首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fibroblast-collagen matrix contraction has been used as a model system to study how cells organize connective tissue. Previous work showed that lysophosphatidic acid (LPA)-stimulated floating collagen matrix contraction is independent of Rho kinase while platelet-derived growth factor (PDGF)-stimulated contraction is Rho kinase-dependent. The current studies were carried out to determine the signaling mechanisms of basic fibroblast growth factor (bFGF)-stimulated fibroblast-collagen matrix contraction. Both bFGF and LPA promoted equally collagen matrix contraction well. Three different inhibitors, LY294002 for phosphatidylinositol-3-kinase (PI3K), C3 exotransferase for Rho and Y27632 for Rho kinase, suppressed the bFGF-stimulated fibroblast-collagen matrix contraction. With bFGF stimulation, fibroblasts spread with prominent stress fiber network formation and focal adhesions. In the presence of Rho kinase inhibitor, focal adhesions and stress fibers were mostly lost. We demonstrated that bFGF stimulation for fibroblast caused transient Rac and Rho activation but did not activate Cdc42. In addition, bFGF enhanced fibroblast migration in wound healing assay. The present study implicates PI3K, Rac, Rho, and Rho kinase as being involved in bFGF-stimulated collagen matrix contraction. The elucidation of bFGF-triggered signal transduction may be an important clue to understand the roles of bFGF in wound healing.  相似文献   

2.
Fibroblasts form fibers when grown inculture medium containing native type 1 collagen. The contractileforces generated can be precisely quantified and used to analyze thesignal transduction pathways regulating fibroblast contraction. Calfserum (30%) induces a sustained contraction that is accompanied by atransient increase in intracellular calcium([Ca2+]i). W-7, a calmodulin inhibitor,KN-62, an inhibitor of calcium/calmodulin-dependent protein kinase, andML-7, a myosin light-chain kinase inhibitor, had no effects on eitherthe contraction or the [Ca2+]i responses.Neither genistein, a tyrosine kinase inhibitor, nor calphostin C, aprotein kinase C inhibitor, had major effects on force or[Ca2+]i. In contrast, the Rho kinaseinhibitors(R)-(+)-trans-N-(4-pyridyl)-4-(1-aminoethyl)-cyclohexanecarboxamide (Y-27632) and HA1077 depressed the contraction in a dose-dependent manner without affecting the [Ca2+]iresponse. Stress fiber formation was also suppressed by Y-27632. Surprisingly, calf serum, Y-27632, and calf serum plus Y-27632 did notalter mono- or diphosphorylation of the myosin regulatory light chain(MRLC) compared with control untreated fibers. These results suggestthat the sustained contraction of NIH 3T3 fibroblast fibers induced bycalf serum is mediated by Rho kinase but is independent of a sustainedincrease in [Ca2+]i, calcium/calmodulin- orprotein kinase C-dependent pathways, or increases in MRLC phosphorylation.

  相似文献   

3.
Myofibroblasts generate the contractile force responsible for wound healing and pathological tissue contracture. In this paper the stress-relaxed collagen lattice model was used to study lysophosphatidic acid (LPA)-promoted myofibroblast contraction and the role of the small GTPase Rho and its downstream targets Rho kinase and myosin light chain phosphatase (MLCPPase) in regulating myofibroblast contraction. In addition, the regulation of myofibroblast contraction was compared with that of smooth muscle cells. LPA-promoted myofibroblast contraction was inhibited by the myosin light chain kinase (MLCK) inhibitors KT5926 and ML-7; however, in contrast to that observed in smooth muscle cells, elevation of intracellular calcium alone was not sufficient to promote myofibroblast contraction. These results suggest that Ca(2+)-mediated activation of MLCK, while necessary, is not sufficient to promote myofibroblast contraction. The specific Rho inactivator C3-transferase and the Rho kinase inhibitor Y-27632 inhibited LPA-promoted myofibroblast contraction, suggesting that contraction depends on activation of the Rho/Rho kinase pathway. Calyculin, a type 1 phosphatase inhibitor known to inhibit MLCPPase, could promote myofibroblast contraction in the absence of LPA, as well as restore contraction in the presence of C3-transferase or Y-27632. Together these results support a model whereby Rho/Rho kinase-mediated inhibition of MLCPPase is necessary for LPA-promoted myofibroblast contraction, in contrast to smooth muscle cells in which Ca(2+) activation of MLCK alone is sufficient to promote contraction.  相似文献   

