首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
In the budding yeast Saccharomyces cerevisiae, selection of the bud site determines the axis of polarized cell growth and eventual oriented cell division. Bud sites are selected in specific patterns depending on cell type. These patterns appear to depend on distinct types of marker proteins in the cell cortex; in particular, the bipolar budding of diploid cells depends on persistent landmarks at the birth-scar-distal and -proximal poles that involve the proteins Bud8p and Bud9p, respectively. Rax1p and Rax2p also appear to function specifically in bipolar budding, and we report here a further characterization of these proteins and of their interactions with Bud8p and Bud9p. Rax1p and Rax2p both appear to be integral membrane proteins. Although commonly used programs predict different topologies for Rax2p, glycosylation studies indicate that it has a type I orientation, with its long N-terminal domain in the extracytoplasmic space. Analysis of rax1 and rax2 mutant budding patterns indicates that both proteins are involved in selecting bud sites at both the distal and proximal poles of daughter cells as well as near previously used division sites on mother cells. Consistent with this, GFP-tagged Rax1p and Rax2p were both observed at the distal pole as well as at the division site on both mother and daughter cells; localization to the division sites was persistent through multiple cell cycles. Localization of Rax1p and Rax2p was interdependent, and biochemical studies showed that these proteins could be copurified from yeast. Bud8p and Bud9p could also be copurified with Rax1p, and localization studies provided further evidence of interactions. Localization of Rax1p and Rax2p to the bud tip and distal pole depended on Bud8p, and normal localization of Bud8p was partially dependent on Rax1p and Rax2p. Although localization of Rax1p and Rax2p to the division site did not appear to depend on Bud9p, normal localization of Bud9p appeared largely or entirely dependent on Rax1p and Rax2p. Taken together, the results indicate that Rax1p and Rax2p interact closely with each other and with Bud8p and Bud9p in the establishment and/or maintenance of the cortical landmarks for bipolar budding.  相似文献   

2.
The bipolar budding pattern of a/alpha Saccharomyces cerevisiae cells appears to depend on persistent spatial markers in the cell cortex at the two poles of the cell. Previous analysis of mutants with specific defects in bipolar budding identified BUD8 and BUD9 as potentially encoding components of the markers at the poles distal and proximal to the birth scar, respectively. Further genetic analysis reported here supports this hypothesis. Mutants deleted for BUD8 or BUD9 grow normally but bud exclusively from the proximal and distal poles, respectively, and the double-mutant phenotype suggests that the bipolar budding pathway has been totally disabled. Moreover, overexpression of these genes can cause either an increased bias for budding at the distal (BUD8) or proximal (BUD9) pole or a randomization of bud position, depending on the level of expression. The structures and localizations of Bud8p and Bud9p are also consistent with their postulated roles as cortical markers. Both proteins appear to be integral membrane proteins of the plasma membrane, and they have very similar overall structures, with long N-terminal domains that are both N- and O-glycosylated followed by a pair of putative transmembrane domains surrounding a short hydrophilic domain that is presumably cytoplasmic. The putative transmembrane and cytoplasmic domains of the two proteins are very similar in sequence. When Bud8p and Bud9p were localized by immunofluorescence and tagging with GFP, each protein was found predominantly in the expected location, with Bud8p at presumptive bud sites, bud tips, and the distal poles of daughter cells and Bud9p at the necks of large-budded cells and the proximal poles of daughter cells. Bud8p localized approximately normally in several mutants in which daughter cells are competent to form their first buds at the distal pole, but it was not detected in a bni1 mutant, in which such distal-pole budding is lost. Surprisingly, Bud8p localization to the presumptive bud site and bud tip also depends on actin but is independent of the septins.  相似文献   

3.
Diploid strains of the budding yeast Saccharomyces cerevisiae change the pattern of cell division from bipolar to unipolar when switching growth from the unicellular yeast form (YF) to filamentous, pseudohyphal (PH) cells in response to nitrogen starvation. The functions of two transmembrane proteins, Bud8p and Bud9p, in regulating YF and PH cell polarity were investigated. Bud8p is highly concentrated at the distal pole of both YF and PH cells, where it directs initiation of cell division. Asymmetric localization of Bud8p is independent of the Rsr1p/Bud1p GTPase. rsr1/bud1 mutations are epistatic to bud8 mutations, placing Rsr1p/Bud1p downstream of Bud8p. In YF cells, Bud9p is also localized at the distal pole, yet deletion of BUD9 favours distal bud initiation. In PH cells, nutritional starvation for nitrogen efficiently prevents distal localization of Bud9p. Because Bud8p and Bud9p proteins associate in vivo, we propose Bud8p as a landmark for bud initiation at the distal cell pole, where Bud9p acts as inhibitor. In response to nitrogen starvation, asymmetric localization of Bud9p is averted, favouring Bud8p-mediated cell division at the distal pole.  相似文献   

