共查询到20条相似文献,搜索用时 20 毫秒
1.
Summary The binding and internalization of endogenous growth hormone in Chang hepatoma cells were localized on the cell surface and in the Golgi-endoplasmic reticulum-lysosome (GERL) area by various indirect immunocytochemical labeling techniques, namely, peroxidase or colloidal gold conjugated to secondary antibody, and avidin-biotin complex methods. Rabbit antiserum and monoclonal antibodies raised against HPLC-purified porcine growth hormone were used in this study. In fixed material, antigen-antibody complexes were found to be homogeneously distributed along the cell membrane. Control groups showed negative binding on the cell surface. Trypsin treatment before immunolabeling removed antibody binding completely, but hyaluronidase was ineffective. Pretreatment of lectins did not block the recognition of primary antibody to antigen molecules on cell surface. Internalization of the antigen-antibody peroxidase or gold complexes was demonstrated in the cells, which were immunolabeled at 4°C, and then reincubated for 0–30 min at 37°C before fixation. After reincubation, the internalized ligand complexes were found in vesicles near the cell surface or in the GERL area near the Golgi apparatus which, however, did not label for peroxidase. These findings suggest that the trypsin-sensitive growth hormone, specifically bound and internalized into Chang hepatoma cells, is localized in the GERL instead of the Golgi apparatus and might be involved in the mechanism of tumor cell growth. 相似文献
2.
3.
The interaction of the cis-platinum derivative of proflavine [[PtCl(tmen)(2)][HNC(13)H(7)(NHCH(2)CH(2))(2)]](+) (PRPt) with CT-DNA is investigated by spectrophotometry and T-jump relaxation in 0.11M NaCl, pH 7.0, and 25 degrees C. The DNA-proflavine (PR) system is investigated under the same conditions. Static measurements indicate that base-dye interactions prevail and their analysis reveals that the site size for PRPt (n=2.6) is twice that found for PR (n=1.3). One relaxation effect is observed for the DNA/PR system and two effects for the DNA/PRPt system, the faster of them being similar to that of DNA/PR. The kinetics of the process are discussed in terms of the three-step sequence D+S <= => DS(I) <= => DS(II) <= => DS(III), where PR and the aromatic residues of PRPt intercalate into DNA by the same mechanism. The third step represents the penetration of platinum residues between base-pairs and is associated to remarkable enthalpy and entropy changes. Further mechanistic details are discussed. 相似文献
4.
5.
Anuradha S Tripathi P Mahajan K Muniyappa K 《Biochemical and biophysical research communications》2005,336(3):934-941
In eukaryotes, genetic exchange between homologs is facilitated by a tripartite proteinaceous structure called the synaptonemal complex (SC). Several lines of evidence indicate that the genes that encode components of SC are essential for meiotic chromosome pairing and recombination. However, the molecular mechanism by which SC proteins promote these processes is obscure. Here, we report that Saccharomyces cerevisiae Hop1 protein, a component of SC, promotes pairing between two double-stranded DNA helices containing a centrally located G/C isochore. Significantly, pairing was rapid and robust, and required four contiguous G/C base pairs. Using a series of truncated DNA double helices we show that 20 bp on either side of 8 bp target G/C sequence is essential for pairing. To our knowledge, Hop1 is the first protein shown to do so from yeast or any other organism. These results indicate that Hop1 protein is likely to play a direct role in meiotic chromosome pairing and recombination. 相似文献
6.
Tomohiko Makiyama Hiroyuki Nakamura Nobuo Nagasaka Hisahiro Yamashita Takuya Honda Naoto Yamaguchi Atsushi Nishida Toshihiko Murayama 《Traffic (Copenhagen, Denmark)》2015,16(5):476-492
The Golgi complex plays a prominent role in the modification and sorting of lipids and proteins, and is a highly dynamic organelle that is dispersed and rearranged before and after mitosis. Several reagents including 4‐nitrobenzo‐2‐oxa‐1,3‐diazole‐labeled C6‐ceramide (NBD‐C6‐ceramide, a ceramide having an NBD‐bound C6‐N‐acyl chain) and Golgi‐specific proteins that emit fluorescence are used as Golgi markers. In the present study, we synthesized a new ceramide analog, acetyl‐C16‐ceramide‐NBD (a ceramide having an acetylated C‐1 hydroxyl group, C16‐N‐acyl chain, and NBD‐bound C15‐sphingosine), and showed that it preferentially accumulated in the Golgi complex without cytotoxicity for over 24 h. Pathways for cellular uptake and interorganelle trafficking of acetyl‐C16‐ceramide‐NBD were investigated. Acetyl‐C16‐ceramide‐NBD was transported to the Golgi complex via ceramide transport proteins. In contrast to NBD‐C6‐ceramide, acetyl‐C16‐ceramide‐NBD was resistant to ceramide metabolic enzymes such as sphingomyelin synthase and glucosylceramide synthase. Because of its weaker cytotoxicity and resistance to ceramide metabolic enzymes, the localization of the Golgi complex could be observed in acetyl‐C16‐ceramide‐NBD‐labeled cells before and after mitosis. 相似文献
7.
