首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Drug resistance is a major public health challenge in leishmaniasis chemotherapy, particularly in the case of emerging Leishmania/HIV‐1 co‐infections. We have delineated the mechanism of cell death induced by the HIV‐1 protease inhibitor, Nelfinavir, in the Leishmania parasite. In order to further study Nelfinavir–Leishmania interactions, we selected Nelfinavir‐resistant axenic amastigotes in vitro and characterized them. RNA expression profiling analyses and comparative genomic hybridizations of closely related Leishmania species were used as a screening tool to compare Nelfinavir‐resistant and ‐sensitive parasites in order to identify candidate genes involved in drug resistance. Microarray analyses of Nelfinavir‐resistant and ‐sensitive Leishmania amastigotes suggest that parasites regulate mRNA levels either by modulating gene copy numbers through chromosome aneuploidy, or gene deletion/duplication by homologous recombination. Interestingly, supernumerary chromosomes 6 and 11 in the resistant parasites lead to upregulation of the ABC class of transporters. Transporter assays using radiolabelled Nelfinavir suggest a greater drug accumulation in the resistant parasites and in a time‐dependent manner. Furthermore, high‐resolution electron microscopy and measurements of intracellular polyphosphate levels showed an increased number of cytoplasmic vesicular compartments known as acidocalcisomes in Nelfinavir‐resistant parasites. Together these results suggest that Nelfinavir is rapidly and dramatically sequestered in drug‐induced intracellular vesicles.  相似文献   

2.
The current therapy for leishmaniasis is not sufficient and it has two severe drawbacks, host-toxicity and drug resistance. The substantial knowledge of parasite biology is not yet translating into novel drugs for leishmaniasis. Based on this observation, a 3D structural model of Leishmania mitogen-activated protein kinase (MAPK) homologue has been developed, for the first time, by homology modeling and molecular dynamics simulation techniques. The model provided clear insight in its structure features, i.e. ATP binding pocket, phosphorylation lip, and common docking site. Sequence-structure homology recognition identified Leishmania CRK3 (LCRK3) as a distant member of the MAPK superfamily. Multiple sequence alignment and 3D structure model provided the putative ATP binding pocket of Leishmania with respect to human ERK2 and LCRK3. This analysis was helpful in identifying the binding sites and molecular function of the Leishmania specific MAPK homologue. Molecular docking study was performed on this 3D structural model, using different classes of competitive ATP inhibitors of LCRK3, to check whether they exhibit affinity and could be identified as Leishmania MAPK specific inhibitors. It is well known that MAP kinases are extracellular signal regulated kinases ERK1 and ERK2, which are components of the Ras-MAPK signal transduction pathway which is complexed with HDAC4 protein, and their inhibition is of significant therapeutic interest in cancer biology. In order to understand the mechanism of action, docking of indirubin class of molecules to the active site of histone deacetylase 4 (HDAC4) protein is performed, and the binding affinity of the protein-ligand interaction was computed. The new structural insights obtained from this study are all consistent with the available experimental data, suggesting that the homology model of the Leishmania MAPK and its ligand interaction modes are reasonable. Further the comparative molecular electrostatic potential and cavity depth analysis of Leishmania MAPK and human ERK2 suggested several important differences in its ATP binding pocket. Such differences could be exploited in the future for designing Leishmania specific MAPK inhibitors.  相似文献   

3.
Reverse genetics in Leishmania spp has gained importance beyond basic research as efforts increase to discover and validate new drug targets. Often, the most promising targets are essential for viability of the parasites, defying a genetic analysis by current gene replacement strategies. Duncan et al. demonstrate the applicability of DiCre recombination in Leishmania for induced replacement of the kinase CRK3 gene in promastigotes. DiCre gene replacement leads to the rapid loss of the gene and allows monitoring the phenotypic effects of the loss of function, eliminating the need for prolonged cultivation and selection. Implementation of the DiCre approach will allow functional genetics of the most important of Leishmania genes and is likely to boost genetic research and drug target discovery.  相似文献   

4.
ABC proteins were first characterized in the protozoan parasite Leishmania while studying mechanisms of drug resistance. PGPA is involved in resistance to arsenite and antimonite and it most likely confers resistance by sequestering metal–thiol conjugates into an intracellular vesicle. PGPA is part of gene family with at least four more members which are in search of a function. Leishmania also contains a P-glycoprotein, homologous to the mammalian MDR1, that is involved in multidrug resistance. The ongoing genome project of Leishmania has pinpointed several novel ABC transporters and experiments are carried out to study the function of the ABC proteins in drug resistance and in host–pathogen interactions.  相似文献   

