首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Leptin is an adipocyte-derived hormone/cytokine that links nutritional status with neuroendocrine and immune functions. In humans, leptin influences energy homeostasis and regulates neuroendocrine function primarily in states of energy deficiency. Initially described as an antiobesity hormone, leptin has subsequently been shown also to influence basal metabolism, hematopoiesis, thermogenesis, reproduction, and angiogenesis. As a cytokine, leptin can affect thymic homeostasis and the secretion of acute-phase reactants such as interleukin-1 (IL-1) and tumor-necrosis factor-alpha (TNF-α). Leptin links nutritional status and proinflammatory T helper 1 (Th1) immune responses and the decrease in leptin plasma concentration during food deprivation leads to impaired immune function. Similar to other pro-inflammatory cytokines, leptin promotes Th1-cell differentiation and can modulate the onset and progression of autoimmune responses in several animal models of disease. Here, we review the advances and controversy for a role of leptin in the pathophysiology of immune responses and discuss novel possible therapeutic implications for leptin modulators.  相似文献   

2.
Leptin in immunology   总被引:16,自引:0,他引:16  
Leptin is an adipokine which conveys information on energy availability. In humans, leptin influences energy homeostasis and regulates neuroendocrine function primarily in states of energy deficiency. As a cytokine, leptin also affects thymic homeostasis and, similar to other proinflammatory cytokines, leptin promotes Th1 cell differentiation and cytokine production. We review herein recent advances on the role of leptin in the pathophysiology of immune responses.  相似文献   

3.
Leptin, from fat to inflammation: old questions and new insights   总被引:21,自引:0,他引:21  
Leptin is 16 kDa adipokine that links nutritional status with neuroendocrine and immune functions. Initially thought to be a satiety factor that regulates body weight by inhibiting food intake and stimulating energy expenditure, leptin is a pleiotropic hormone whose multiple effects include regulation of endocrine function, reproduction, and immunity. Leptin can be considered as a pro-inflammatory cytokine that belongs to the family of long-chain helical cytokines and has structural similarity with interleukin-6, prolactin, growth hormone, IL-12, IL-15, granulocyte colony-stimulating factor and oncostatin M. Because of its dual nature as a hormone and cytokine, leptin links the neuroendocrine and the immune system. The role of leptin in the modulation of immune response and inflammation has recently become increasingly evident. The increase in leptin production that occurs during infection and inflammation strongly suggests that leptin is a part of the cytokine network which governs the inflammatory-immune response and the host defense mechanisms. Leptin plays an important role in inflammatory processes involving T cells and has been reported to modulate T-helper cells activity in the cellular immune response. Several studies have implicated leptin in the pathogenesis of autoimmune inflammatory conditions, such as experimental autoimmune encephalomyelitis, type 1 diabetes, rheumatoid arthritis, and intestinal inflammation. Very recently, a key role for leptin in osteoarthritis has been demonstrated: leptin indeed exhibits, in concert with other pro-inflammatory cytokines, a detrimental effect on articular cartilage by promoting nitric oxide synthesis in chondrocytes. Here, we review the recent advances regarding leptin biology with a special focus on those actions relevant to the role of leptin in the pathophysiology of inflammatory processes and immune responses.  相似文献   

4.
Leptin is an adipocyte-derived hormone/cytokine that links nutritional status with neuroendocrine and immune functions. As a hormone, leptin regulates food intake and basal metabolism, and is sexually dimorphic - that is, its serum concentration is higher in females than in males with a similar body fat mass. As a cytokine, leptin can affect thymic homeostasis and the secretion of acute-phase reactants such as interleukin-1 and tumour-necrosis factor. Similar to other pro-inflammatory cytokines, leptin promotes T helper 1 (TH1)-cell differentiation and can modulate the onset and progression of autoimmune responses in several animal models of disease. Here, we review the advances and controversy for a role of leptin in the pathophysiology of immune responses.  相似文献   