4.
Fibroblasts synthesize, organize, and maintain connective tissues during development and in response to injury and fibrotic disease. These morphogenetic processes depend on cell-matrix remodeling, which has been investigated using cells cultured in three-dimensional collagen matrices. The current studies were carried out to test the role of Rho kinase activity and retraction of fibroblast extensions on the matrix remodeling process. We found that remodeling (contraction) of floating collagen matrices stimulated by lysophosphatidic acid (LPA) did not require Rho kinase activity or retraction of fibroblast extensions. On the other hand, LPA-stimulated contraction of restrained matrices became Rho kinase dependent after the matrices were allowed to develop mechanical loading for 2-4 h, suggesting that the remodeling process itself was able to feed back to modulate cell behavior in an iterative process. Modulation was specific for LPA since fibroblast-collagen matrix contraction stimulated by platelet-derived growth factor was Rho kinase dependent before or after mechanical loading developed.  相似文献   

5.
To elucidate the possible role of Rho A/Rho-kinase on lysophosphatidic acid (LPA)-induced contraction in intact guinea-pig ileal smooth muscle, we examined effects of pretreatment with a specific inhibitor of Rho-kinase (Y-27632) on the LPA-induced contraction and MLC20 phosphorylation. In addition, we investigated whether LPA actually elicits an activation of Rho A by studying subcellular distribution of Rho A in unstimulated and stimulated smooth muscles by LPA. LPA induced a less intense, but sustained, contraction compared with ACh, and was accompanied by significant increases in MLC20 phosphorylation. The effects of LPA on tension and MLC20 phosphorylation were inhibited by Y-27632. The ACh-induced contraction, but not increases in MLC20 phosphorylation, was partially inhibited by Y-27632. High K+-induced contraction was unaffected by the inhibitor. LPA stimulated translocation of Rho A from the cytosol to the membrane fraction of the muscle. Translocation of Rho A was also induced by ACh and high K+. These results suggest that LPA-induced contraction of intact ileal smooth muscle is dominated through activation of Rho A and Rho-kinase and subsequent increases in MLC20 phosphorylation.  相似文献   

6.
This study examined the role of agonist-induced Rho kinase (ROCK) involvement in the morphological outcome of pulmonary-derived fibroblasts. Normal human lung fibroblasts (NHLF) spontaneously differentiate into network-like structures in a two-dimensional growth factor reduced Matrigel matrix-based assay. Sphingosine 1-phosphate (SPP), a bioactive phospholipid that regulates angiogenesis, inhibited fibroblast morphogenesis in a dose-dependent manner, virtually eliminating the presence of multi-cellular structures at 500 nM. Pretreatment with the Rho kinase-specific inhibitor, H1152, eradicated the high dose SPP-induced inhibition. Similarly, NHLFs transfected with Rho kinase siRNA prevented SPP-induced inhibition of the fibroblast morphogenesis. Alternatively, transforming growth factor-beta1 (TGF-beta1), a cytokine recognized as a key mediator of wound healing, terminally differentiates NHLF into myofibroblasts as evidenced by the expression of the smooth muscle cell isoform of alpha-actin (alpha-SMA). H1152 suppressed TGF-beta1-induced alpha-SMA expression in a dose-dependent manner. Similarly, treatment with Rho kinase siRNA reduced alpha-SMA expression by greater than 50%. SPP treatment had no effect on TGF-beta1-induced transformation into myofibroblasts, and TGF-beta1 treatment did not alter fibroblast morphogenesis. This study suggests a dual regulatory role for Rho kinase in cellular regulation of fibroblasts in which SPP-induced Rho kinase activation via a G-protein coupled receptor suppresses fibroblast morphogenesis while TGF-beta1-induced Rho kinase activation through a serine/threonine kinase receptor culminates in transformation into myofibroblasts.  相似文献   

