首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
It has been some 20 years since the initial discovery of ceramide 1-phosphate (C1P) and nearly a decade since ceramide kinase (CERK) was cloned. Many studies have shown that C1P is important for membrane biology and for the regulation of membrane-bound proteins, and the CERK enzyme has appeared to be tightly regulated in order to control both ceramide levels and production of C1P. Furthermore, C1P made by CERK has emerged as a genuine signalling entity. However, it represents only part of the C1P pool that is available in the cell, therefore suggesting that alternative unknown C1P-producing mechanisms may also play a role. Recent technological developments for measuring complex sphingolipids in biological samples, together with the availability of Cerk-deficient animals as well as potent CERK inhibitors, have now provided new grounds for investigating C1P biology further. Here, we will review the current understanding of CERK and C1P in terms of biochemistry and functional implications, with particular attention to C1P produced by CERK.  相似文献   

3.
4.
Kim TJ  Mitsutake S  Kato M  Igarashi Y 《FEBS letters》2005,579(20):4383-4388
Ceramide kinase (CERK) converts ceramide (Cer) to ceramide-1-phosphate (C1P), a newly recognized bioactive molecule capable of regulating diverse cellular functions. The N-terminus of the CERK protein encompasses a sequence motif known as a pleckstrin homology (PH) domain. However, little is known regarding the functional roles of this domain in CERK. In this study, we have demonstrated that the PH domain of CERK is essential for its enzyme activity. Using site-directed mutagenesis, we have further determined that Leu10 in the PH domain has an important role in CERK activity. Replacing this residue with a neutral alanine or isoleucine, caused a dramatic decrease in CERK activity to 1% and 29%, respectively, compared to CERK, but had no effect on substrate affinity. The study presented here suggests that the PH domain of CERK is not only indispensable for its activity but also act as a regulator of CERK activity.  相似文献   

5.
Ceramide-1-phosphate (C1P) is a bioactive sphingolipid with roles in several biological processes. Currently, high performance liquid chromatography-electrospray ionization-tandem mass spectrometry (HPLC ESI-MS/MS) offers the most efficient method of quantifying C1P. However, the published protocols have several drawbacks causing overestimations and carryovers. Here, the reported overestimation of C1P was shown to be due to incomplete neutralization of base hydrolyzed lipid extracts leading to the hydrolysis of SM to C1P. Actual quantity of C1P in cells (6 pmols/106 cells) was much lower than previously reported. Also, the major species of C1P produced by ceramide kinase (CERK) was found to be d18:1/16:0 with a minority of d18:1/24:1 and d18:1/24:0. The artifactual production of C1P from SM was used for generating C1Ps as retention time markers. Elimination of carryovers between samples and a 2-fold enhancement in the signal strength was achieved by heating the chromatographic column to 60°C. The role of ceramide transport protein (CERT) in supplying substrate to CERK was also revalidated using this new assay. Finally, our results demonstrate the presence of additional pathway(s) for generation of the C1P subspecies, d18:1/18:0 C1P, as well as a significant portion of d18:1/16:0, d18:1/24:1, and d18:1/24:0. In conclusion, this study introduces a much improved and validated method for detection of C1P by mass spectrometry and demonstrates specific changes in the C1P subspecies profiles upon downregulation of CERK and CERT.  相似文献   