5.
Leptin   总被引:39,自引:0,他引:39  
Leptin is an adipocyte hormone that signals nutritional status to the central nervous system (CNS) and peripheral organs. Leptin is also synthetized in the placenta and in gastrointestinal tract, although its role in these tissues is not yet clear. Circulating concentrations of leptin exhibit pulsatility and circadian rhythmicity. The levels of plasma leptin vary directly with body mass index and percentage body fat, and leptin contributes to the regulation of body weight. Leptin plasma concentrations are also influenced by metabolic hormones, sex, and body energy requirements. Defects in the leptin signaling pathway result in obesity in animal models. Only a few obese humans have been identified with mutations in the leptin gene or in the leptin receptor; however, most cases of obesity in humans are associated with high leptin levels. Thus, in humans obesity may represent a state of leptin resistance. Minute-to-minute fluctuations in peripheral leptin concentrations influence the activity of the hypothalamic-pituitary-ovarian and hypothalamic-pituitary-adrenal axes, indicating that leptin may be a modulator of reproduction, stress-related endocrine function, and behavior. This suggests potential roles for leptin or its antagonists in the diagnosis, pathophysiology and treatment of several human diseases.  相似文献   

6.
瘦素最初发现是在白色脂肪组织产生并且与脂肪组织量有强相关性的激素物质。它最初发现于1994年,并且在中枢神经系统起到限制食物摄入,刺激能量消耗的作用。目前发现在几乎所有的组织内都有瘦素受体的表达,而且在细胞层面瘦素参与各种各样的生物学功能,包括免疫反应、炎性疾病以及心血管、呼吸系统的病理生理过程。目前大量研究表明,瘦素在软骨代谢也发挥了重要作用,现综述如下。  相似文献   

7.
Leptin, a 16 kDa non-glycosylated polypeptide produced primarily by adipocytes and released into the systemic circulation, exerts a multitude of regulatory functions including energy utilization and storage, regulation of various endocrine axes, bone metabolism, and thermoregulation. In addition to leptin's best known role as regulator of energy homeostasis, several studies indicate that leptin plays a pivotal role in immune and inflammatory response. Because of its dual nature as a hormone and cytokine, leptin can be nowadays considered the link between neuroendocrine and immune system. The increase in leptin production that occurs during infections and inflammatory processes strongly suggests that this adipokine is a part of the cytokines network which governs inflammatory/immune response and host defence mechanisms. Indeed, leptin plays a relevant role in inflammatory processes involving either innate or adaptive immune responses. Several studies have implicated leptin in the pathogenesis of autoimmune inflammatory conditions such as encephalomyelitis, type I diabetes, bowel inflammation and also articular degenerative diseases such as rheumatoid arthritis and osteoarthritis. Although the mechanisms by which leptin exerts its action as modulator of inflammatory/immune response are likely to be more complex than predicted and far to be completely depicted, there is a general consensus about its pivotal role as pro-inflammatory and immune-modulating agent. Here, we review the most recent advances on leptin biology with a particular attention to its adipokine facet, even though its role as metabolic hormone will be also addressed.  相似文献   

8.
Hong SJ  Kwon KW  Kim SG  Ko BM  Ryu CB  Kim YS  Moon JH  Cho JY  Lee JS  Lee MS  Shim CS  Kim BS 《Cytokine》2006,33(2):66-71
Leptin is an adipocyte-derived hormone that regulates body fat stores and feeding behavior. The presence of leptin in stomach epithelium was recently demonstrated in the rat and humans, and gastric leptin has been linked to the control of meal size, local inflammatory responses, and paracrine and autocrine functions through leptin receptors in the stomach. We compared the expression patterns of leptin and of the long variant of the leptin receptor (Ob-Rb) between areas with non-ulcerated mucosa and with hyperplastic polyps, adenoma, or adenocarcinoma to evaluate the expression relative to different disease states. Leptin and Ob-Rb were expressed in hyperplastic polyps, adenoma, and adenocarcinoma. In the gastric adenocarcinoma, leptin was expressed significantly less in the poorly differentiated and diffuse-type groups than in the well-differentiated and moderately differentiated groups or in the intestinal type. Based upon our findings, we suggest the possibility that leptin expression can have a pathophysiologic role about the differentiation or growth pattern of gastric adenocarcinoma. A further series of experiments is necessary to elucidate the pathophysiological role of leptin in the differentiation of gastric adenocarcinoma.  相似文献   