7.
This study was undertaken to demonstrate the role of the RhoA/Rho kinase pathway in endothelin-1 (ET-1)-induced contraction of the rabbit basilar artery. Isometric tension and Western blot were used to examine ET-1-induced contraction and RhoA activation. The upstream effect on ET-1-induced RhoA activity was determined by using ET(A) and ET(B) receptor antagonists, protein kinase C (PKC), tyrosine kinase, and phosphatidylinositol-3 kinase inhibitors. The downstream effect of ET-1-induced contraction and RhoA activity was studied in the presence of the Rho kinase inhibitor Y-27632. The effect of Rho kinase inhibitor on ET-1-induced myosin light chain (MLC) phosphorylation was investigated by using urea-glycerol-PAGE immunoblotting. We found 1) ET-1 increased RhoA activity (membrane binding RhoA) in a concentration-dependent manner; 2) ET(A), but not ET(B), receptor antagonist abolished the effect of ET-1 on RhoA activation; 3) phosphodylinositol-3 kinase inhibitor, but not PKC and tyrosine kinase inhibitors, reduced ET-1-induced RhoA activation; 4) Rho kinase inhibitor Y-27632 (10 microM) inhibited ET-1-induced contraction; and 5) ET-1 increased the level of MLC phosphorylation. Rho kinase inhibitor Y-27632 reduced the effect of ET-1 on MLC phosphorylation. This study demonstrated that RhoA/Rho kinase activation is involved in ET-1-induced contraction in the rabbit basilar artery. Phosphodylinositol-3 kinase and MLC might be the upstream and downstream factors of RhoA activation.  相似文献   

8.
The purpose of this study was to quantitatively assess the role of Rho kinase in modulating the pattern and amount of local cell-induced collagen matrix remodeling. Human corneal fibroblasts were plated inside 100-microm thick fibrillar collagen matrices and cultured for 24 h in media with or without the Rho kinase inhibitor Y-27632. Cells were then fixed and stained with phalloidin. Fluorescent (for f-actin) and reflected light (for collagen fibrils) 3-D optical section images were acquired using laser confocal microscopy. Fourier transform analysis was used to assess collagen fibril alignment, and 3-D cell morphology and local collagen density were measured using MetaMorph. Culture in serum-containing media induced significant global matrix contraction, which was inhibited by blocking Rho kinase (p<0.001). Fibroblasts generally had a bipolar morphology and intracellular stress fibers. Collagen fibrils were compacted and aligned parallel to stress fibers and pseudopodia. When Rho kinase was inhibited, cells had a more cortical f-actin distribution and dendritic morphology. Both local collagen fibril density and alignment were significantly reduced (p<0.01). Overall, the data suggests that Rho kinase-dependent contractile force generation leads to co-alignment of cells and collagen fibrils along the plane of greatest resistance, and that this process contributes to global matrix contraction.  相似文献   