6.
Kim TJ  Kang YJ  Lim Y  Lee HW  Bae K  Lee YS  Yoo JM  Yoo HS  Yun YP 《Experimental cell research》2011,317(14):2041-2051
Ceramide 1-phosphate (C1P) is a novel bioactive sphingolipid formed by ceramide kinase (CERK)-catalyzed phosphorylation of ceramide. It has been implicated in the regulation of such vital pathophysiological functions as phagocytosis and inflammation, but there have been no reports ascribing a biological function to CERK in vascular disorders. Here the potential role of CERK/C1P in neointimal formation was investigated using rat aortic vascular smooth muscle cells (VSMCs) in primary culture and a rat carotid injury model. Exogenous C8-C1P stimulated cell proliferation, DNA synthesis, and cell cycle progression of rat aortic VSMCs in primary culture. In addition, wild-type CERK-transfected rat aortic VSMCs induced a marked increase in rat aortic VSMC proliferation and [3H]-thymidine incorporation when compared to empty vector transfectant. C8-C1P markedly activated extracellular signal-regulated kinase 1 and 2 (ERK1/2) within 5 min, and the activation could be prevented by U0126, a MEK inhibitor. Also, K1, a CERK inhibitor, decreased the ERK1/2 phosphorylation and cell proliferation on platelet-derived growth factor (PDGF)-stimulated rat aortic VSMCs. CERK expression and C1P levels were found to be potently increased during neointimal formation using a rat carotid injury model. However, ceramide levels decreased during the neointimal formation process. These findings suggest that C1P can induce neointimal formation via cell proliferation through the regulation of the ERK1/2 protein in rat aortic VSMCs and that CERK/C1P may regulate VSMC proliferation as an important pathogenic marker in the development of cardiovascular disorders.  相似文献   

7.
Deng TX  Wang ZX  Gao XQ  Shi YY  Ma ZY  Jin HX  Deng JB 《生理学报》2011,63(6):479-490
本文旨在探讨神经酰胺(ceramide,Cer)在酒精诱导神经细胞增殖及新生神经元形成过程中的作用及机制.因为Cer主要的代谢途径是经神经鞘磷脂合成酶(sphingomyelin synthase,SMS)作用转化成神经鞘磷脂(sphingomyelin,SM),所以我们用SMS2基因敲除(sphingomyelin ...  相似文献   

8.
Sphingolipids have important functions as structural components of cells but they also function as signaling molecules regulating different cellular processes such as apoptosis, cell proliferation, cell migration, cell division and inflammation. Hence, a tight regulation of the sphingolipid homeostasis is essential to maintain proper cellular functions. Mammalian ORMDL proteins are orthologues of the yeast ORM1/2 proteins, which regulate ceramide synthesis in yeast. ORMDL proteins inhibit serine palmitoyltransferase (SPT), the enzyme regulating a rate-limiting step of the sphingolipid pathway to control the levels of ceramides and other sphingolipids. Sphingomyelinase phosphodiesterase like 3b (SMPDL3b) is a glycosylphosphatidylinositol (GPI) anchored protein in the plasma membrane (PM) and determines membrane fluidity in macrophages. We previously showed that differential expression of SMPDL3b alters the availability of Ceramide-1-phosphate (C1P) in human podocytes, which are terminally differentiated cells of the kidney filtration barrier. This observation lead us to investigate if SMPDL3b controls C1P availability in human podocytes by interfering with ceramide kinase (CERK) expression and function. We found that SMPDL3b interacts with CERK and can bind to C1P in vitro. Furthermore, CERK expression is reduced when SMPDL3b expression is silenced. These observations led us to propose that one of the mechanisms by which SMPDL3b influences the amount of C1P available in the podocytes is by interfering with the function of CERK thereby maintaining a balance in the levels of the C1P in podocytes.  相似文献   

9.
We previously reported that incubation of bone-marrow derived macrophages in the absence of macrophage-colony stimulating factor (M-CSF), a cytokine that is essential for their growth and survival, resulted in stimulation of acid sphingomyelinase, accumulation of ceramides, and induction of apoptosis [A. Gomez-Munoz et al. 2004. Ceramide 1-phosphate blocks apoptosis through inhibition of acid sphingomyelinase in macrophages. J Lipid Res 45: 99–105]. Here, we show that alveolar NR8383 macrophages, which are not dependent on M-CSF for viability, undergo apoptosis when they are incubated in the absence of serum. NR8383 cells showed increased levels of ceramides under apoptotic conditions, but in contrast to bone marrow macrophage acid and neutral sphingomyelinases were only slightly activated. We found that the major mechanism for ceramide generation in NR8383 macrophages was stimulation of their synthesis de novo. This action involved activation of serine palmitoyltransferase (SPT), the key regulatory enzyme of this pathway. A relevant finding was that ceramide 1-phosphate (C1P) inhibited SPT activity and ceramide accumulation leading to inhibition of apoptosis. Furthermore, C1P enhanced the activity of antiapoptotic protein kinase B and its downstream effector nuclear factor kappa B. These observations add a new dimension to the understanding of the pro-survival actions of C1P in mammalian cells.  相似文献   