4.
In Saccharomyces cerevisiae, diploid yeast cells follow a bipolar budding program, which depends on the two transmembrane glycoproteins Bud8p and Bud9p that potentially act as cortical tags to mark the cell poles. Here, we have performed systematic structure-function analyses of Bud8p and Bud9p to identify functional domains. We find that polar transport of Bud8p and Bud9p does not depend on N-terminal sequences but instead on sequences in the median part of the proteins and on the C-terminal parts that contain the transmembrane domains. We show that the guanosine diphosphate (GDP)/guanosine triphosphate (GTP) exchange factor Bud5p, which is essential for bud site selection and physically interacts with Bud8p, also interacts with Bud9p. Regions of Bud8p and Bud9p predicted to reside in the extracellular space are likely to confer interaction with the N-terminal region of Bud5p, implicating indirect interactions between the cortical tags and the GDP/GTP exchange factor. Finally, we have identified regions of Bud8p and Bud9p that are required for interaction with the cortical tag protein Rax1p. In summary, our study suggests that Bud8p and Bud9p carry distinct domains for delivery of the proteins to the cell poles, for interaction with the general budding machinery and for association with other cortical tag proteins.  相似文献   

5.
6.
7.
Previous analysis of the bipolar budding pattern of Saccharomyces cerevisiae has suggested that it depends on persistent positional signals that mark the region of the division site and the tip of the distal pole on a newborn daughter cell, as well as each previous division site on a mother cell. In an attempt to identify genes encoding components of these signals or proteins involved in positioning or responding to them, we identified 11 mutants with defects in bipolar but not in axial budding. Five mutants displaying a bipolar budding-specific randomization of budding pattern had mutations in four previously known genes (BUD2, BUD5, SPA2, and BNI1) and one novel gene (BUD6), respectively. As Bud2p and Bud5p are known to be required for both the axial and bipolar budding patterns, the alleles identified here probably encode proteins that have lost their ability to interact with the bipolar positional signals but have retained their ability to interact with the distinct positional signal used in axial budding. The function of Spa2p is not known, but previous work has shown that its intracellular localization is similar to that postulated for the bipolar positional signals. BNI1 was originally identified on the basis of genetic interaction with CDC12, which encodes one of the neck-filament-associated septin proteins, suggesting that these proteins may be involved in positioning the bipolar signals. One mutant with a heterogeneous budding pattern defines a second novel gene (BUD7). Two mutants budding almost exclusively from the proximal pole carry mutations in a fourth novel gene (BUD9). A bud8 bud9 double mutant also buds almost exclusively from the proximal pole, suggesting that Bud9p is involved in positioning the proximal pole signal rather than being itself a component of this signal.  相似文献   

8.
In Saccharomyces cerevisiae, spindle orientation is controlled by a temporal and spatial program of microtubule (MT)-cortex interactions. This program requires Bud6p/Aip3p to direct the old pole to the bud and confine the new pole to the mother cell. Bud6p function has been linked to Kar9p, a protein guiding MTs along actin cables. Here, we show that Kar9p does not mediate Bud6p functions in spindle orientation. Based on live microscopy analysis, kar9Delta cells maintained Bud6p-dependent MT capture. Conversely, bud6Delta cells supported Kar9p-associated MT delivery to the bud. Moreover, additive phenotypes in bud6Delta kar9Delta or bud6Delta dyn1Delta mutants underscored the separate contributions of Bud6p, Kar9p, and dynein to spindle positioning. Finally, tub2C354S, a mutation decreasing MT dynamics, suppressed a kar9Delta mutation in a BUD6-dependent manner. Thus, Kar9p-independent capture at Bud6p sites can effect spindle orientation provided MT turnover is reduced. Together, these results demonstrate Bud6p function in MT capture at the cell cortex, independent of Kar9p-mediated MT delivery along actin cables.  相似文献   

