首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have developed a culture system for efficient production of chitosanase by Bacillus sp. TKU004. TKU004 was cultivated by using squid pen powder as the sole carbon/nitrogen source. The effects of autoclave treatments of the medium on the production of chitosanase were investigated. Autoclave treatment of squid pen powder for 45 min remarkably promoted enzyme productivity. When the culture medium containing an initial squid pen powder concentration of 3% was autoclaved for 45 min, the chitosanase activity was optimal and reached 0.14-0.16 U/mL. In addition, extracellular surfactant-stable chitosanase was purified from the TKU004 culture supernatant. The antioxidant activity of TKU004 culture supernatant was determined through the scavenging ability of DPPH, with 70% per mL. With this method, we have shown that marine wastes can be utilized efficiently through prolonged autoclave treatments to generate a high value-added product, and have revealed its hidden potential in the production of functional foods.  相似文献   

2.
Kim YH  Kim Y  Cho E  Kwak S  Kwon S  Bae J  Lee B  Meen B  Huh GH 《Phytochemistry》2004,65(17):2471-2476
Cultured plant cells are a good system for the study of antioxidant mechanisms and for the mass production of antioxidants, because they can be grown under conditions of high oxidative stress. Alterations in the intracellular and extracellular activities of three antioxidant enzymes, superoxide dismutase (SOD), guaiacol-type peroxidase (POD), and glutathione peroxidase (GPX), were investigated in suspension cultures of sweetpotato (Ipomoea batatas) during cell growth. Intracellular SOD activities (units/mg protein) at 15 days after subculture (DAS) and 30 DAS were 10 and 20 times higher, respectively, compared with the SOD activity at 1 DAS, whereas intracellular specific POD and GPX activities did not significantly increase until after 15 DAS, when they rapidly increased. The extracellular activities of the three enzymes in culture medium were much higher than were the intracellular activities. The change in extracellular SOD activity was similar to that of extracellular GPX during cell growth. Those activities showed high levels until 5 DAS and then significantly decreased. Extracellular POD activity had an almost constant level regardless of the cell growth stage. In addition, intracellular SOD and POD isozymes were quite different from those isozymes in the culture medium. The changes in SOD and POD isozymes observed here suggest that different isozymes might modulate the levels of reactive oxygen intermediates during cell growth. Characterization of extracellular antioxidant enzymes discovered here would provide a new understanding for defense mechanism in plants.  相似文献   

3.
Summary While Aspergillus strains are also being considered as potential hosts for production of extracellular heterologous proteins, the proteases produced by the host are highly problematic in that they typically modify and degrade the recombinant proteins. Culture-based approaches for minimization of protease activity in culture supernatants of Aspergillus niger NRRL-3 included reduction or elimination of peptide nitrogen in the medium, preferential use of a defined salts medium rather than a non-peptide nitrogen medium containing yeast-nitrogen base, supplementation of the medium with carboxymethylcellulose and cultivation at pH 6.5 rather than 7.5. In general, increased proteolytic activity was observed after maximum biomass was observed and biomass was declining suggesting the majority of protease activity was released by cell lysis. Carboxymethylcellulose shifted mycelial morphology from pelleted to filamentous. Mycelium lysis in the centre of pellets, with resultant release of intracellular proteases, would explain why filamentous cultures exhibited much lower proteolytic activity than pelleted cultures.  相似文献   

4.
A new, rapid method for evaluation of lipid peroxidation promoting (pro-oxidant) activity in cultures of wood-decaying fungi was developed. The method is based on measurement of the rate of oxygen consumption in the reaction of linoleic acid peroxidation initiated by fungal culture filtrates. The liquid cultures of the white-rot fungi Bjerkandera adusta and Phanerochaete chrysosporium grown on wheat straw-containing glucose-peptone-corn steep liquor medium possessed significant levels of the pro-oxidant activity. Other white-rot fungi producing manganese peroxidase (MnP) were also found to show the activity. MnP demonstrated a crucial role as the major pro-oxidant agent in the fungal cultures. The total pro-oxidant activity may be considered as net result of the peroxidation by MnP and the inhibition by antioxidant compounds present in the fungal culture fluids.  相似文献   

