首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Genomics》2020,112(6):4089-4099
The pathogenesis-related protein 1 (PR-1) gene family play important roles in the plant metabolism in response to biotic and abiotic stresses. The present study aimed genome-wide identification and bioinformatics analyses of PR-1 genes in tomato (Solanum lycopersicum L.). The analyses resulted in the identification of 13 novel SlPR-1 genes, each of which produce a protein belonging to the CAP superfamily (PF00188). The KEGG annotation analyses revealed that the SlPR-1 proteins functioned in the environmental information processing (09130). The expression patterns of the PR-1 genes and some stress-related physiological parameters were investigated in Fusarium oxysporum sensitive and tolerant tomato varieties under drought stress. The drought stress leaded upregulation of all SlPR-1 genes, reaching up to 50 folds. The results indicate that the SlPR-1 genes play active roles in response to drought. This is the first study exhibiting the expression profiles of SlPR-1 genes under an abiotic stress, drought, in tomato.  相似文献   

2.
3.
Recombinant DNA techniques have been used to introduce agronomically valuable traits, including resistance to viruses, herbicides, and insects, into crop plants. Introduction of these genes into plants frequently involves Agrobacterium-mediated gene transfer. The potential exists for applying this technology to nematode control by introducing genes conferring resistance to nematodes. Transferred genes could include those encoding products detrimental to nematode development or reproduction as well as cloned host resistance genes. Host genes that confer resistance to cyst or root-knot nematode species have been identified in many plants. The best characterized is Mi, a gene that confers resistance to root-knot nematodes in tomato. A map-based cloning approach is being used to isolate the gene. For development of a detailed map of the region of the genome surrounding Mi, DNA markers genetically linked to Mi have been identified and analyzed in tomato lines that have undergone a recombination event near Mi. The molecular map will be used to identify DNA corresponding to Mi. We estimate that a clone of Mi will be obtained in 2-5 years. An exciting prospect is that introduction of this gene will confer resistance in plant species without currently available sources of resistance.  相似文献   

4.
Root-knot nematode resistance of F₁ progeny of an intraspecific hybrid (Lycopersicon peruvianum var. glandulosum Acc. No. 126443 x L. peruvianum Acc. No. 270435), L. esculentum cv. Piersol (possessing resistance gene Mi), and L. esculentum cv. St. Pierre (susceptible) was compared. Resistance to 1) isolates of two Meloidogyne incognita populations artificially selected for parasitism on tomato plants possessing the Mi gene, 2) the wild type parent populations, 3) four naturally occurring resistance (Mi gene)-breaking populations of M. incognita, M. arenaria, and two undesignated Meloidogyne spp., and 4) a population of M. hapla was indexed by numbers of egg masses produced on root systems in a greenhouse experiment. Artificially selected M. incognita isolates reproduced abundantly on Piersol, but not (P = 0.01) on resistant F₁ hybrids. Thus, the gene(s) for resistance in the F₁ hybrid differs from the Mi gene in Piersol. Four naturally occurring resistance-breaking populations reproduced extensively on Piersol and on the F₁ hybrid, demonstrating ability to circumvent both types of resistance. Meloidogyne hapla reproduced on F₁ hybrid plants, but at significantly (P = 0.01) lower levels than on Piersol.  相似文献   

5.
Proline hydroxylation is a major posttranslational modification of hydroxyproline-rich glycoproteins (HRGPs) that is catalyzed by prolyl 4-hydroxylases (P4Hs). HRGPs such as arabinogalactan proteins (AGPs) and extensios play significant roles on cell wall structure and function and their implication in cell division and expansion has been reported. We used tobacco rattle virus (TRV)-based virus induced gene silencing to investigate the role of three tomato P4Hs, out of ten present in the tomato genome, in growth and development. Eight-days old tomato seedlings were infected with the appropriate TRV vectors and plants were allowed to grow under standard conditions for 6 weeks. Lower P4H mRNA levels were associated with lower hydroxyproline content in root and shoot tissues indicating successful gene silencing. P4H-silenced plants had longer roots and shoots and larger leaves. The increased leaf area can be attributed to increased cell division as indicated by the higher leaf epidermal cell number in SlP4H1- and SlP4H9-silenced plants. In contrast, SlP4H7-silenced plants had larger leaves due to enhanced cell expansion. Western blot analysis revealed that silencing of SlP4H7 and SlP4H9 was associated with reduced levels of JIM8-bound AGP and JIM11-bound extensin epitopes, while silencing of SlP4H1 reduced only the levels of AGP proteins. Collectively these results show that P4Hs have significant and distinct roles in cell division and expansion of tomato leaves.  相似文献   