9.
Cells of the budding yeast undergo oriented cell division by choosing a specific site for growth depending on their cell type. Haploid a and alpha cells bud in an axial pattern whereas diploid a/alpha cells bud in a bipolar pattern. The Ras-like GTPase Rsr1p/Bud1p, its GDP-GTP exchange factor Bud5p, and its GTPase-activating protein Bud2p are essential for selecting the proper site for polarized growth in all cell types. Here we showed that specific residues at the N terminus and the C terminus of Bud5p were important for bipolar budding, while some residues were involved in both axial and bipolar budding. These bipolar-specific mutations of BUD5 disrupted proper localization of Bud5p in diploid a/alpha cells without affecting Bud5p localization in haploid alpha cells. In contrast, Bud5p expressed in the bud5 mutants defective in both budding patterns failed to localize in all cell types. Thus, these results identify specific residues of Bud5p that are likely to be involved in direct interaction with spatial landmarks, which recruit Bud5p to the proper bud site. Finally, we found a new start codon of BUD5, which extends the open reading frame to 210 bp upstream of the previously estimated start site, thus encoding a polypeptide of 608 amino acid residues. Bud5p with these additional N-terminal residues interacted with Bud8p, a potential bipolar landmark, suggesting that the N-terminal region is necessary for recognition of the spatial cues.  相似文献   

10.
Fujita A  Lord M  Hiroko T  Hiroko F  Chen T  Oka C  Misumi Y  Chant J 《Gene》2004,327(2):161-169
In Saccharomyces cerevisiae, cell type determines two distinct spatial budding patterns. Haploid cells exhibit an axial pattern, whereas diploid cells exhibit a bipolar pattern. Axl1, a member of the insulin-degrading enzyme (IDE) family, is the key morphological determinant for the haploid axial pattern. Here we identified a novel gene, RAX1, specifically required for the bipolar budding pattern. Loss of RAX1 alters the bipolar pattern of axl1 haploids resulting in reversion to the axial pattern, and also alters the bipolar patterns of bud3 and bud4 haploids. However, bud10 rax1 haploids exhibit a random budding pattern, suggesting Bud10 acts as the key proximal landmark in axial budding. Rax1 is required for the localization of Bud8, the distal bipolar budding landmark. Interestingly, Rax1 contains a C-terminal domain possessing some similarity to insulin-related peptides. Our results suggest that Rax1 is necessary for the establishment of the bipolar budding landmark.  相似文献   

11.
Role of Bud3p in producing the axial budding pattern of yeast   总被引:22,自引:9,他引:13       下载免费PDF全文
Yeast cells can select bud sites in either of two distinct spatial patterns. a cells and alpha cells typically bud in an axial pattern, in which both mother and daughter cells form new buds adjacent to the preceding division site. In contrast, a/alpha cells typically bud in a bipolar pattern, in which new buds can form at either pole of the cell. The BUD3 gene is specifically required for the axial pattern of budding: mutations of BUD3 (including a deletion) affect the axial pattern but not the bipolar pattern. The sequence of BUD3 predicts a product (Bud3p) of 1635 amino acids with no strong or instructive similarities to previously known proteins. However, immunofluorescence localization of Bud3p has revealed that it assembles in an apparent double ring encircling the mother-bud neck shortly after the mitotic spindle forms. The Bud3p structure at the neck persists until cytokinesis, when it splits to yield a single ring of Bud3p marking the division site on each of the two progeny cells. These single rings remain for much of the ensuing unbudded phase and then disassemble. The Bud3p rings are indistinguishable from those of the neck filament- associated proteins (Cdc3p, Cdc10p, Cdc11p, and Cdc12p), except that the latter proteins assemble before bud emergence and remain in place for the duration of the cell cycle. Upon shift of a temperature- sensitive cdc12 mutant to restrictive temperature, localization of both Bud3p and the neck filament-associated proteins is rapidly lost. In addition, a haploid cdc11 mutant loses its axial-budding pattern upon shift to restrictive temperature. Taken together, the data suggest that Bud3p and the neck filaments are linked in a cycle in which each controls the position of the other's assembly: Bud3p assembles onto the neck filaments in one cell cycle to mark the site for axial budding (including assembly of the new ring of neck filaments) in the next cell cycle. As the expression and localization of Bud3p are similar in a, alpha, and a/alpha cells, additional regulation must exist such that Bud3p restricts the position of bud formation in a and alpha cells but not in a/alpha cells.  相似文献   