9.
Evidence indicates that both the Rho/Rho kinase signaling pathway and reactive oxygen species (ROS) such as superoxide and H(2)O(2) are involved in the pathogenesis of hypertension. This study aimed to determine whether ROS-induced vascular contraction is mediated through activation of Rho/Rho kinase. Rat aortic rings (endothelium denuded) were isolated and placed in organ chambers for measurement of isometric force development. ROS were generated by a xanthine (X)-xanthine oxidase (XO) mixture. The antioxidants tempol (3 mM) and catalase (1,200 U/ml) or the XO inhibitor allopurinol (400 microM) significantly reduced X/XO-induced contraction. A Rho kinase inhibitor, (+)-(R)-trans-4-(1-aminoethyl-N-4-pyridil)cyclohexanecarboxamide dihydrochloride (Y-27632), decreased the contraction in a concentration-dependent manner; however, the Ca(2+)-independent protein kinase C inhibitor rottlerin did not have an effect on X/XO-induced contraction. Phosphorylation of the myosin light chain phosphatase target subunit (MYPT1) was increased by ROS, and preincubation with Y-27632 blocked this increased phosphorylation. Western blotting for cytosolic and membrane-bound fractions of Rho showed that Rho was increased in the membrane fraction by ROS, suggesting activation of Rho. These observations demonstrate that ROS-induced Ca(2+) sensitization is through activation of Rho and a subsequent increase in Rho kinase activity but not Ca(2+)-independent PKC.  相似文献   

10.
Transformation by oncogenic Ras requires signaling through Rho family proteins including RhoA, but the mechanism(s) whereby oncogenic Ras regulates the activity of RhoA is (are) unknown. We examined the effect of Ras on RhoA activity in NIH 3T3 cells either stably transfected with H-Ras(V12) under control of an inducible promoter or transiently expressing the activated H-Ras. Using a novel method to quantitate enzymatically the GTP bound to Rho, we found that expression of the oncogenic Ras increased Rho activity approximately 2-fold. Increased Rho activity was associated with increased plasma membrane binding of RhoA and decreased activity of the Rho/Ras-regulated p21(WAF1/CIP1) promoter. RhoA activation by oncogenic Ras could be explained by a decrease in cytosolic p190 Rho-GAP activity and translocation of p190 Rho-GAP from the cytosol to a detergent-insoluble cytoskeletal fraction. Pharmacologic inhibition of the Ras/Raf/MEK/ERK pathway prevented Ras-induced activation of RhoA and translocation of p190 Rho-GAP; expression of constitutively active Raf-1 kinase or MEK was sufficient to induce p190 Rho-GAP translocation. We conclude that in NIH 3T3 cells oncogenic Ras activates RhoA through the Raf/MEK/ERK pathway by decreasing the cytosolic activity and changing the subcellular localization of p190 Rho-GAP.  相似文献   

11.
Tissue remodeling following injury involves TGF-beta-mediated fibroblast contraction. While these cells are embedded in a fibronectin (FN)-rich matrix, the role of FN-cell interactions in this process is not fully understood. To explore the role of FN matrix presentation, we analyzed the effect of TGF-beta on fibroblasts adhered to FN-coated polyacrylamide gels (PAG). Surprisingly, under these conditions TGF-beta triggered cell rounding/contraction. This was accompanied by increased Rho activation and MLC phosphorylation and was reversed by inhibition of Rho kinase. Although fibroblasts are known to bind to fibronectin's RGD and synergy sites, their relative contribution to cell function is not clear. MLC phosphorylation was reduced and cell contraction was reversed when FN's synergy site was blocked, indicating that contraction requires signals from the synergy site in addition to TGF-beta-mediated Rho activation. Thus, regulating the FN synergy site therapeutically may provide a mechanism for modulating contractile forces during tissue repair.  相似文献   

12.
Small Rho GTPases are key regulators of the cytoskeleton in a great variety of cells. Rho function mediates morphological changes as well as locomotor activity. Using astrocyte cultures established from neonatal mice we investigated the role of Rho in process formation during astrocyte stellation. Using a scratch-wound model, we examined the impact of Rho on a variety of morphological and functional variables such as stellation and migratory activity during wound healing. C3 proteins are widely used to study cellular Rho functions. In addition, C3 derived from Clostridium botulinum (C3bot) is considered selectively to promote neuronal regeneration. Because the latter requires a balanced activity of neurones and glial cells, the effects of C3 protein on glial cells such as astrocytes have to be considered carefully. Low nanomolar concentrations of C3 proteins significantly promoted process outgrowth and increased process branching. Besides enzymatic inactivation of Rho by ADP-ribosylation, changes in protein levels of the various Rho GTPases may also contribute to the observed effects. Furthermore, incubation of scratch-wounded astrocyte cultures with C3bot accelerated wound healing. By inhibiting the Rho downstream effector ROCK with the selective inhibitor Y27632 we were able to demonstrate that the accelerated wound closure resulted from both enhanced polarized process formation and increased migratory activity of astrocytes into the lesion site. These results suggest that Rho negatively regulates astrocytic process growth and migratory responses after injury and that its inactivation by C3bot in nanomolar concentrations promotes astrocyte migration.  相似文献   