10.
Multiple reports have demonstrated a role for ceramide kinase (CERK) in the production of eicosanoids. To examine the effects of the genetic ablation of CERK on eicosanoid synthesis, primary mouse embryonic fibroblasts (MEFs) and macrophages were isolated from CERK−/− and CERK+/+ mice, and the ceramide-1-phosphate (C1P) and eicosanoid profiles were investigated. Significant decreases were observed in multiple C1P subspecies in CERK−/− cells as compared to CERK+/+ cells with overall 24% and 48% decreases in total C1P. In baseline experiments, the levels of multiple eicosanoids were significantly lower in the CERK−/− cells compared with wild-type cells. Importantly, induction of eicosanoid synthesis by calcium ionophore was significantly reduced in the CERK−/− MEFs. Our studies also demonstrate that the CERK−/− mouse has adapted to loss of CERK in regards to airway hyper-responsiveness as compared with CERK siRNA treatment. Overall, we demonstrate that there are significant differences in eicosanoid levels in ex vivo CERK−/− cells compared with wild-type counterparts, but the effect of the genetic ablation of CERK on eicosanoid synthesis and the serum levels of C1P was not apparent in vivo.  相似文献   

11.
The discovery of ceramide kinase (CerK), which phosphorylates ceramide (Cer) to ceramide 1-phisphate (C1P), established a new pathway for Cer metabolism. Among mouse tissues, brain contains the highest CerK activity. In this study, we found that CerK is highly expressed in cerebellar Purkinje cells. Since Purkinje cells are important for motor-related behaviors, we generated CerK-null mice and performed behavioral analyses. The CerK-null mice were healthy, and displayed no histological abnormalities. The mice lost CerK activity completely, suggesting that CerK is the only enzyme that phosphorylate Cer. However, cellular C1P levels were not different between the CerK-null and wild-type mice, indicating the presence of other C1P-producing pathway. The general motor-coordination was not impaired in the CerK-null mice, but emotional behavior was slightly affected. Our findings suggest that CerK is not necessary for survival at an individual level, but might be involved in higher brain function related to emotion.  相似文献   

12.
Ceramide kinase (CERK) is a critical mediator of eicosanoid synthesis, and its product, ceramide-1-phosphate (C1P), is required for the production of prostaglandins in response to several inflammatory agonists. In this study, mass spectrometry analysis disclosed that the main forms of C1P in cells were C(16:0) C1P and C(18:0) C1P, suggesting that CERK uses ceramide transported to the trans-Golgi apparatus by ceramide transport protein (CERT). To this end, downregulation of CERT by RNA interference technology dramatically reduced the levels of newly synthesized C1P (kinase-derived) as well as significantly reduced the total mass levels of C1P in cells. Confocal microscopy, subcellular fractionation, and surface plasmon resonance analysis were used to further localize CERK to the trans-Golgi network, placing the generation of C1P in the proper intracellular location for the recruitment of cytosolic phospholipase A(2)alpha. In conclusion, these results demonstrate that CERK localizes to areas of eicosanoid synthesis and uses a ceramide "pool" transported in an active manner via CERT.  相似文献   

13.
Ceramide kinase (CERK) catalyzes the conversion of ceramide to ceramide 1-phosphate (C1P) and is known to be activated by calcium. Although several groups have examined the functions of CERK and its product C1P, the functions of C1P and CERK are not understood. We studied the RBL-2H3 cell line, a widely used model for mast cells, and found that CERK and C1P are required for activation of the degranulation process in mast cells. We found that C1P formation was enhanced during activation induced by IgE/antigen or by Ca(2+) ionophore A23187. The formation of C1P required the intracellular elevation of Ca(2+). We generated RBL-2H3 cells that stably express CERK, and when these cells were treated with A23187, a concomitant C1P formation was observed and degranulation increased 4-fold, compared with mock transfectants. The cell-permeable N-acetylsphingosine (C(2)-ceramide), a poor substrate of CERK, inhibited both the formation of C1P and degranulation, indicating that C1P formation was necessary for degranulation. Exogenous introduction of CERK into permeabilized RBL-2H3 cells caused degranulation. We identified a cytosolic localization of CERK that provides exposure to cytosolic Ca(2+). Taken together, these results indicate that C1P formation is a necessary step in the degranulation pathway in RBL-2H3 cells.  相似文献   