6.
The disaccharide trehalose and trehalose-6-phosphate that are present in trace amounts are suggested to have a signaling function in plants. Recently, it was demonstrated that trehalose metabolism contributes to Arabidopsis thaliana defense against the green peach aphid (GPA; Myzus persicae Sülzer), an important insect pest of a large variety of plants. TPS11 (TREHALOSE PHOSPHATE SYNTHASE11)-dependent trehalose metabolism was shown to curtail GPA infestation by promoting starch accumulation and expression of the PAD4 (PHYTOALEXIN-DEFICIENT4) gene, which has important roles in regulating antibiosis and antixenosis against GPA. Here we show that trehalose metabolism is similarly activated in leaves of GPA-infested tomato (Solanum lycopersicum) plants and likely contributes to tomato defense against GPA. GPA-infested leaves of tomato accumulated trehalose, which was accompanied by the transient upregulation of SlTPS11, a homolog of the Arabidopsis TPS11. GPA-infestation was also accompanied by starch accumulation and the upregulation of SlPAD4, the tomato homolog of Arabidopsis PAD4. Furthermore, trehalose application induced SlPAD4 expression and starch accumulation, and curtailed GPA infestation, suggesting that like in Arabidopsis trehalose contributes to tomato defense against GPA.  相似文献   

7.
8.
9.
10.
11.
During plant–pathogen interactions, the plant cell wall forms part of active defence against invaders. In recent years, cell wall-editing enzymes, associated with growth and development, have been related to plant susceptibility or resistance. Our previous work identified a role for several tomato and Arabidopsis endo-1,4-β-glucanases (EGs) in plant–pathogen interactions. Here we studied the response of the Arabidopsis thaliana T-DNA insertion mutant lacking EG Korrigan1 (KOR1) infected with Pseudomonas syringae. KOR1 is predicted to be an EG which is thought to participate in cellulose biosynthesis. We found that kor1-1 plants were more susceptible to P. syringae, and displayed severe disease symptoms and enhanced bacterial growth if compared to Wassilewskija (Ws) wild-type plants. Hormonal and gene expression analyses revealed that the jasmonic acid (JA) pathway was activated more in kor1-1 plants with an increase in the JA-biosynthesis gene LOX3 and a greater accumulation of JA. Upon infection the accumulation of JA and JA-isoleucine (JA-Ile) was higher than in wild-type plants and increased the induction of LOX3 and the JA-responsive PDF1.2 gene. In addition, the increase of salicylic acid (SA) in healthy and infected kor1-1 may reflect the complex interaction between JA and SA, which results in the more susceptible phenotype displayed by the infected mutant plants. Callose deposition was enhanced in infected kor1-1 and an increase in pathogen-induced hydrogen peroxide took place. The susceptible phenotype displayed by KOR1-deficient plants was coronatine-independent. No significant changes were detected in the hormonal profile of the kor1-1 plants infected by coronatine-deficient P. syringae cmaA, which supports that absence of EG KOR1 alters per se the plant response to infection. We previously reported increased resistance of kor1-1 to B. cinerea, hence, the lack of this EG alters cell wall properties and plant responses in such a way that benefits P. syringae colonisation but restricts B. cinerea invasion.  相似文献   

12.
The AVR9 elicitor from the fungal pathogen Cladosporium fulvum induces defense-related responses, including cell death, specifically in tomato (Lycopersicon esculentum Mill.) plants that carry the Cf-9 resistance gene. To study biochemical mechanisms of resistance in detail, suspension cultures of tomato cells that carry the Cf-9 resistance gene were initiated. Treatment of cells with various elicitors, except AVR9, induced an oxidative burst, ion fluxes, and expression of defense-related genes. Agrobacterium tumefaciens-mediated transformation of Cf9 tomato leaf discs with Avr9-containing constructs resulted efficiently in transgenic callus formation. Although transgenic callus tissue showed normal regeneration capacity, transgenic plants expressing both the Cf-9 and the Avr9 genes were never obtained. Transgenic F1 seedlings that were generated from crosses between tomato plants expressing the Avr9 gene and wild-type Cf9 plants died within a few weeks. However, callus cultures that were initiated on cotyledons from these seedlings could be maintained for at least 3 months and developed similarly to callus cultures that contained only the Cf-9 or the Avr9 gene. It is concluded, therefore, that induction of defense responses in Cf9 tomato cells by the AVR9 elicitor is developmentally regulated and is absent in callus tissue and cell-suspension cultures, which consists of undifferentiated cells. These results are significant for the use of suspension-cultured cells to investigate signal transduction cascades.  相似文献   