13.
《The Journal of cell biology》1996,135(6):1551-1564
We have isolated Swiss 3T3 subclones that are resistant to the mitogenic and morphological transforming effects of v-Src as a consequence of aberrant translocation of the oncoprotein under low serum conditions. In chicken embryo and NIH 3T3 fibroblasts under similar conditions, v-Src rapidly translocates from the perinuclear region to the focal adhesions upon activation of the tyrosine kinase, resulting in downstream activation of activator protein-1 and mitogen- activated protein kinase, which are required for the mitogenic and transforming activity of the oncoprotein. Since serum deprivation induces cytoskeletal disorganization in Swiss 3T3, we examined whether regulators of the cytoskeleton play a role in the translocation of v- Src, and also c-Src, in response to biological stimuli. Actin stress fibers and translocation of active v-Src to focal adhesions in quiescent Swiss 3T3 cells were restored by microinjection of activated Rho A and by serum. Double labeling with anti-Src and phalloidin demonstrated that v-Src localized along the reformed actin filaments in a pattern that would be consistent with trafficking in complexes along the stress fibers to focal adhesions. Furthermore, treatment with the actin-disrupting drug cytochalasin D, but not the microtubule- disrupting drug nocodazole, prevented v-Src translocation. In addition to v-Src, we observed that PDGF-induced, Rac-mediated membrane ruffling was accompanied by translocation of c-Src from the cytoplasm to the plasma membrane, an effect that was also blocked by cytochalasin D. Thus, we conclude that translocation of Src from its site of synthesis to its site of action at the cell membrane requires an intact cytoskeletal network and that the small G proteins of the Rho family may specify the peripheral localization in focal adhesions or along the membrane, mediated by their effects on the cytoskeleton.  相似文献   

14.
Fibroblast-collagen matrix contraction has been used as a model system to study how cells organize connective tissue. Previous work showed that lysophosphatidic acid (LPA)-stimulated floating collagen matrix contraction is independent of Rho kinase, whereas platelet-derived growth factor (PDGF)-stimulated contraction is Rho kinase-dependent. The current studies were carried out to learn more about the molecular motors responsible for LPA- and PDGF-stimulated contraction. We found that neither PDGF nor LPA-dependent contractile mechanisms require myosin II regulatory light chain kinase or increased phosphorylation of myosin II regulatory light chain (measured as diphosphorylation). Low concentrations of the specific myosin II inhibitor blebbistatin blocked PDGF-stimulated matrix contraction and LPA-stimulated retraction of fibroblast dendritic extensions but not LPA-stimulated matrix contraction. These data suggest that PDGF- and LPA-stimulated floating matrix contraction utilize myosin II-dependent and -independent mechanisms, respectively. LPA-dependent, Rho kinase-independent force generation also was detected during fibroblast spreading on collagen-coated coverslips.  相似文献   