9.
Leptin and nitric oxide (NO) are both important messengers in intra- and intercellular communication systems in vertebrates. Several studies have demonstrated an involvement of both substances in the immune response. Here we tested the effects of chronic leptin and anti-leptin treatments on the NO production and phytohaemagglutinin- (PHA) induced cutaneous inflammatory response in a wild passerine, the greenfinch (Carduelis chloris). Plasma leptin levels of individual birds were consistent in time but could be still temporarily increased by administration of recombinant chicken leptin. Increase of plasma leptin was also induced by administration of anti-leptin, which can be most likely explained by increased endogenous leptin production due to disruption of signalling pathways. Contrary to previous findings in mammals, leptin administration reduced systemic NO production. Leptin increased cutaneous swelling response to PHA. This immune-enhancing effect was observable despite the similar plasma leptin levels of leptin-treated and control birds at the time of measurement of immune responses, i.e., 9 days after start of the treatments. This provides evidence for a delayed or long-term potentiation of the cells and cytokines involved. The effects of leptin administration on NO production and immune responsiveness were age-dependent, which indicates the complexity of underlying regulatory mechanisms.  相似文献   

10.
Adipose tissue performs complex metabolic and endocrine functions. This review will focus on the recent literature on the biology and actions of three adipocyte hormones involved in the control of energy homeostasis and insulin action, leptin, acylation-stimulating protein, and adiponectin, and mechanisms regulating their production. Results from studies of individuals with absolute leptin deficiency (or receptor defects), and more recently partial leptin deficiency, reveal leptin's critical role in the normal regulation of appetite and body adiposity in humans. The primary biological role of leptin appears to be adaptation to low energy intake rather than a brake on overconsumption and obesity. Leptin production is mainly regulated by insulin-induced changes of adipocyte metabolism. Consumption of fat and fructose, which do not initiate insulin secretion, results in lower circulating leptin levels, a consequence which may lead to overeating and weight gain in individuals or populations consuming diets high in energy derived from these macronutrients. Acylation-stimulating protein acts as a paracrine signal to increase the efficiency of triacylglycerol synthesis in adipocytes, an action that results in more rapid postprandial lipid clearance. Genetic knockout of acylation-stimulating protein leads to reduced body fat, obesity resistance and improved insulin sensitivity in mice. The primary regulator of acylation-stimulating protein production appears to be circulating dietary lipid packaged as chylomicrons. Adiponectin increases insulin sensitivity, perhaps by increasing tissue fat oxidation resulting in reduced circulating fatty acid levels and reduced intramyocellular or liver triglyceride content. Adiponectin and leptin together normalize insulin action in severely insulin-resistant animals that have very low levels of adiponectin and leptin due to lipoatrophy. Leptin also improves insulin resistance and reduces hyperlipidemia in lipoatrophic humans. Adiponectin production is stimulated by agonists of peroxisome proliferator-activated receptor-gamma; an action may contribute to the insulin-sensitizing effects of this class of compounds. The production of all three hormones is influenced by nutritional status. These adipocyte hormones, the pathways controlling their production, and their receptors represent promising targets for managing obesity, hyperlipidemia, and insulin resistance.  相似文献   

11.
Leptin is an adipocyte-derived hormone/cytokine that links nutrition, metabolism, and immune homeostasis. Leptin is capable of modulating several immune responses. However, the effect of leptin on dendritic cells (DCs) has not yet been recognized. Because DCs are instrumental in the development of immune responses, in this study, we evaluated the impact of leptin on DC activation. We demonstrated the presence of leptin receptor in human immature and mature DCs both at mRNA and protein level and its capacity to transduce leptin signaling leading to STAT-3 phosphorylation. We found no consistent modulation of DC surface molecules known to be critical for their APC function in response to leptin. In contrast, we found that leptin induces rearrangement of actin microfilaments, leading to uropod and ruffle formation. At a functional level, leptin up-regulates the IL-1beta, IL-6, IL-12, TNF-alpha, and MIP-1alpha production. Coincident with this, leptin-treated DCs stimulate stronger heterologous T cell responses. Furthermore, we found that leptin down-regulates IL-10 production by DCs and drives naive T cell polarization toward Th1 phenotype. Finally, we found that leptin partly protects DCs from spontaneous and UVB-induced apoptosis. Consistent with the antiapoptotic effect of leptin, we observed the activation of NF-kappaB and a parallel up-regulation of bcl-2 and bcl-x(L) gene expression. These results provide new insights on the immunoregulatory function of leptin demonstrating its ability to improve DC functions and to promote DC survival. This is of relevance considering a potential application of leptin in immunotherapeutic approaches and its possible use as adjuvant in vaccination protocols.  相似文献   