Sakuma T Kitajima K Nishiyama M Endo Y Miyauchi K Jarukamjorn K Nemoto N 《Biochemical and biophysical research communications》2004,314(2):495-500
CYP3A41 is a female-specific major CYP3A in mouse livers. Adrenalectomy decreased expression of CYP3A41 as well as CYP3A11, another major CYP3A, and dexamethasone (DEX) restored the decreased expression. Hypophysectomy completely abolished CYP3A41 expression and growth hormone (GH) replacement only slightly restored the expression. Treatment with DEX alone did not induce expression of either CYP3A41 or CYP3A11 in hypophysectomized mice. However, combined treatment with GH and DEX strongly induced expression of CYP3A41 but not CYP3A11. In primary cultured mouse hepatocytes, DEX induced expression of both CYP3A41 and CYP3A11, and DEX-inducible expression of CYP3A41 was suppressed by RU486, a potent antiglucocorticoid. In contrast, RU486 by itself enhanced basal expression of CYP3A11 mRNA, while it showed no inhibitory effect on DEX-inducible expression. These observations indicate that glucocorticoids may participate in the GH-dependent control of the Cyp3a41 gene expression, probably mediated via the glucocorticoid receptor, which may be different from that of the Cyp3a11 gene expression. 相似文献
8.
Recently developed differential staining techniques based on the incorporation of bromodeoxyuridine (BUdR) into DNA permits the unequivocal identification of metaphase cells which have replicated once, twice, and three or more times. This technique has the potential of being utilized in the examination of kinetics of dividing cell populations. This potential is examined in a phytohemagglutinin-stimulated lymphocyte system. Determinations of the effect of increasing concentrations of BUdR on the distribution of metaphase cells between different generation cycles reveals no inhibition of cellular kinetics below 35 μM. The ability to distinguish third generation metaphase cells from subsequent generations is examined through the determination of “labelled” centromeric regions. The applicability of this system to current cellular kinetics is discussed. 相似文献
9.
Zheng Lu Jingli Hou You Wang Jianhua Liu 《Biochimica et Biophysica Acta - Proteins and Proteomics》2012,1824(7):859-865
We recently provided the first report that RNase HIII can cleave a DNA-rN1-DNA/DNA substrate (rN1, one ribonucleotide) in vitro. In the present study, mutagenesis analyses and molecular dynamics (MD) simulations were performed on RNase HIII from Chlamydophila pneumoniae AR39 (CpRNase HIII). Our results elucidate the mechanism of ribonucleotide recognition employed by CpRNase HIII, indicating that the G95/K96/G97 motif of CpRNase HIII represents the main surface interacting with single ribonucleotides, in a manner similar to that of the GR(K)G motif of RNase HIIs. However, CpRNase HIII lacks the specific tyrosine required for RNase HII to recognize single ribonucleotides in double-stranded DNA (dsDNA). Interestingly, MD shows that Ser94 of CpRNase HIII forms a stable hydrogen bond with the deoxyribonucleotide at the (5')RNA–DNA(3') junction, moving this nucleotide away from the chimeric ribonucleotide. This movement appears to deform the nucleic acid backbone at the RNA–DNA junction and allows the ribonucleotide to interact with the GKG motif. Based on the inferences drawn from MD simulations, biochemical results indicated that Ser94 was necessary for catalytic activity on the DNA-rN1-DNA/DNA substrate; mutant S94V could bind this substrate but exhibited no cleavage. Mismatches opposite the single ribonucleotide misincorporated in dsDNA inhibited cleavage by CpRNase HIII to varying degrees but did not interfere with CpRNase/substrate binding. Further MD results implied that mismatches impair the interaction between Ser94 and the deoxyribonucleotide at the RNA–DNA junction. Consequently, recognition of the misincorporated ribonucleotide was disturbed. Our results may help elucidate the distinct substrate-recognition properties of different RNase Hs. 相似文献
10.