15.
To explore the role of the Rho GTPases in lens morphogenesis, we overexpressed bovine Rho GDP dissociation inhibitor (RhoGDIα), which serves as a negative regulator of Rho, Rac and Cdc42 GTPase activity, in a lens-specific manner in transgenic mice. This was achieved using a chimeric promoter of δ-crystallin enhancer and αA-crystallin, which is active at embryonic day 12. Several individual transgenic (Tg) lines were obtained, and exhibited ocular specific phenotype comprised of microphthalmic eyes with lens opacity. The overexpression of bovine RhoGDIα disrupted membrane translocation of Rho, Rac and Cdc42 GTPases in Tg lenses. Transgenic lenses also revealed abnormalities in the migration pattern, elongation and organization of lens fibers. These changes appeared to be associated with impaired organization of the actin cytoskeleton and cell-cell adhesions. At E14.5, the size of the RhoGDIα Tg lenses was larger compared to wild type (WT) and the central lens epithelium and differentiating fibers exhibited an abnormal increase of bromo-deoxy-uridine incorporation. Postnatal Tg eyes, however, were much smaller in size compared to WT eyes, revealing increased apoptosis in the disrupted lens fibers. Taken together, these data demonstrate a critical role for Rho GTPase-dependent signaling pathways in processes underlying morphogenesis, fiber cell migration, elongation and survival in the developing lens.  相似文献   

16.
Contractile arrays of actin filaments (F-actin) and myosin-2 power diverse biological processes. Contractile array formation is stimulated by the Rho GTPases Rho and Cdc42; after assembly, array movement is thought to result from contraction itself. Contractile array movement and GTPase activity were analyzed during cellular wound repair, in which arrays close in association with zones of Rho and Cdc42 activity. Remarkably, contraction suppression prevents translocation of F-actin and myosin-2 without preventing array or zone closure. Closure is driven by an underlying "signal treadmill" in which the GTPases are preferentially activated at the leading edges and preferentially lost from the trailing edges of their zones. Treadmill organization requires myosin-2-powered contraction and F-actin turnover. Thus, directional gradients in Rho GTPase turnover impart directional information to contractile arrays, and proper functioning of these gradients is dependent on both contraction and F-actin turnover. VIDEO ABSTRACT:  相似文献   

17.
Cytoskeletal reorganization, including reconstruction of actin fibers and microtubules, is essential for various biological processes, such as cell migration, proliferation and dendrite formation. We show here that methylophiopogonanone B (MOPB) induces cell morphological change via melanocyte dendrite retraction and stress fiber formation. Since members of the Rho family of small GTP-binding proteins act as master regulators of dendrite formation and actin cytoskeletal reorganization, and activated Rho promotes dendrite retraction and stress fiber formation, we studied the effects of MOPB on the small GTPases using normal human epidermal melanocytes and HeLa cells. In in vitro binding assay, MOPB significantly increased GTP-Rho, but not GTP-Rac or GTP-CDC42. Furthermore, a Rho inhibitor, a Rho kinase inhibitor and a small GTPase inhibitor each blocked MOPB-induced stress fiber formation. The effect of MOPB on actin reorganization was blocked in a Rho dominant negative mutant. These results suggest MOPB acts via the Rho signaling pathway, and it may directly or indirectly activate Rho. Quantitative Western blot analysis indicated that MOPB also induced microtubule destabilization and tubulin depolymerization. Thus, MOPB appears to induce Rho activation, resulting in actin cytoskeletal reorganization, including dendrite retraction and stress fiber formation.  相似文献   

18.
Mildly oxidized low density lipoprotein (mox-LDL) is critically involved in the early atherogenic responses of the endothelium and increases endothelial permeability through an unknown signal pathway. Here we show that (i) exposure of confluent human endothelial cells (HUVEC) to mox-LDL but not to native LDL induces the formation of actin stress fibers and intercellular gaps within minutes, leading to an increase in endothelial permeability; (ii) mox-LDL induces a transient decrease in myosin light chain (MLC) phosphatase that is paralleled by an increase in MLC phosphorylation; (iii) phosphorylated MLC stimulated by mox-LDL is incorporated into stress fibers; (iv) cytoskeletal rearrangements and MLC phosphorylation are inhibited by C3 transferase from Clostridium botulinum, a specific Rho inhibitor, and Y-27632, an inhibitor of Rho kinase; and (v) mox-LDL does not increase intracellular Ca(2+) concentration. Our data indicate that mox-LDL induces endothelial cell contraction through activation of Rho and its effector Rho kinase which inhibits MLC phosphatase and phosphorylates MLC. We suggest that inhibition of this novel cell signaling pathway of mox-LDL could be relevant for the prevention of atherosclerosis.  相似文献   