5.
A new family of antimicrotubule drugs named (3-haloacetamidobenzoyl) ureas and ethyl 3-haloacetamidobenzoates were found to be cytotoxic to the Leishmania parasite protozoa. While the benzoylureas were shown to strongly inhibit in vitro mammalian brain microtubule assembly, the ethyl ester derivatives were characterized as very poor inhibitors of this process. Ethyl 3-chloroacetamidobenzoate, MF29, was found to be the most efficient drug on the promastigote stage of three Leishmania species (IC50: 0.3–1.8 μM). MF29 maintained its activity against the clinical relevant intracellular stage of L. mexicana with IC50 value of 0.33 μM. It was the only compound that exhibits a high activity on all the Leishmania species tested. This compound appeared to alter parasite microtubule organisation as demonstrated by using antibodies directed against microtubule components and more precisely the class of microtubule decorated by the MAP2-like protein. It is interesting to notice that this MAP2-like protein was identified for the first time in a Leishmania parasite  相似文献   

6.
Given the paucity and toxicity of available drugs for leishmaniasis, coupled with the advent of drug resistance, the discovery of new therapies for this neglected tropical disease is recognised as being of the utmost urgency. As such antimicrobial peptides (AMPs) have been proposed as promising compounds against the causative Leishmania species, insect vector‐borne protozoan parasites. Here the AMP temporins A, B and 1Sa have been synthesised and screened for activity against Leishmania mexicana insect stage promastigotes and mammalian stage amastigotes, a significant cause of human cutaneous disease. In contrast to previous studies with other species the activity of these AMPs against L. mexicana amastigotes was low. This suggests that amastigotes from different Leishmania species display varying susceptibility to peptides from the temporin family, perhaps indicating differences in their surface structure, the proposed target of these AMPs. In contrast, insect stage L. mexicana promastigotes were sensitive to two of the screened temporins which clearly demonstrates the importance of screening AMPs against both forms of the parasite. Copyright © 2011 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

7.
The high toxicity of current drugs for treatment of leishmaniasis is a major hindrance for controlling the disease. Pravastatin is a well-known drug with anti-inflammatory and immunomodulatory properties that may modulate host defense mechanisms against Leishmania. We evaluated the influence of prolonged pravastatin treatment on the survival of Leishmania amazonensis-infected animals (BALB/c, C57BL6 mice and Syrian hamsters), including weekly measurement of cutaneous lesions (footpad thickness) and weight. Pravastatin improved survival of Leishmania-infected BALB/c mice but not of infected C57BL6 mice or hamsters. On the 50th week of follow-up, 71% of pravastatin-treated Leishmania-infected BALB/c mice were alive against 29% of control group (p < 0.01). Low footpad thickness was found on BALB/c pravastatin treated mice from the 14th week (p < 0.05), and 20th week onward for C57BL6 treated mice. Pravastatin treatment decreased weight loss in Leishmania-infected C57BL6 mice and Syrian hamsters, but not infected BALB/c mice. Our results points to beneficial effects of pravastatin on the evolution of the disease in the murine leishmaniasis model.  相似文献   

8.

Background  

In yeast and Caenorhabditis elegans, Silent Information Regulator (SIR2) proteins have been shown to be involved in ageing regulation. In Leishmania, the LmSIR2rp was originally isolated from the excreted/secreted material of the Leishmania parasites. Among the function(s) of this protein in Leishmania biology, we have documented its implication in parasite survival, and in particular in Leishmania amastigotes. In this paper we question the role of the excreted/secreted form of the protein. In particular we wonder if the Leishmania Sir2 homologue is involved in some aspect of its biological function(s), in various components and pathways, which could promote the host cell survival. To test this hypothesis we have mimicked an intracellular release of the protein through constitutive expression in mouse L929 fibrosarcoma cells.  相似文献   

9.
Reporter genes have proved to be an excellent tool for studying disease progression. Recently, the green fluorescent protein (GFP) ability to quantitatively monitor gene expression has been demonstrated in different organisms. This report describes the use of Leishmania tarentolae (L. tarentolae) expression system (LEXSY) for high and stable levels of GFP production in different Leishmania species including L. tarentolae, L. major and L. infantum. The DNA expression cassette (pLEXSY-EGFP) was integrated into the chromosomal ssu locus of Leishmania strains through homologous recombination. Fluorescent microscopic image showed that GFP transgenes can be abundantly and stably expressed in promastigote and amastigote stages of parasites. Furthermore, flow cytometry analysis indicated a clear quantitative distinction between wild type and transgenic Leishmania strains at both promastigote and amastigote forms. Our data showed that the footpad lesions with GFP-transfected L. major are progressive over time by using fluorescence small-animal imaging system. Consequently, the utilization of stable GFP-transfected Leishmania species will be appropriate for in vitro and in vivo screening of anti-leishmanial drugs and vaccine development as well as understanding the biology of the host–parasite interactions at the cellular level.  相似文献   