Nicole B Averbeck Oliver Ringel Maren Herrlitz Burkhard Jakob Marco Durante Gisela Taucher-Scholz 《Cell cycle (Georgetown, Tex.)》2014,13(16):2509-2516
Repair of DNA double strand breaks (DSBs) is influenced by the chemical complexity of the lesion. Clustered lesions (complex DSBs) are generally considered more difficult to repair and responsible for early and late cellular effects after exposure to genotoxic agents. Resection is commonly used by the cells as part of the homologous recombination (HR) pathway in S- and G2-phase. In contrast, DNA resection in G1-phase may lead to an error-prone microhomology-mediated end joining. We induced DNA lesions with a wide range of complexity by irradiation of mammalian cells with X-rays or accelerated ions of different velocity and mass. We found replication protein A (RPA) foci indicating DSB resection both in S/G2- and G1-cells, and the fraction of resection-positive cells correlates with the severity of lesion complexity throughout the cell cycle. Besides RPA, Ataxia telangiectasia and Rad3-related (ATR) was recruited to complex DSBs both in S/G2- and G1-cells. Resection of complex DSBs is driven by meiotic recombination 11 homolog A (MRE11), CTBP-interacting protein (CtIP), and exonuclease 1 (EXO1) but seems not controlled by the Ku heterodimer or by phosphorylation of H2AX. Reduced resection capacity by CtIP depletion increased cell killing and the fraction of unrepaired DSBs after exposure to densely ionizing heavy ions, but not to X-rays. We conclude that in mammalian cells resection is essential for repair of complex DSBs in all phases of the cell-cycle and targeting this process sensitizes mammalian cells to cytotoxic agents inducing clustered breaks, such as in heavy-ion cancer therapy. 相似文献
11.
Petar M. Mitrasinovic 《Journal of biomolecular structure & dynamics》2018,36(9):2292-2302
Targeting guanine (G)-rich DNA sequences, folded into non-canonical G-quadruplex (G4) structures, by small ligand molecules is a promising strategy for gene therapy of various diseases. There is experimental proposal that, among eight studied ligands, nitidine chloride – NC and a benzo phenanthridine derivative – BPD have the highest binding affinity for such a sequence (5′-T1G2G3C4C5T6G7G8G9C10G11G12G13A14C15T16G17G18G19?3′) in the HIV-1 promoter, indicating that an anti-HIV-1 prodrug may regulate the expression of the promoter. Herein, this experimental indication is elaborated by using molecular docking simulations and by characterizing the modes of binding of the eight natural molecules to the particular G4. Moreover, the configurational entropy, as an upper bound of the true entropy contribution to the free energy in noncovalent binding, is employed to see into the structural changes experienced by the G4-DNA upon ligand binding. For various parts (complete structure, backbone, system of all bases, bases of G-tetrads) of the G4-DNA structure, a subtle molecular dynamics (MD) is exploited to determine the change of asymptotic (for infinitely long MD simulation) configurational entropy, being the thermodynamic consequence of DNA flexibility change upon complex formation. While NC increases rigidity of G4 (mainly through the system of all nucleobases), BPD increases flexibility of G4 (more than 50% stems from the sugar-phosphate backbone). These insights are further dissected and substantiated by considering the configurational entropy contributions at the level of individual base pairs making the two G-tetrads (G2G7G13G17 and G3G8G12G18) and by exploring the estimates of the total intra-base pair and inter-base pair entropies. This work makes the structural origin of enhanced stability of G4-DNA more certain – useful information when attempting to design optimal G4-DNA binders. 相似文献
12.
1-Pyrenebutyric acid (PBA) is a fluorescent probe whose fluorescence lifetime depends on local oxygen and free radical concentrations. We propose to use PBA fluorescence lifetime to quantify reactive oxygen species (ROS) in biological samples. Time-resolved microfluorimetry was used to record the fluorescence decay of single living cells loaded with this probe. We measured intracellular PBA fluorescence lifetimes and reduced nicotinamide adenine dinucleotide phosphate intensities under various oxygen concentrations. To confirm the feasibility of the new method, CCRF-CEM cells were treated with drugs that are known to increase or decrease ROS production. After treatment with adriamycin, we observed a decrease of PBA fluorescence lifetime. This corresponded to an increase of ROS concentration (80%). After treatment with cysteamine, we observed a reduction of the ROS concentration by 67%. Moreover, addition of exogenous H(2)O(2) solution resulted in a decrease of PBA fluorescence lifetime due to a raising of the intracellular ROS concentration. These results support our hypothesis linking a part of PBA fluorescence lifetime variations to intracellular fluctuation of ROS. 相似文献
13.