12.
13.
In haploid strains of Saccharomyces cerevisiae, glucose depletion causes invasive growth, a foraging response that requires a change in budding pattern from axial to unipolar-distal. To begin to address how glucose influences budding pattern in the haploid cell, we examined the roles of bud-site-selection proteins in invasive growth. We found that proteins required for bipolar budding in diploid cells were required for haploid invasive growth. In particular, the Bud8p protein, which marks and directs bud emergence to the distal pole of diploid cells, was localized to the distal pole of haploid cells. In response to glucose limitation, Bud8p was required for the localization of the incipient bud site marker Bud2p to the distal pole. Three of the four known proteins required for axial budding, Bud3p, Bud4p, and Axl2p, were expressed and localized appropriately in glucose-limiting conditions. However, a fourth axial budding determinant, Axl1p, was absent in filamentous cells, and its abundance was controlled by glucose availability and the protein kinase Snf1p. In the bud8 mutant in glucose-limiting conditions, apical growth and bud site selection were uncoupled processes. Finally, we report that diploid cells starved for glucose also initiate the filamentous growth response.  相似文献   

14.
Spindle orientation is critical for accurate chromosomal segregation in eukaryotic cells. In the yeast Saccharomyces cerevisiae, orientation of the mitotic spindle is achieved by a program of microtubule-cortex interactions coupled to spindle morphogenesis. We previously implicated Bud6p in directing microtubule capture throughout this program. Herein, we have analyzed cells coexpressing GFP:Bud6 and GFP:Tub1 fusions, providing a kinetic view of Bud6p-microtubule interactions in live cells. Surprisingly, even during the G1 phase, microtubule capture at the recent division site and the incipient bud is dictated by Bud6p. These contacts are eliminated in bud6 delta cells but are proficient in kar9 delta cells. Thus, Bud6p cues microtubule capture, as soon as a new cell polarity axis is established independent of Kar9p. Bud6p increases the duration of interactions and promotes distinct modes of cortical association within the bud and neck regions. In particular, microtubule shrinkage and growth at the cortex rarely occur away from Bud6p sites. These are the interactions selectively impaired at the bud cortex in bud6 delta cells. Finally, interactions away from Bud6p sites within the bud differ from those occurring at the mother cell cortex, pointing to the existence of an independent factor controlling cortical contacts in mother cells after bud emergence.  相似文献   

15.
GTPases are widespread in directing cytoskeletal rearrangements and affecting cellular organization. How they do so is not well understood. Yeast cells divide by budding, which occurs in two spatially programmed patterns, axial or bipolar [1-3]. Cytoskeletal polarization to form a bud is governed by the Ras-like GTPase, Bud1/Rsr1, in response to cortical landmarks. Bud1 is uniformly distributed on the plasma membrane, so presumably its regulators, Bud5 GTPase exchange factor and Bud2 GTPase activating protein, impart spatial specificity to Bud1 action [4]. We examined the localizations of Bud5 and Bud2. Both Bud1 regulators associate with cortical landmarks designating former division sites. In haploids, Bud5 forms double rings that encircle the mother-bud neck and split upon cytokinesis so that each progeny cell inherits Bud5 at the axial division remnant. Recruitment of Bud5 into these structures depends on known axial landmark components. In cells undergoing bipolar budding, Bud5 associates with multiple sites, in response to the bipolar landmarks. Like Bud5, Bud2 associates with the axial division remnant, but rather than being inherited, Bud2 transiently associates with the remnant in late G1, before condensing into a patch at the incipient bud site. The relative timing of Bud5 and Bud2 localizations suggests that both regulators contribute to the spatially specific control of Bud1 GTPase.  相似文献   

16.
Cells of the yeast Saccharomyces cerevisiae choose bud sites in a manner that is dependent upon cell type: a and alpha cells select axial sites; a/alpha cells utilize bipolar sites. Mutants specifically defective in axial budding were isolated from an alpha strain using pseudohyphal growth as an assay. We found that a and alpha mutants defective in the previously identified PMT4 gene exhibit unipolar, rather than axial budding: mother cells choose axial bud sites, but daughter cells do not. PMT4 encodes a protein mannosyl transferase (pmt) required for O-linked glycosylation of some secretory and cell surface proteins (Immervoll, T., M. Gentzsch, and W. Tanner. 1995. Yeast. 11:1345-1351). We demonstrate that Axl2/Bud10p, which is required for the axial budding pattern, is an O-linked glycoprotein and is incompletely glycosylated, unstable, and mislocalized in cells lacking PMT4. Overexpression of AXL2 can partially restore proper bud-site selection to pmt4 mutants. These data indicate that Axl2/Bud10p is glycosylated by Pmt4p and that O-linked glycosylation increases Axl2/ Bud10p activity in daughter cells, apparently by enhancing its stability and promoting its localization to the plasma membrane.  相似文献   

