首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到2条相似文献,搜索用时 1 毫秒
1.
组蛋白H3第79位赖氨酸甲基化(H3K79me)修饰有单甲基、双甲基及三甲基3种形式,是常染色质的标志.然而,对于组蛋白H3K79三种甲基化各自在基因转录、DNA损伤修复中所起的作用尚不十分清楚.本研究以8-氯腺苷(8-Cl-Ado)为DNA双链断裂(DNA double-stranded breaks,DSB)诱导剂,采用Western 印迹,在人肺癌细胞H1299检测出了DNA修复分子NBS1、细胞周期检验点相关分子p21,并发现H3K79me1、H3K79me2和H3K79me3三种甲基化修饰的组蛋白明显增加;染色质免疫共沉淀结合实时定量PCR实验显示,只H3K79me2与DNA损伤检验点分子p21、DNA修复分子NBS1的启动子区域相结合,说明H3K79双甲基化修饰与这些基因的转录激活有关.结果提示,在8-氯腺苷引起 DSB时,是H3K79me2、而不是H3K79me1和H3K79me3参与NBS1和p21基因转录激活时的染色质重塑.8-氯腺苷诱导H3K79双甲基化增强、促进H3K79me2所在染色质区域的NBS1和p21基因转录激活可能是8-Cl-Ado抑制肿瘤细胞生长作用机制之一.  相似文献   

2.
Inhibitor of growth 1 (ING1) is implicated in oncogenesis, DNA damage repair, and apoptosis. Mutations within the ING1 gene and altered expression levels of ING1 are found in multiple human cancers. Here, we show that both DNA repair and apoptotic activities of ING1 require the interaction of the C-terminal plant homeodomain (PHD) finger with histone H3 trimethylated at Lys4 (H3K4me3). The ING1 PHD finger recognizes methylated H3K4 but not other histone modifications as revealed by the peptide microarrays. The molecular mechanism of the histone recognition is elucidated based on a 2.1 Å-resolution crystal structure of the PHD-H3K4me3 complex. The K4me3 occupies a deep hydrophobic pocket formed by the conserved Y212 and W235 residues that make cation-π contacts with the trimethylammonium group. Both aromatic residues are essential in the H3K4me3 recognition, as substitution of these residues with Ala disrupts the interaction. Unlike the wild-type ING1, the W235A mutant, overexpressed in the stable clones of melanoma cells or in HT1080 cells, was unable to stimulate DNA repair after UV irradiation or promote DNA-damage-induced apoptosis, indicating that H3K4me3 binding is necessary for these biological functions of ING1. Furthermore, N216S, V218I, and G221V mutations, found in human malignances, impair the ability of ING1 to associate with H3K4me3 or to induce nucleotide repair and cell death, linking the tumorigenic activity of ING1 with epigenetic regulation. Together, our findings reveal the critical role of the H3K4me3 interaction in mediating cellular responses to genotoxic stresses and offer new insight into the molecular mechanism underlying the tumor suppressive activity of ING1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号