5.
Enzymic isolation, cryopreservation and culture of cells places considerable demand on intracellular antioxidant thiol status. Thiol status is carefully regulated in the cell by the balance of reduced and oxidized thiol species, including glutathione (GSH/GSSG) and l-cysteine (l-Cys/l-CySS disulphide). These play a pivotal role in redox signaling, cell attachment, proliferation and differentiation. Thiol depletion exposes cells to “thiol debt”, increasing their vulnerability to sustained pro-oxidant attack and injury. This study focused on the ability of l-Cys-enriched medium to enhance survival and growth of human peritoneal mesothelial cells (hPMC) after prolonged storage at −196 °C. HPMC derived from human omentum suspended in freezing solution (90 % foetal bovine serum, 10% dimethylsulfoxide) were cryopreserved at passage 1 for 6 years. Thawed cells cultured in medium M199 plus or minus l-Cys (0.25 mmol/L) were subjected to morphological, growth, ultrastructural studies, RT-PCR and cell signaling studies to assess cell function after cryopreservation. Viability of thawed cells was lower (85 ± 3%) than non-frozen control cells (98 ± 2% viable). l-Cys added to the cryopreservation fluid and the post-thaw medium increased cell viability to 94 ± 2%. Cell growth plus l-Cys was 2-fold greater compared with the minus l-Cys controls. The former had a cobblestone appearance. Ultrastructural studies showed lamellar bodies, indicative of surfactant production not evident in cells in minus l-Cys, which were a fibroblastic appearance. l-Cys treated hPMC constitutively expressed message for growth factors, TGFβ1, PDGF-A, PDGF-B and PDGFβ-receptor. The functionality of the PDGFβ-receptor was confirmed in fura-2 loaded cells with release of intracellular calcium when challenged with exogenous PDGF-BB. The addition of reduced thiols to culture media may have wider application in survival and enhance cell-based therapies.  相似文献   

6.
It is generally accepted that the addition of vitamin C to cell culture medium improves cell growth. However, once added, the vitamin C concentration declines rapidly. This situation differs from the in vivo environment where the endothelium is constantly supplied with ascorbate from the blood. With a focus on intracellular vitamin C, we simulated constant supply of ascorbate by the hourly addition of freshly prepared medium containing 75 μM ascorbate and subsequently compared it with more practical regimens using combinations of ascorbate and 2-phosphoascorbate. We found that a single supplement of ascorbate and 2-phosphoascorbate adequately maintains intracellular vitamin C at physiological levels for up to 72 h.  相似文献   

7.
Chen Y  Mao W  Tao H  Zhu W  Qi X  Chen Y  Li H  Zhao C  Yang Y  Hou Y  Wang C  Li N 《Bioresource technology》2011,102(17):8179-8184
A homogeneous exopolysaccharide, designated As1-1, was obtained from the culture medium of the mangrove endophytic fungus Aspergillus sp. Y16 and purified by anion-exchange and gel-permeation chromatography. Results of chemical and spectroscopic analyses, including one- and two-dimensional nuclear magnetic resonance (1D and 2D NMR) spectroscopy showed that As1-1 was mainly composed of mannose with small amounts of galactose, and that its molecular weight was about 15 kDa. The backbone of As1-1 mainly consists of (1 → 2)-linked α-d-mannopyranose units, substituted at C-6 by the (1 → 6)-linked α-d-mannopyranose, (1→)-linked β-d-galactofuranose and (1→)-linked β-d-mannopyranose units. As1-1 possessed good in vitro antioxidant activity as evaluated by scavenging assays involving 1,1-diphenyl-2-picrylhydrazyl (DPPH) and superoxide radicals. The investigation demonstrated that As1-1 is an exopolysaccharide different from those of other marine microorganisms, and could be a potential antioxidant and food supplement.  相似文献   

8.
Manganese supplementation of culture medium affected Phanerochaete flavido-alba FPL 106507 growth, glucose consumption and extracellular protein accumulation. Both the titre and time of detection of lignin peroxidase (LiP) were affected by manganese concentration in the medium, whereas with manganese peroxidase (MnP) only the titre was affected. In high Mn(II) containing cultures highest manganese peroxidase levels and a decrease in extracellular veratryl alcohol accumulation were observed. After FPLC a number of haemprotein peaks showing manganese peroxidase activity were detected in Mn(II) supplemented cultures. On the contrary, only haemprotein peaks of lignin peroxidase were detected in culture medium not supplemented with Mn(II).  相似文献   