10.
Visceral leishmaniasis is an important parasitic disease of the developing world with a limited arsenal of drugs available for treatment. The existing drugs have significant deficiencies so there is an urgent need for new and improved drugs. In the human host, Leishmania are obligate intracellular parasites which poses particular challenges in terms of drug discovery. To achieve sufficient throughput and robustness, free-living parasites are often used in primary screening assays as a surrogate for the more complex intracellular assays. We and others have found that such axenic assays have a high false positive rate relative to the intracellular assays, and that this limits their usefulness as a primary platform for screening of large compound collections. While many different reasons could lie behind the poor translation from axenic parasite to intracellular parasite, we show here that a key factor is the identification of growth slowing and cytostatic compounds by axenic assays in addition to the more desirable cytocidal compounds. We present a screening cascade based on a novel cytocidal-only axenic amastigote assay, developed by increasing starting density of cells and lowering the limit of detection, and show that it has a much improved translation to the intracellular assay. We propose that this assay is an improved primary platform in a new Leishmania screening cascade designed for the screening of large compound collections. This cascade was employed to screen a diversity-oriented-synthesis library, and yielded two novel antileishmanial chemotypes. The approach we have taken may have broad relevance to anti-infective and anti-parasitic drug discovery.  相似文献   

11.
12.
Pathogenic trypanosomatid parasites are auxotrophic for heme and they must scavenge it from their human host. Trypanosoma brucei (responsible for sleeping sickness) and Leishmania (leishmaniasis) can fulfill heme requirement by receptor‐mediated endocytosis of host hemoglobin. However, the mechanism used to transfer hemoglobin‐derived heme from the lysosome to the cytosol remains unknown. Here we provide strong evidence that HRG transporters mediate this essential step. In bloodstream T. brucei, TbHRG localizes to the endolysosomal compartment where endocytosed hemoglobin is known to be trafficked. TbHRG overexpression increases cytosolic heme levels whereas its downregulation is lethal for the parasites unless they express the Leishmania orthologue LmHR1. LmHR1, known to be an essential plasma membrane protein responsible for the uptake of free heme in Leishmania, is also present in its acidic compartments which colocalize with endocytosed hemoglobin. Moreover, LmHR1 levels modulated by its overexpression or the abrogation of an LmHR1 allele correlate with the mitochondrial bioavailability of heme from lysosomal hemoglobin. In addition, using heme auxotrophic yeasts we show that TbHRG and LmHR1 transport hemoglobin‐derived heme from the digestive vacuole to the cytosol. Collectively, these results show that trypanosomatid parasites rescue heme from endocytosed hemoglobin through endolysosomal HRG transporters, which could constitute novel drug targets.  相似文献   

13.
Leishmaniasis is a major health problem that affects more than 300 million people throughout the world. The morbidity associated with the disease causes serious economic burden in Leishmania endemic regions. Despite the morbidity and economic burden associated with Leishmaniasis, this disease rarely gets noticed and is still categorized under neglected tropical diseases. The lack of research combined with the ability of Leishmania to evade immune recognition has rendered our efforts to design therapeutic treatments or vaccines challenging. Herein, we review the literature on Leishmania from innate immune perspective and discuss potential problems as well as solutions and future directions that could aid in identifying novel therapeutic targets to eliminate this parasite.  相似文献   

14.
Leishmaniasis is a family of diseases caused by protozoan parasites of the genus Leishmania. Various Leishmania species can cause human infection, producing a spectrum of clinical manifestations. The current treatments are unsatisfactory, and in absence of a vaccine, there is an urgent need for effective drugs to replace/supplement those currently in use. Recent studies have shown that the antineoplastic drug, tamoxifen, had direct leishmanicidal effect on several Leishmania species in vitro. Moreover, in vivo testing was carried out on some of the species and showed promising results. The authors have carried out the present work to complement previous published studies by investigating in vivo activity of tamoxifen in an experimental model of cutaneous leishmaniasis (CL) caused by Leishmania major. Groups of infected mice were given tamoxifen, orally, at a dose of 20 mg/kg/day for 15 days. Efficacy was assessed clinically, parasitologically, histopathologically by light and transmission electron microscope (TEM). Results showed that untreated infected mice suffered from autoamputation of the inoculated foot pad. However, those which received tamoxifen showed marked improvement of the cutaneous lesions and reduction of parasite burden. TEM of the cutaneous lesions from infected mice revealed the fine structure of normal Leishmania amastigotes, whereas those from infected mice treated with tamoxifen showed considerable changes. All male mice that received tamoxifen showed scrotal swelling with evident histopathological changes in the testes that could seriously compromise fertility of male mice. In conclusion, although tamoxifen causes significant side effects to the male reproductive system in the mouse model, it could provide an alternative to current agents. Results of this study demonstrated in vivo activity of tamoxifen against Leishmania major, thus, suggesting that tamoxifen is a suitable lead for the synthesis of more effective and less toxic antileishmanial derivatives.  相似文献   