14.
The sphingolipid, ceramide-1-phosphate (C1P), has been shown to promote the inflammatory phase and inhibit the proliferation and remodeling stages of wound repair via direct interaction with group IVA cytosolic phospholipase A2, a regulator of eicosanoid biosynthesis that fine-tunes the behaviors of various cell types during wound healing. However, the anabolic enzyme responsible for the production of C1P that suppresses wound healing as well as bioactive eicosanoids and target receptors that drive enhanced wound remodeling have not been characterized. Herein, we determined that decreasing C1P activity via inhibitors or genetic ablation of the anabolic enzyme ceramide kinase (CERK) significantly enhanced wound healing phenotypes. Importantly, postwounding inhibition of CERK enhanced the closure rate of acute wounds, improved the quality of healing, and increased fibroblast migration via a “class switch” in the eicosanoid profile. This switch reduced pro-inflammatory prostaglandins (e.g., prostaglandin E2) and increased levels of 5-hydroxyeicosatetraenoic acid and the downstream metabolite 5-oxo-eicosatetraenoic acid (5-oxo-ETE). Moreover, dermal fibroblasts from mice with genetically ablated CERK showed enhanced wound healing markers, while blockage of the murine 5-oxo-ETE receptor (oxoeicosanoid receptor 1) inhibited the enhanced migration phenotype of these cell models. Together, these studies reinforce the vital roles eicosanoids play in the wound healing process and demonstrate a novel role for CERK-derived C1P as a negative regulator of 5-oxo-ETE biosynthesis and the activation of oxoeicosanoid receptor 1 in wound healing. These findings provide foundational preclinical results for the use of CERK inhibitors to shift the balance from inflammation to resolution and increase the wound healing rate.  相似文献   

15.
MEF2C mediates the activation induced cell death (AICD) of macrophages   总被引:2,自引:0,他引:2  
Fu W  Wei J  Gu J 《Cell research》2006,16(6):559-565
  相似文献   

16.
Sphingomyelin synthase-related protein (SMSr) synthesizes the sphingomyelin analog ceramide phosphoethanolamine (CPE) in cells. Previous cell studies indicated that SMSr is involved in ceramide homeostasis and is crucial for cell function. To further examine SMSr function in vivo, we generated Smsr KO mice that were fertile and had no obvious phenotypic alterations. Quantitative MS analyses of plasma, liver, and macrophages from the KO mice revealed only marginal changes in CPE and ceramide as well as other sphingolipid levels. Because SMS2 also has CPE synthase activity, we prepared Smsr/Sms2 double KO mice. We found that CPE levels were not significantly changed in macrophages, suggesting that CPE levels are not exclusively dependent on SMSr and SMS2 activities. We then measured CPE levels in Sms1 KO mice and found that Sms1 deficiency also reduced plasma CPE levels. Importantly, we found that expression of Sms1 or Sms2 in SF9 insect cells significantly increased not only SM but also CPE formation, indicating that SMS1 also has CPE synthase activity. Moreover, we measured CPE synthase Km and Vmax for SMS1, SMS2, and SMSr using different NBD ceramides. Our study reveals that all mouse SMS family members (SMSr, SMS1, and SMS2) have CPE synthase activity. However, neither CPE nor SMSr appears to be a critical regulator of ceramide levels in vivo.  相似文献   