12.
Leptin is produced almost exclusively by adipocytes and regulates body weight at the hypothalamic level. In addition, recent studies showed that leptin plays an important role in T lymphocyte responses. To examine the role of leptin in Ag-induced arthritis, the development of joint inflammation was assessed in immunized leptin-deficient mice (ob/ob), +/?, and wild-type mice (+/+) following the administration of methylated BSA into the knees. The results showed that ob/ob mice developed less severe arthritis compared with control mice. The levels of IL-1beta and TNF-alpha mRNA in the synovium of arthritic knees were lower in ob/ob than in +/? mice. In vitro Ag-specific T cell proliferative responses were significantly decreased in ob/ob mice with lower IFN-gamma and higher IL-10 production, suggesting a shift toward a Th2-type response in ob/ob mice. The serum levels of anti-methylated BSA Abs of any isotype were significantly decreased in arthritic ob/ob mice compared with controls. Essentially identical results were obtained in db/db mice, which lack the expression of the long isoform of leptin receptor. By RT-PCR, we observed that B lymphocytes express leptin receptor mRNA, indicating that in addition to its effect on the cellular response, leptin may exert a direct effect on B cell function. In conclusion, leptin contributes to the mechanisms of joint inflammation in Ag-induced arthritis by regulating both humoral and cell-mediated immune responses.  相似文献   

13.
Leptin, a hormone primarily secreted from adipocytes, plays a key role in controlling body weight homeostasis. In vitro studies indicate that it is also implicated in immune responses. Hyperleptinaemia has been reported in acute inflammation, especially during the early stages of intestinal inflammation in rats. The present study investigated the possible role of leptin in the pathogenesis of trinitrobenzene sulfonic acid (TNBS)-induced colitis in rats. Since no specific antagonist of leptin is available, a CCK-B antagonist (YM022) and a beta3 agonist (BRL37344) were used in this study to inhibit leptin secretion. Colitis was induced by intracolonic instillation of TNBS in rats. Five TNBS-groups were subcutaneously implanted with micropumps containing: placebo, YM022, BRL37344, BRL37344 and exogenous leptin simultaneously, or leptin alone. At sacrifices, colitis severity was assessed by macroscopic and histological scoring systems and by determination of tissue myeloperoxidase activity. The TNBS-induced hyperleptinaemia was significantly reduced by YM022 and BRL37344 (p<0.05). Inhibition of leptin secretion markedly reduced colonic inflammation, whatever the criteria considered (i.e. macroscopic, histological or biochemical). In contrast, administration of exogenous leptin completely abolished the beneficial effect of leptin-lowering drugs on colitis severity. These results provide the first direct evidence for an important deleterious role of leptin in the pathogenesis of experimental intestinal inflammation and suggest that a pro-inflammatory activity is attributable to leptin in vivo. Further studies are required to determine if these results have clinical significance.  相似文献   

14.
Leptin influences bone formation centrally through the hypothalamus and peripherally by acting on osteoblasts or their precursors. However, neither mechanism explains the divergent, gender-specific correlation between leptin and bone mineral density in humans. Although leptin is a potent regulator of pro-inflammatory immune responses, a potential role for leptin as an osteoimmunologic intermediate in bone metabolism has not been tested. Mice with myeloid-specific ablation of the long-form leptin receptor (ObRb) were generated using mice expressing cre-recombinase from the lysoszyme M promoter. At 12 weeks of age, the conditional knockout mice did not display any appreciable phenotype. However, at 52 weeks 2 changes were noted. First, there was a mild increase in liver inflammation. Second, a gender-specific, divergent bone phenotype was observed. Female mice displayed a consistent trend toward decreased trabecular bone parameters including reductions in bone volume fraction, trabecular number, and bone mineral content as well as a significant increase in marrow adipogenesis. Conversely, male mice lacked trabecular changes, but had statistically significant increases in cortical bone volume, thickness, and bone mineral density with equivalent total cortical volume. Since the year 2000, over 25 studies on more than 10,000 patients have sought to determine the correlation between leptin and bone mineral density. The results revealed a gender-specific correlation similar to that observed in our LysM transgenic animals. We hypothesize and show new evidence that regulation of myeloid lineage cells by leptin may facilitate their actions as an osteoimmunologic intermediate and contribute to leptin-regulated bone formation and metabolism in a gender-specific manner.  相似文献   