15.
Promastigotes of Leishmania (Viannia) panamensis were successfully transfected with p6.5-egfp to express green fluorescent protein. The transfectants remained infective to macrophages, providing an in vitro model for screening antileishmanial drugs. This was demonstrated by flow cytometry of macrophage-associated GFP after exposure of infected cultures to known antileishmanial drugs, i.e. amphotericin B and glucantime®. Fluorescence of GFP diminished progressively from infected cells with increasing drug concentrations used in both cases. The availability of this fluorescent assay for infection of macrophages by L. (V.) panamensis facilitates drug discovery program for the Viannia species, which differ significantly from those of the Leishmania subgenus.  相似文献   

16.
We validated a new method, based on luciferine/luciferase bioluminescence, for drug screening on promastigotes of different Leishmania species. Results obtained with this new, rapid, reproducible, and reliable method are in good accordance with results obtained by the conventional MTT assay. This bioluminescence assay has a lower detection limit.  相似文献   

17.
Telomeres are protein–DNA complexes that protect chromosome ends from degradation and fusion. In Leishmania spp., telomeric DNA comprises a conserved TTAGGG repeat and is maintained by telomerase. Telomerase is a multisubunit enzymatic complex that ensures the complete DNA replication by adding new telomeric repeats to the G-rich strand. In this report we aimed to purify and study the biochemical properties of Leishmani amazonensis telomerase. In a first trial we used affinity chromatography with antisense 2′-O-methyl oligonucleotide without success since the Leishmania telomerase, similarly to Trypanosoma cruzi enzyme, was not eluted by competition, but instead, it remained bound to the column. Partially purified L. amazonensis telomerase activity was achieved by fractionation of extracts on complementary ion exchange and Heparin columns. Further purification of these fractions on a G-rich telomeric DNA affinity chromatography enriched for telomerase activity. The knowledge of telomerase characteristics in Leishmania could help to develop new strategies to overcome leishmaniasis.  相似文献   

18.
Dendritic cells (DCs) are key elements of the immune system, which function as sentinel in the periphery and alert T lymphocytes about the type of invading antigen and address their polarisation, in order to mount an efficacious immune response. Leishmania spp. are parasitic protozoa which may cause severe disease in humans and domestic animals. In this work, the main studies concerning the role of DCs in Leishmania infection are reviewed, in both the murine and human models. In particular, the importance of the genetic status of the hosts and of the different Leishmania species in modulating DC-mediated immune response is examined. In addition, different approaches of DC-based vaccination against experimental leishmaniasis, which could have important future applications, are summarised.  相似文献   

19.
20.
Leishmaniasis is an arthropod‐borne disease that affects approximately 2 million people worldwide annually. The aims of this study were to detect the presence of Leishmania (Kinetoplastida: Trypanosomatidae) DNA and the feeding preferences of probable vector species in an endemic focus of Leishmania infantum in Turkey. Entomological sampling was performed in August and October 2015 in Ayd?n province, where cases of human and canine leishmaniasis have been reported previously. A total of 1059 sandfly specimens comprising nine species belonging to two genera, Phlebotomus and Sergentomyia (both: Diptera: Psychodidae), and five subgenera of the Phlebotomus genus (Phlebotomus, Paraphlebotomus, Larroussius, Adlerius and Transphlebotomus) were collected in five villages. Among all Phlebotomus specimens, Phlebotomus neglectus (39%) was noted as the most abundant species, followed by Phlebotomus tobbi (18%). Leishmania DNA was detected in pools from P. neglectus, P. tobbi and Sergentomyia dentata by kDNA polymerase chain reaction (PCR). Leishmania DNA from Phlebotomus specimens was identified as L. infantum, but Leishmania DNA from Sergentomyia spp. could not be identified to species level by ITS‐1 real‐time PCR. The detection of Leishmania DNA in wild‐caught P. neglectus and the high percentage (24.2%) of human DNA in engorged specimens suggests that P. neglectus is probably an important vector species for L. infantum in Ayd?n province.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号