9.
The callus culture of duckweed cultivated on medium containing different concentrations of β-galactosidase was shown to produce the following polysaccharides: pectin lemnan LMC, intracellular AG1, and extracellular AG2 arabinogalactans. The samples of lemnan with 46% galactose residue reduction and 9-46% increased galacturonic acid residue content were obtained at β-galactosidase concentrations of 10−3-10−1 mg/mL. The most substantial alterations in the sugar composition of pectin were found to occur in the fraction with a molecular mass of 100-300 kDa. Low concentrations of enzyme failed to influence the sugar composition of intracellular arabinogalactan, whereas high concentrations were shown to decrease the amount of arabinose residues in AG1 and to cause galactan formation. Extracellular galactan was found to be produced on the medium with 10−1 and 1 mg/mL β-galactosidase whereas extracellular arabinogalactan AG2 was shown to be biosynthesized without β-galactosidase or at a β-galactosidase concentration of 10−3 mg/mL. Alterations in the sugar composition of polysaccharides were shown to be connected with the increasing activity of α-l-arabinofuranosidase and β-galactosidase, and with the decreasing activity of intracellular polygalacturonase.  相似文献   

10.
A liquid chromatography-mass spectrometry (LC-MS) based metabolomics platform was previously established to identify and profile extracellular metabolites in culture media of mammalian cells. This presented an opportunity to isolate novel apoptosis-inducing metabolites accumulating in the media of antibody-producing Chinese hamster ovary (CHO mAb) fed-batch bioreactor cultures. Media from triplicate cultures were collected daily for the metabolomics analysis. Concurrently, cell pellets were obtained for determination of intracellular caspase activity. Metabolite profiles from the LC-MS data were subsequently examined for their degree of correlation with the caspase activity. A panel of extracellular metabolites, the majority of which were nucleotides/nucleosides and amino acid derivatives, exhibited good (R2 > 0.8) and reproducible correlation. Some of these metabolites, such as oxidized glutathione, AMP and GMP, were later shown to induce apoptosis when introduced to fresh CHO mAb cultures. Finally, metabolic engineering targets were proposed to potentially counter the harmful effects of these metabolites.  相似文献   

11.
Nerve growth factor (NGF) immobilization on a culture substrate may dramatically reduce the amount of NGF required for pheochromocytoma (PC12) cell culture. Coverslips on which NGF had been immobilized, or with NGF added to the culture medium daily, were used to culture PC12 cells. We examined the effects of adding 5, 10, or 100 ng of NGF to cultures daily, and compared them to the effects of immobilizing 5, 10, or 100 ng of NGF on culture substrates in a single dose. Cultures with 10 or 5 ng NGF added daily showed dramatically decreased cell viability, mitochondrial metabolic activity, and neuronal differentiation compared to cultures with 100 ng NGF added daily, while also exhibiting increased apoptosis. In contrast, a single dose of 100 ng immobilized NGF yielded results similar to 100 ng NGF added daily (total: 300 ng over 3 days), and 10 or 5 ng immobilized NGF showed far better results than 10 or 5 ng NGF added daily. These results demonstrate that NGF immobilization can dramatically reduce the amount of NGF required in neuronal cell culture.  相似文献   

12.
Although increasing evidence shows the nutritional benefits of calcium fructoborate (CF) on animals and humans, its action mechanism has not been clearly identified. The present study aims to investigate the possible antioxidant function of CF. Based on its efficiency in skin wound healing, the authors tested whether CF possesses antioxidant properties on human keratinocytes cultures, in a complete serum-free medium (KMK-2; Sigma). The cells treated with CF (0–450 nmol/culture medium) were exposed to exogenous 100 μmol of hydrogen peroxide to mimic the oxidative stress. The changes in general cell oxidant production evaluated with dihydrorhodamine-123 showed that the intracellular reactive oxygen species (ROS) were markedly reduced by preincubation with CF. The maximum antioxidant activity was notice at 90 nmol CF. To assess the reactivity of CF on ROS, we analyzed its ability to inhibit the superoxide-dependent auto-oxidation of pyrogallol. The CF inhibited the pyrogallol auto-oxidation depending on time and concentration, which suggests its possible role as a superoxide radical scavenger. Taken together, our results indicate that CF has antioxidant activity, which could have clinical significance in protecting cells from oxidant-induced injury. A hypothetic mechanism for the antioxidant activity of CF is proposed.  相似文献   

