisms by which it patterns such information and on the means by which a cell interprets it. This review discusses major findings associated with various systems developed to study cell-adhesive ligand presentation as well as an overview of the important material systems used in these studies. Promising material systems to further investigations in this field are also examined. Future directions will likely include determining how cells sense local and global ligand concentrations, understanding underlying mechanisms that regulate cell behaviors, and investigating the function of more complex cell types and diverse ligands.  相似文献   

19.
K. Grossmann  E. W. Weiler  J. Jung 《Planta》1985,164(3):370-375
Cell division in cell suspension cultures can be completely blocked by the growth retardant tetcyclacis at a concentration of 10-4 mol l-1. In rice cells it has been demonstrated that the growth inhibition can be completely overcome by application of cholesterol independent of the duration of pretreatment with tetcyclacis. In suspension cultures of maize and soybean, too, the effect of tetcyclacis on cell division was neutralized by adding cholesterol. Other plant sterols, stigmasterol, campesterol and sitosterol were active in a decreasing order. Modifications in the cholesterol perhydro-cyclopentanophenanthrene-ring system indicate that the hydroxyl group at C-3 and the double bond between C-5 and C-6 in ring B are required for the activity. In contrast, gibberellic acid as well as ent-kaurenoic acid could not compensate retardant effects. Likewise, tetcyclasis did not change the level of gibberellins in rice cells as shown by radioimmunoassay. Thus, it is concluded that in cell suspension cultures sterols play a more important role in cell division than gibberellins.Abbreviation GAx gibberelin Ax  相似文献   

20.
Burnouf T  Lee CY  Luo CW  Kuo YP  Chou ML  Wu YW  Tseng YH  Su CY 《Biologicals》2012,40(1):21-30
We have evaluated the capacity of two human blood fractions to substitute for FBS as growth medium supplement for human and animal cell cultures. Non-anticoagulated blood from volunteer donors (N = 13) was centrifuged to isolate a supernatant serum (SS) and a platelet-rich fibrin (PRF) clot which was squeezed to extract the releasate (PRFR). Both materials were characterized for the content in PDGF-AB, TGF-β1, VEGF, bFGF, EGF, IGF, total protein, albumin, IgG, IgM IgA, fibrinogen, cholesterol, triglycerides, various chemistry analytes and hemoglobin. Cell growth promoting activity of pooled SS and PRFR at 1, 5, and 10% in growth medium was evaluated over 7 days using human (HEK293, MG-63) and animal (SIRC, 3T3) cell lines and two human primary cultures (gingival fibroblasts and periodontal ligaments). Viable cell count was compared to that in cultures in FBS free-medium and 10% FBS supplement. SS and PRFR at 1-10% stimulated cell growth significantly more than FBS-free medium and in a way similar to 10% FBS in all cultures apart from 3T3. These two human blood-derived fibrin releasates are equally efficient to substitute for FBS as supplement for cell cultures and could be useful for specialized applications in regenerative medicine, dentistry and oral implantology, or cell therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号