19.
Cao C  Sun Y  Healey S  Bi Z  Hu G  Wan S  Kouttab N  Chu W  Wan Y 《The Biochemical journal》2006,400(2):225-234
AQP3 (aquaporin-3), known as an integral membrane channel in epidermal keratinocytes, facilitates water and glycerol movement into and out of the skin. Here, we demonstrate that AQP3 is also expressed in cultured human skin fibroblasts, which under normal wound healing processes migrate from surrounding tissues to close the wound. EGF (epidermal growth factor), which induced fibroblast migration, also induced AQP3 expression in a time- and dose-dependent manner. CuSO4 and NiCl2, previously known as AQP3 water transport inhibitors, as well as two other bivalent heavy metals Mn2+ and Co2+, inhibited EGF-induced cell migration in human skin fibroblasts. AQP3 knockdown by small interfering RNA inhibited EGF-induced AQP3 expression and cell migration. Furthermore, an EGFR (EGF receptor) kinase inhibitor, PD153035, blocked EGF-induced AQP3 expression and cell migration. MEK [MAPK (mitogen-activated protein kinase)/ERK (extracellular-signal-regulated kinase) kinase]/ERK inhibitor U0126 and PI3K (phosphoinositide 3-kinase) inhibitor LY294002 also inhibited EGF-induced AQP3 expression and cell migration. Collectively, our findings show for the first time that AQP3 is expressed in human skin fibroblasts and that EGF induces AQP3 expression via EGFR, PI3K and ERK signal transduction pathways. We have provided evidence for a novel role of AQP3 in human skin fibroblast cell migration, which occurs during normal wound healing.  相似文献   

20.
ExoS is a bifunctional Type III cytotoxin of Pseudomonas aeruginosa with N-terminal Rho GTPase-activating protein (RhoGAP) and C-terminal ADP-ribosyltransferase domains. Although the ExoS RhoGAP inactivates Cdc42, Rac, and RhoA in vivo, the relationship between ExoS RhoGAP and the eukaryotic regulators of Rho GTPases is not clear. The present study investigated the roles of Rho GTPase guanine nucleotide disassociation inhibitor (RhoGDI) in the reorganization of actin cytoskeleton mediated by ExoS RhoGAP. A green fluorescent protein-RhoGDI fusion protein was engineered and found to elicit actin reorganization through the inactivation of Rho GTPases. Green fluorescent protein-RhoGDI and ExoS RhoGAP cooperatively stimulated actin reorganization and translocation of Cdc42 from membrane to cytosol, and a RhoGDI mutant, RhoGDI(I177D), that is defective in extracting Rho GTPases off the membrane inhibited the actions of RhoGDI and ExoS RhoGAP on the translocation of Cdc42 from membrane to cytosol. A human RhoGDI small interfering RNA was transfected into HeLa cells to knock down 90% of the endogenous RhoGDI expression. HeLa cells with knockdown RhoGDI were resistant to the reorganization of the actin cytoskeleton elicited by type III-delivered ExoS RhoGAP. This indicates that ExoS RhoGAP and RhoGDI function in series to inactivate Rho GTPases, in which RhoGDI extracting GDP-bound Rho GTPases off the membrane and sequestering them in cytosol is the rate-limiting step in Rho GTPase inactivation. A eukaryotic GTPase-activating protein, p50RhoGAP, showed a similar cooperativity with RhoGDI on actin reorganization, suggesting that ExoS RhoGAP functions as a molecular mimic of eukaryotic RhoGAPs to inactivate Rho GTPases through RhoGDI.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号