13.
The metabolic activity of suspension cultures of Sonneratia alba cells was quantified by measurement of the hydrolysis of fluorescein diacetate (FDA). FDA is incorporated into live cells and is converted into fluorescein by cellular hydrolysis. Aliquots (0.1–0.75 g) of S. alba cells were incubated with FDA at a final concentration of 222 μg/ml suspension for 60 min. Hydrolysis was stopped, and fluorescein was extracted by the addition of acetone and quantified by measurement of absorbance at 490 nm. Fluorescein was produced linearly with time and cell weight. Cells of S. alba are halophilic and proliferated well in medium containing 50 and 100 mM NaCl. Cells grown in medium containing 100 mM NaCl showed 2- to 3-fold higher FDA hydrolysis activity than those grown in NaCl-free medium. When S. alba cells grown in medium supplemented with 50 mM NaCl were transferred to fresh medium containing 100 mM mannitol, cellular FDA hydrolysis activity was down-regulated after 4 days of culture, indicating that the moderately halophilic S. alba cells were sensitive to osmotic stress. Quantification of cellular metabolic activity via the in vivo FDA hydrolysis assay provides a simple and rapid method for the determination of cellular activity under differing culture conditions.  相似文献   

14.
Clonal cultures are essential for the genotypic and phenotypic characterization of Perkinsus species but their cloning, especially of P. marinus, can be tedious. The use of a growth factor and hormone supplement to facilitate cloning was, therefore, investigated. Many of the 16 supplements tested significantly increased P. marinus and P. olseni proliferation but only two significantly increased P. chesapeaki proliferation. The concentration of the most effective supplement for all three Perkinsus species (i.e., endothelial cell growth supplement, ECGS) and medium dilution were then optimized for P. marinus cultured at low densities. Finally, the advantage of using conditioned culture medium, a feeder layer, and ECGS alone and in different combinations to improve cloning of P. marinus were compared. Using conditioned culture medium, a feeder layer and ECGS in combination, each cell (N = 7) seeded singly yielded clonal cultures with 253 ± 167 cells after 21 days. In contrast, only 4 out of 7 cells seeded singly in culture medium yielded clonal cultures with 5 ± 4 cells after 21 days.  相似文献   

15.
Deficiency of 5-methyltetrahydrofolate (5-MTHF) in cerebrospinal fluid (CSF) is associated with a number of neurometabolic conditions including mitochondrial electron transport chain defects. Whilst failure of the active transport of 5-methyltetrahydrofolate (5-MTHF) into the CSF compartment has been proposed as a potential mechanism responsible for the 5-MTHF deficiency seen in mitochondrial disorders, it is becoming increasingly clear that other mechanisms are involved. Here, we have considered the role of oxidative stress as a contributing mechanism. Concerning, ascorbic acid (AA), we have established a CSF reference range (103–303 μM) and demonstrated a significant positive correlation between 5-MTHF and AA. Furthermore, CSF itself was also shown to convey antioxidant properties towards 5-MTHF. However, this protection could be overcome by the introduction of a hydroxyl radical generating system. Using a neuronal model system, inhibition of mitochondrial complex I, by 58%, was associated with a 23% increase in superoxide generation and a significantly increased loss of 5-MTHF from the extracellular medium. Addition of AA (150 μM) was able to prevent this increased 5-MTHF catabolism. We conclude that increased generation of reactive oxygen species and/or loss of CSF antioxidants are also factors to consider with regard to the development of a central 5-MTHF deficiency. Co-supplementation of AA together with appropriate folate replacement may be of therapeutic benefit.  相似文献   

16.
Matrix metalloproteinases (MMPs) are family of zinc dependent endopeptidases, which cleave extracellular matrix proteins, and play an important role in tissue remodelling in physiological and pathological processes. There is enhanced expression of MMPs, in particular MMP-9, during numerous pathological conditions, including epilepsy and ischemic stroke. Therefore, inhibition of MMP-9 is considered as a potential therapeutic target. Tissue Inhibitor of Matrix Metalloproteinase-1 (TIMP-1) is a 28 kDa endogenous inhibitor of MMP-9. In this study we examined recombinant mouse TIMP-1 for its in-vitro neuroprotective effects, against Kainic Acid (KA) induced excitotoxicity in organotypic hippocampal slice culture (OHC) model. We also studied, sustained release effects of TIMP-1 in OHC by using poly lactic-co-glycolic acid (PLGA) nanoparticles (NPs). TIMP-1 and TIMP-1 PLGA NPs were added to the slice cultures at different time points, i.e., 30 min before treatment with KA and 6 h after KA treatment. Propidium iodide staining was used to reveal cell toxicity in the cultures. In addition, neurotoxicity was assessed using standard lactate dehydrogenase (LDH) release assay. Gelatinolytic activity in conditioned cultured medium of OHC was accessed by a fluorescent substrate assay. Briefly, our result show that TIMP-1 provided significant level of neuroprotection, especially when given before 30 min of KA and released from the NPs. Since gelatinolytic activity assay showed a decrease in MMP-9 activity, it can be suggested that this neuroprotection might be mediated by the gelatinase inhibition.  相似文献   