17.
Lipopolysaccharide (LPS) and interferon-gamma (IFN) treatment of C6 rat glioma cells increased the intracellular ceramide level and the expression of the inducible nitric oxide synthase (iNOS) gene. To delineate the possible role of ceramide in the induction of iNOS, we examined the source of intracellular ceramide and associated signal transduction pathway(s) with the use of inhibitors of intracellular ceramide generation. The inhibitor of neutral sphingomyelinase (3-O-methylsphingomyelin, MSM) inhibited the induction of iNOS, whereas inhibitor of acidic sphingomyelinase (SR33557) or that of ceramide de novo synthesis (fumonisin B1) had no effect on the induction of iNOS. MSM-mediated inhibition of iNOS induction was reversed by the supplementation of exogenous C8-ceramide, suggesting that ceramide production by neutral sphingomyelinase (nSMase) is a key mediator in the induction of iNOS. The MSM-mediated inhibition of iNOS gene expression correlated with the decrease in the activity of ras. Inhibition of co-transfected iNOS promoter activity by dominant negative ras supported the role of ras in the nSMase-dependent regulation of iNOS gene. NF-kappaB DNA binding activity and its transactivity were also reduced by MSM pretreatment, and were completely reversed by the supplementation of C8-ceramide. As the dominant negative ras also reduced NF-kappaB transactivity, NF-kappaB activation may be downstream of ras. Our results suggest that ceramide generated by nSMase may be a critical mediator in the regulation of iNOS gene expression via ras-mediated NF-kappaB activation under inflammatory conditions.  相似文献   

18.
Synthesis of glucosylceramide via glucosylceramide synthase (GCS) is a crucial event in higher eukaryotes, both for the production of complex glycosphingolipids and for regulating cellular levels of ceramide, a potent antiproliferative second messenger. In this study, we explored the dependence of the early branching eukaryote Giardia lamblia on GCS activity. Biochemical analyses revealed that the parasite has a GCS located in endoplasmic reticulum (ER) membranes that is active in proliferating and encysting trophozoites. Pharmacological inhibition of GCS induced aberrant cell division, characterized by arrest of cytokinesis, incomplete cleavage furrow formation, and consequent block of replication. Importantly, we showed that increased ceramide levels were responsible for the cytokinesis arrest. In addition, GCS inhibition resulted in prominent ultrastructural abnormalities, including accumulation of cytosolic vesicles, enlarged lysosomes, and clathrin disorganization. Moreover, anterograde trafficking of the encystations-specific protein CWP1 was severely compromised and resulted in inhibition of stage differentiation. Our results reveal novel aspects of lipid metabolism in G. lamblia and specifically highlight the vital role of GCS in regulating cell cycle progression, membrane trafficking events, and stage differentiation in this parasite. In addition, we identified ceramide as a potent bioactive molecule, underscoring the universal conservation of ceramide signaling in eukaryotes.  相似文献   

19.
The role of sphingomyelin synthase 1 (SMS1), the Golgi membrane isoform of the enzyme, in ceramide metabolism and apoptosis after photodamage with the photosensitizer Pc 4 (PDT) is unclear. In the present study, using electrospray ionization/double mass spectrometry, we show that in Jurkat cells overexpressing SMS1, increases in ceramides were lower than in empty-vector transfectants post-PDT. Similarly, the responses of dihydroceramides and dihydrosphingosine, precursors of ceramide in the de novo synthetic pathway, were attenuated in SMS1-overexpressor after photodamage, suggesting the involvement of the de novo pathway. Overexpression of SMS1 was associated with differential regulation of sphingomyelin levels, as well as with the reduced inhibition of the enzyme post-treatment. Concomitant with the suppressed ceramide response, PDT-induced DEVDase activation was substantially reduced in SMS1-overexpressors. The data show that overexpression of SMS1 is associated with suppressed ceramide response and apoptotic resistance after photodamage.  相似文献   

20.
Raymond MN  Le Stunff H 《FEBS letters》2006,580(1):131-136
Macrophage ionotropic P2X7 receptors regulate cell-death through ill-defined signaling pathways. Here, we investigated the role of ceramide, an apoptogenic sphingolipid and showed that ATP stimulated ceramide accumulation in macrophages. Benzoylbenzoyl-ATP, a potent P2X7 agonist, was able to mimic the effects of ATP on ceramide accumulation while oxidized ATP had the opposite effect. Ceramide accumulation was blocked by de novo ceramide biosynthesis inhibitors. Interestingly, ATP-induced caspase-3/7 activation was dependent on ceramide generation. Finally, we showed that de novo ceramide biosynthesis is involved in ATP-induced macrophage death in a caspase-dependent manner. Our results indicate a novel role of ceramide in P2X7-regulated cell-death.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号