Andressen C Adrian S Fässler R Arnhold S Addicks K 《European journal of cell biology》2005,84(12):973-982
The interaction of β1 integrin receptors and different extracellular matrix molecules during neuronal development was investigated by comparing both migration and morphological differentiation of D3 wild-type embryonic stem (ES) cell line-derived neural precursor cells with those of the β1 integrin knockout ES cell line G201. Analysing neurosphere explants on laminin and fibronectin as major β1 integrin ligands, the maximal spreading of outward migrating neuronal cells was determined. Compared with gelatine as a standard substrate, migration was found to be significantly increased for D3-derived neurospheres on fibronectin and laminin-1. These matrix effects were found to be even enhanced for G201 preparations. In addition, also the differentiation of wild-type and β1 integrin −/− neurones – as determined by MAP-2- and HNK-1-immunoreactive processes – was found to be increased on fibronectin and laminin when compared to gelatine standards. In the respective knockout preparations on these matrices, again perturbation effects were less pronounced than on gelatine. Our observations indicate that laminin and fibronectin are involved both in β1 integrin-dependent and -independent signalling mechanisms during neurogenesis. Upregulation of compensatory mechanisms such as β1 integrin-independent receptors for laminin and fibronectin might be responsible for the much less pronounced perturbations of G201 neural precursor migration and differentiation on these two substrates than on gelatine. 相似文献
14.
Evidence Against an Acute Inhibitory Role of nSec-1 (Munc-18) in Late Steps of Regulated Exocytosis in Chromaffin and PC12 Cells 总被引:3,自引:0,他引:3
Margaret E. Graham Allan W. Sudlow Robert D. Burgoyne 《Journal of neurochemistry》1997,69(6):2369-2377
Abstract: nSec-1 (munc-18) is a mammalian homologue of proteins implicated in constitutive exocytosis in yeast and neurotransmission in Caenorhabditis elegans and Drosophila . Mutant phenotypes in these species suggest that nSec-1 is likely to be required for neurotransmission. Various other data have been interpreted as suggesting that nSec-1 could also be a negative regulator of Ca2+ -dependent exocytosis. We have tested this possibility by introducing exogenous nSec-1 into permeabilised chromaffin or PC12 cells and examining its effects on Ca2+ -induced and α-soluble N -ethylmaleimide-sensitive fusion protein attachment protein-stimulated exocytosis. No effects of exogenous nSec-1 were observed in these assays. In addition, the effect of nSec-1 overexpression in transiently transfected PC12 cells on reporter growth hormone (GH) secretion was examined. Overexpression of nSec-1 resulted in a marked increase in GH production, reflected in an increase in both cell-associated and medium GH levels. The relative amounts retained in the cells were unaffected by nSec-1 overexpression, indicating that GH storage was unaffected and that the major effect was on its synthesis. In contrast, nSec-1 overexpression did not affect the proportion of GH that was released following stimulation in intact or permeabilised cells. These results suggest either that nSec-1 is already expressed at sufficient levels and remains so following permeabilisation or that nSec-1 may not be an acute inhibitory regulator of Ca2+ -dependent exocytosis in chromaffin or PC12 cells. 相似文献
15.
16.
Hyunsup Kim Hyemin Choi Jun-Sub Im Soon-Young Park Gwangsu Shin Jung-Ho Yoo Gyungmin Kim Joon-Kyu Lee 《The Journal of biological chemistry》2021,297(4)
The proper cellular response to DNA double-strand breaks (DSBs) is critical for maintaining the integrity of the genome. RecQL4, a DNA helicase of which mutations are associated with Rothmund–Thomson syndrome (RTS), is required for the DNA DSB response. However, the mechanism by which RecQL4 performs these essential roles in the DSB response remains unknown. Here, we show that RecQL4 and its helicase activity are required for maintaining the stability of the Mre11-Rad50-Nbs1 (MRN) complex on DSB sites during a DSB response. We found using immunocytochemistry and live-cell imaging that the MRN complex is prematurely disassembled from DSB sites in a manner dependent upon Skp2-mediated ubiquitination of Nbs1 in RecQL4-defective cells. This early disassembly of the MRN complex could be prevented by altering the ubiquitination site of Nbs1 or by expressing a deubiquitinase, Usp28, which sufficiently restored homologous recombination repair and ATM, a major checkpoint kinase against DNA DSBs, activation abilities in RTS, and RecQL4-depleted cells. These results suggest that the essential role of RecQL4 in the DSB response is to maintain the stability of the MRN complex on DSB sites and that defects in the DSB response in cells of patients with RTS can be recovered by controlling the stability of the MRN complex. 相似文献
17.