13.
赵建  黄建国  袁玲  时安东  杜如万  刑小军 《生态学报》2014,34(23):7093-7100
为了研发对番茄灰霉病高效、稳定、安全的生物农药,试验利用自主分离获得的寡雄腐霉菌株制备发酵液,采用盆栽试验研究寡雄腐霉发酵液对番茄生长的影响和对灰霉病的防治效果及机制,并在大田生产中验证其生防效果。结果表明,盆栽试验中,寡雄腐霉发酵液促进健康番茄植株生长,植株总生物量和根系生物量分别增加9.5%和15.4%,提高了植株叶绿素含量、根系活力及氮、磷、钾吸收量,并使带病番茄植株的发病率和病情指数分别降低57.2%和60.3%,相对防治效果达60.3%,施用寡雄腐霉发酵液对番茄叶片细胞膜具有保护性,降低丙二醛含量,提高病原性相关酶""超氧化物歧化酶、多酚氧化酶和苯丙氨酸解氨酶活性。后续田间试验中寡雄腐霉发酵液对番茄灰霉病的防治效果达71.2%。说明寡雄腐霉发酵液能有效防治番茄灰霉病,还具有促进番茄生长的作用,并且可诱导番茄植株对病原菌的防御作用,应用前景广泛。  相似文献   

14.
15.
Spotted leaf mutant belongs to a class of mutants that can produce necrotic lesions spontaneously in plants without any attack by pathogens. These mutants have no beneficial effect on plant productivity but provide a unique opportunity to study programmed cell death in plant defense responses. A novel rice spotted leaf mutant (spl30) was isolated through low-energy heavy ion irradiation. Lesion expression was sensitive to light and humidity. The spl30 mutant caused a decrease in chlorophyll and soluble protein content, with marked accumulation of reactive oxygen species (ROS) around the lesions. In addition, the spl30 mutant significantly enhanced resistance to rice bacterial blight (X. oryzae pv. oryzae) from China (C1–C7). The use of SSR markers showed that the spl30 gene was located between markers XSN2 and XSN4. The genetic distance between the spl30 gene and XSN2 and between spl30 and XSN4 was 1.7 cM and 0.2 cM, respectively. The spl30 gene is a new gene involved in lesion production and may be related to programmed cell death in rice. The ability of this mutant to confer broad resistance to bacterial blight provides a model for studying the interaction between plants and pathogenic bacteria.  相似文献   

16.
Tomato cultivars containing the Tm-22 resistance gene have been widely known to resist tobacco mosaic virus (TMV) and tomato mosaic virus. Tomato brown rugose fruit virus (ToBRFV), a new emerging tobamovirus, can infect tomato plants carrying the Tm-22 gene. However, the virulence determinant of ToBRFV that overcomes the resistance conferred by the Tm-22 gene remains unclear. In this study, we substituted the movement protein (MP) encoding sequences between ToBRFV and TMV infectious clones and conducted infectivity assays. The results showed that MP was the virulence determinant for ToBRFV to infect Tm-22 transgenic Nicotiana benthamiana plants and Tm-22-carrying tomato plants. A TMV MP chimera with amino acid residues 60–186 of ToBRFV MP failed to induce hypersensitive cell death in the leaves of Tm-22 transgenic N. benthamiana plants. Chimeric TMV containing residues 60–186 of ToBRFV MP could, but chimeric ToBRFV containing 61–187 residues of TMV MP failed to infect Tm-22 transgenic N. benthamiana plants, indicating that 60–186 residues of MP were important for ToBRFV to overcome Tm-22 gene-mediated resistance. Further analysis showed that six amino acid residues, H67, N125, K129, A134, I147, and I168 of ToBRFV MP, were critical in overcoming Tm-22-mediated resistance in transgenic N. benthamiana plants and tomato plants. These results increase our understanding of the mechanism by which ToBRFV overcomes Tm-22-mediated resistance.  相似文献   