17.
An extracellular polysaccharide AVP was isolated from the fermented broth of coral-associated fungus Aspergillus versicolor LCJ-5-4. AVP was a mannoglucan with molecular weight of about 7 kDa, and the molar ratio of glucose and mannose was 1.7:1.0. On the basis of detailed one- and two-dimensional nuclear magnetic resonance (1D and 2D NMR) spectroscopic analyses, the backbone of AVP was characterized to be composed of (1 → 6)-linked α-d-glucopyranose and (1 → 2)-linked α-d-mannopyranose units. The mannopyranose residues in the backbone were substituted mainly at C-6 by the side chain of (1 → 2)-linked α-d-mannopyranose trisaccharides units. The antioxidant activity of AVP was evaluated with the scavenging abilities on 1,1-diphenyl-2-picrylhydrazyl (DPPH), superoxide and hydroxyl radicals in vitro, and the results indicated that AVP had good antioxidant activity, especially scavenging ability on superoxide radicals. AVP was a novel extracellular polysaccharide with different structural characteristics from other extracellular polysaccharides and could be a potential source of antioxidant.  相似文献   

18.
Non-specific L-type calcium channel blockers, such as verapamil (≥50 μM), induce metaphase-II (M-II) arrest and apoptosis in aged rat eggs cultured in Ca2+-deficient medium. However, the effects of extracellular Ca2+ on verapamil-induced M-II arrest and apoptosis have not yet been reported. We have demonstrated that postovulatory aging induced exit from M-II arrest by extruding a second polar body, a morphological sign of spontaneous egg activation (SEA). Verapamil inhibited SEA and induced egg apoptosis in a dose-dependent manner in Ca2+-deficient medium. The initiation of apoptotic features was observed at 50 μM of verapamil. Extracellular Ca2+ (1.80 mM) reduced intracellular H2O2 level, bax protein expression, caspase-3 activity, DNA fragmentation and protected against 50 μM, but not higher concentrations of ≥100 μM in verapamil-induced egg apoptosis. These results suggest that extracellular Ca2+ ions have a role during SEA and protect against verapamil-induced apoptosis in aged rat eggs.  相似文献   

19.
The protection of the developing organism from oxidative damage is ensured by antioxidant defense systems to cope with reactive oxygen species (ROS), which in turn can be influenced by dietary polyunsaturated fatty acids (PUFAs). PUFAs in membrane phospholipids are substrates for ROS-induced peroxidation reactions. We investigated the effects of dietary supplementation with omega-3 PUFAs on lipid peroxidation and antioxidant enzyme activities in rat cerebrum, liver and uterus. Pups born from dams fed a diet low in omega-3 PUFAs were fed at weaning a diet supplying low α-linolenic acid (ALA), adequate ALA or enriched with eicosapentaenoic acid (EPA) plus docosahexaenoic acid (DHA). Malondialdehyde (MDA), a biomarker of lipid peroxidation, and the activities of superoxide dismutase 1 (SOD1), SOD2, catalase (CAT) and glutathione peroxidase (GPX) were determined in the three target organs. Compared to low ALA feeding, supplementation with adequate ALA or with EPA + DHA did not affect the cerebrum MDA content but increased MDA content in liver. Uterine MDA was increased by the EPA + DHA diet. Supplementation with adequate ALA or EPA + DHA increased SOD2 activity in the liver and uterus, while only the DHA diet increased SOD2 activity in the cerebrum. SOD1, CAT and GPX activities were not altered by ALA or EPA + DHA supplementation. Our data suggest that increased SOD2 activity in organs of the growing female rats is a critical determinant in the tolerance to oxidative stress induced by feeding a diet supplemented with omega-3 PUFAs. This is may be a specific cellular antioxidant response to ROS production within the mitochondria.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号