M. G. Castro E. Morrison P. Tomasec E. A. Linton P. R. Lowenstein 《Cell and tissue research》1995,282(3):367-376
Human autoantibodies and corticotrophin-releasing hormone (CRH)-specific antibodies have been used in a double-labelling immunofluorescence technique to demonstrate that immunoreactive CRH structures are co-localised with immunostaining produced by double stranded DNA-specific human autoantibodies within the nucleus of cultured ovarian cells of Chinese hamsters (CHO-K1). This co-localisation was confirmed using confocal microscopy. A metabolic labelling technique was used to investigate the role of the cytoskeleton in mediating nuclear translocation of proCRH within stably transfected CHO-K1 cells and showed that microtubule and actin disrupting agents had no effect upon the nuclear translocation of proCRH. These results, therefore, suggest that nuclear translocation of proCRH is not affected by drugs which disrupt the cytoskeleton and, consequently, modify the diameter of the nuclear pores.This work was supported by proproject grants from the BBSRC to M.G.C. and P.R.L., and an MRC (UK) grant to M.G.C. M.G.C. and P.R.L. would also like to acknowledge the support received from the, The Wellcome Trust, Welsh Scheme for the Development of Health and Social Research, Sir Halley Stewart Trust, The Royal Society, and the Department of Physiology, UWCC. P.R.L. is a Research Fellow from the Lister Institute of Preventive Medicine. 相似文献
18.
19.
Hyunsup Kim Dongmin Kim Hyemin Choi Gwangsu Shin Joon-Kyu Lee 《The Journal of biological chemistry》2023,299(1)
The MRE11–RAD50–NBS1 (MRN) complex plays essential roles in the cellular response to DNA double-strand breaks (DSBs), which are the most cytotoxic DNA lesions, and is a target of various modifications and controls. Recently, lysine 48-linked ubiquitination of NBS1, resulting in premature disassembly of the MRN complex from DSB sites, was observed in cells lacking RECQL4 helicase activity. However, the role and control of this ubiquitination during the DSB response in cells with intact RECQL4 remain unknown. Here, we showed that USP2 counteracts this ubiquitination and stabilizes the MRN complex during the DSB response. By screening deubiquitinases that increase the stability of the MRN complex in RECQL4-deficient cells, USP2 was identified as a new deubiquitinase that acts at DSB sites to counteract NBS1 ubiquitination. We determined that USP2 is recruited to DSB sites in a manner dependent on ATM, a major checkpoint kinase against DSBs, and stably interacts with NBS1 and RECQL4 in immunoprecipitation experiments. Phosphorylation of two critical residues in the N terminus of USP2 by ATM is required for its recruitment to DSBs and its interaction with RECQL4. While inactivation of USP2 alone does not substantially influence the DSB response, we found that inactivation of USP2 and USP28, another deubiquitinase influencing NBS1 ubiquitination, results in premature disassembly of the MRN complex from DSB sites as well as defects in ATM activation and homologous recombination repair abilities. These results suggest that deubiquitinases counteracting NBS1 ubiquitination are essential for the stable maintenance of the MRN complex and proper cellular response to DSBs. 相似文献
20.
Many types of aflatoxin cause problems for both public and animal health. Aflatoxin B1 (AFB1) is the most toxic and commonly encountered fungal toxin that appears in poultry feed and in feeds stored under unsuitable conditions. AFB1 decreases feed quality, egg production and fertility of hatching eggs. Also, AFB1 alters the development of embryos by infecting eggs. We investigated using sequence analysis the changes caused by different concentrations of AFB1 on the promoter sequences of the growth hormone regulated gene-1 (GHRG-1) in chick embryo at 13, 17, 19 and 21 days incubation. DNA isolated from the liver of chick embryos treated with different concentrations of AFB1 was separated using agarose gel electrophoresis to detect apoptosis, and DNA interaction with AFB1 was investigated using plasmids to detect changes in electrophoretic mobility and their effects on DNA. Base changes of the promoter sequences of GHRG-1 in 5 ng/egg, 15 ng/egg and 40 ng/egg doses of AFB1 were increased on day 19 compared to base changes of the same AFB1 doses on day 13. We also found that AFB at different concentrations changed the mobility of DNA by binding to it, and that high doses of AFB1 destroyed DNA. The DNA interaction study using plasmid demonstrated that AFB1 at high doses was bound to plasmid DNA, slowed its mobility and inhibited restriction cuts. 相似文献