17.
Fusarium wilt is a soil-borne disease causing substantial yield losses in various crops and vegetables. We have previously reported the synthetic chitinase (NIC) gene (1.2 kb), in which codon usage of fungus, replaced with that of plant, conferred resistance against Botrytis cinerea. In this study, the NIC or GUS gene was linked to two root-specific promoters, LjNRT2 or AtNRT2.1 (nitrate transporter 2), derived from Lotus japonica and Arabidopsis thaliana, respectively. Transgenic tobacco lines expressing LjNRT2-GUS and LjNRT2-NIC, and tomato lines expressing AtNRT2.1-NIC, were produced by Agrobacterium-mediated transformation. GUS histochemical staining was observed in vascular regions of the roots but was conspicuously absent in the leaves of transgenic plants. Western blot analysis showed the production of NIC proteins in the roots but not in the leaves of transgenic tobacco and tomato lines. These results indicate that LjNRT2 and AtNRT2.1 promoters expressed transgenes in a root-specific manner. When in vitro whole plant resistance assay against Fusarium oxysporum was conducted, transgenic plants showed increased levels of resistance compared to non-transgenic plants. Antifungal activities of the root extract against spore germination of F. oxysporum showed lower CFU (colony-forming unit) than those of the leaf extract. Root colonization assay against F. oxysporum showed much lower CFU values in the roots of transgenic plants than in those of non-transgenic plants. These results suggest that NIC gene triggered by the root-specific promoters successfully expressed only in the roots and conferred increased levels of resistance against the root pathogen, F. oxysporum.  相似文献   

18.
《Journal of Asia》2022,25(3):101971
The symbiotic relationship between plants and arbuscular mycorrhizal fungi (AMF) improves plant growth and increases its resistance to pests and diseases. Mycorrhizal fungi are among the specialized fungi associated with the rhizosphere and are completely dependent on plant organic carbon. In this research tomato, Solanum lycopersicum L. was used as the host plant to evaluate the interaction effects between inoculation of tomato plant with AMF and feeding of tomato leaf miner, Tuta absoluta (Meyrick). In addition, plant growth parameters and growth rate of insect were assessed. The mycorrhizal treatment included a mixture of four fungal species (Funneliformis mosseae, Rhizophagus intraradices, R. irregularis and Glomus iranicus). The results of the experiment showed that tomato plant roots were well colonized (66.29%) by AMF and there was a significant mutual relationship between the insects feeding on the plants and the fungi. Feeding by the insects on plants inoculated with the fungus increased percentage of colonization by AMF in plants infested with the insect as compared to the control plants. The results also indicated that growth parameters and phosphorus content of the plants inoculated with fungi significantly increased compared to the control group. Moreover, significantly lower growth rate and consumption index observed in the T. absoluta larvae were fed on the leaves of plants treated with AMF compared to leaves of plants not inoculated with AMF.  相似文献   

19.
20.
The Tm-2 gene of tomato and its allelic gene, Tm-22, confer resistance to Tomato mosaic virus (ToMV) and encode a member of the coiled-coil/nucleotide binding-ARC/leucine-rich repeat (LRR) protein class of plant resistance (R) genes. Despite exhibiting only four amino acid differences between the products of Tm-2 and Tm-22, Tm-22 confers resistance to ToMV mutant B7, whereas Tm-2 is broken by ToMV-B7. An Agrobacterium-mediated transient expression system was used to study the mechanism of differential recognition of the movement proteins (MPs), an avirulence factor for ToMV resistance, of ToMV-B7 by Tm-2 and Tm-22. Although resistance induced by Tm-2 and Tm-22 is not usually accompanied by hypersensitive response (HR), Tm-2 and Tm-22 induced HR-like cell death by co-expression with MP of a wild-type ToMV, a strain that causes resistance for these R genes, and Tm-22 but not Tm-2 induced cell death with B7-MP in this system. Site-directed amino acid mutagenesis revealed that Tyr-767 in the LRR of Tm-22 is required for the specific recognition of the B7-MP. These results suggest that the Tyr residue in LRR contributes to the recognition of B7-MP, and that Tm-2 and Tm-22 are involved in HR cell death.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号