15.
Chronic kidney diseases (CKD), a common outcome of various kidney diseases, cause a series of refractory complications, which lead to great economic burdens on patients. The clinical outcomes of CKD depend on various factors, including metabolic disorders. Leptin, a peptide hormone, produced in adipose tissues, plays an important role in regulating food consumption and energy expenditure. Leptin also influences the immune system and hematopoiesis. Increased leptin status is observed in CKD, leptin deficiency attenuates the immune response in nephritis. Conversely, leptin inhibits the development of obesity, which is closely associated glomerular disorder. Now, the precise role of leptin in CKD remains elusive. This review will give an integrated understanding of the potential role of leptin and its interactions with other signal molecules in CKD.  相似文献   

16.
17.
This article is part of a Special Issue "Neuroendocrine-Immune Axis in Health and Disease." Effective immune responses are coordinated by interactions among the nervous, endocrine, and immune systems. Mounting immune, inflammatory, and sickness responses requires substantial energetic investments, and as such, an organism may need to balance energy allocation to these processes with the energetic demands of other competing physiological systems. The metabolic hormone leptin appears to be mediating trade-offs between the immune system and other physiological systems through its actions on immune cells and the brain. Here we review the evidence in both mammalian and non-mammalian vertebrates that suggests leptin is involved in regulating immune responses, inflammation, and sickness behaviors. Leptin has also been implicated in the regulation of seasonal immune responses, including sickness; however, the precise physiological mechanisms remain unclear. Thus, we discuss recent data in support of leptin as a mediator of seasonal sickness responses and provide a theoretical model that outlines how seasonal cues, leptin, and proinflammatory cytokines may interact to coordinate seasonal immune and sickness responses.  相似文献   

18.
19.
The hormone leptin is secreted from white adipocytes, and serum levels of leptin correlate with adipose tissue mass. Leptin was first described as acting on the satiety centre in the hypothalamus through specific receptors (ob-R) to restrict food intake and enhance energy expenditure. Leptin plays a crucial role in the maintenance of body weight and glucose homeostasis hrough central and peripheral pathways, including regulation of insulin secretion by pancreatic b cells. Leptin may also directly affect the metabolism and function of peripheral tissues. Leptin has been implicated in causing peripheral insulin resistance by attenuating insulin action, and perhaps insulin signalling, in various insulin-responsive cell types. Research has demonstrated a significant relationship between leptin and insulin, but the mechanisms underlying the changes of leptin induced by insulin, and vice versa, remain to be studied in more detail. Recent data provides convincing evidence that leptin has beneficial effects on glucose homeostasis in mouse models of insulin-deficient type 1 diabetes mellitus. Our study suggests that leptin could be used as an adjunct of insulin therapy in insulin-deficient diabetes, thereby providing an insight into the therapeutic properties of leptin as an anti-diabetic agent. Safety evaluation should include a careful assessment of the effects of this combination therapy on the counterregulatory response to hypoglycaemia. The role of leptin in alpha-cell function has not been studied in detail. Extensive studies will be needed to determine the long-term safety and efficacy of this therapy.  相似文献   

20.
Obesity is a major health care problem and is associated with significant cardiovascular morbidity. Leptin, a neuroendocrine hormone released by adipose tissue, is important in modulating obesity by signaling satiety and increasing metabolism. Moreover, leptin receptors are expressed on vascular endothelial cells (ECs) and mediate angiogenesis. We hypothesized that leptin may also play an important role in vasoregulation. We investigated vasoregulatory mechanisms in the leptin-deficient obese (ob/ob) mouse model and determined the influence of leptin replacement on endothelial-dependent vasorelaxant responses. The direct effect of leptin on EC nitric oxide (NO) production was also tested by using 4, 5-diaminofluorescein-2 diacetate staining and measurement of nitrate and nitrite concentrations. Vasoconstrictor responses to phenylephrine, norepinephrine, and U-46619 were markedly enhanced in aortic rings from ob/ob mice and were modulated by NO synthase inhibition. Vasorelaxant responses to ACh were markedly attenuated in mesenteric microvessels from ob/ob mice. Leptin replacement resulted in significant weight loss and reversal of the impaired endothelial-dependent vasorelaxant responses observed in ob/ob mice. Preincubation of ECs with leptin enhanced the release of NO production. Thus leptin-deficient ob/ob mice demonstrate marked abnormalities in vasoregulation, including impaired endothelial-dependent vasodilation, which is reversed by leptin replacement. These findings may be partially explained by the direct effect of leptin on endothelial NO production. These vascular abnormalities are similar to those observed in obese, diabetic, leptin-resistant humans. The ob/ob mouse may, therefore, be an excellent new model for the study of the cardiovascular effects of obesity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号