17.
The anillin-related protein Bud4 of Saccharomyces cerevisiae is required for axial bud site selection by linking the axial landmark to the septins, which localize at the mother bud neck. Recent studies indicate that Bud4 plays a role in septin organization during cytokinesis. Here we show that Bud4 is also involved in septin organization during bud growth prior to cytokinesis, as bud4Δ shs1Δ cells displayed an elongated bud morphology and defective septin organization at 18°C. Bud4 overexpression also affected septin organization during bud growth in shs1Δ cells at 30°C. Bud4 was previously thought to associate with the septins via its central region, while the C-terminal anillin-related region was not involved in septin association. Surprisingly, we found that the central region of Bud4 alone targets to the bud neck throughout the cell cycle, unlike full-length Bud4, which localizes to the bud neck only during G2/M phase. We identified the anillin-related region to be a second targeting domain that cooperates with the central region for proper septin association. In addition, the anillin-related region could largely mediate Bud4''s function in septin organization during bud growth and bud site selection. We show that this region interacts with the C terminus of Bud3 and the two segments depend on each other for association with the septins. Moreover, like the bud4Δ mutant, the bud3Δ mutant genetically interacts with shs1Δ and cdc12-6 mutants in septin organization, suggesting that Bud4 and Bud3 may cooperate in septin organization during bud growth. These observations provide new insights into the interaction of Bud4 with the septins and Bud3.  相似文献   

18.
Faithful partitioning of genetic material during cell division requires accurate spatial and temporal positioning of nuclei within dividing cells. In Saccharomyces cerevisiae, nuclear positioning is regulated by an elegant interplay between components of the actin and microtubule cytoskeletons. Regulators of this process include Bud6p (also referred to as the actin-interacting protein Aip3p) and Kar9p, which function to promote contacts between cytoplasmic microtubule ends and actin-delimited cortical attachment points. Here, we present the previously undetected association of Bud6p with the cytoplasmic face of yeast spindle pole bodies, the functional equivalent of metazoan centrosomes. Cells lacking Bud6p show exaggerated movements of the nucleus between mother and daughter cells and display reduced amounts of time a given spindle pole body spends in close association with the neck region of budding cells. Furthermore, overexpression of BUD6 greatly enhances interactions between the spindle pole body and mother-bud neck in a spindle alignment-defective dynactin mutant. These results suggest that association of either spindle pole body with neck components, rather than simply entry of a spindle pole body into the daughter cell, provides a positive signal for the progression of mitosis. We propose that Bud6p, through its localization at both spindle pole bodies and at the mother-bud neck, supports this positive signal and provides a regulatory mechanism to prevent excessive oscillations of preanaphase nuclei, thus reducing the likelihood of mitotic delays and nuclear missegregation.  相似文献   

19.
Regulated interactions between microtubules (MTs) and the cell cortex control MT dynamics and position the mitotic spindle. In eukaryotic cells, the adenomatous polyposis coli/Kar9p and dynein/dynactin pathways are involved in guiding MT plus ends and MT sliding along the cortex, respectively. Here we identify Bud14p as a novel cortical activator of the dynein/dynactin complex in budding yeast. Bud14p accumulates at sites of polarized growth and the mother-bud neck during cytokinesis. The localization to bud and shmoo tips requires an intact actin cytoskeleton and the kelch-domain-containing proteins Kel1p and Kel2p. While cells lacking Bud14p function fail to stabilize the pre-anaphase spindle at the mother-bud neck, overexpression of Bud14p is toxic and leads to elongated astral MTs and increased dynein-dependent sliding along the cell cortex. Bud14p physically interacts with the type-I phosphatase Glc7p, and localizes Glc7p to the bud cortex. Importantly, the formation of Bud14p-Glc7p complexes is necessary to regulate MT dynamics at the cortex. Taken together, our results suggest that Bud14p functions as a regulatory subunit of the Glc7p type-I phosphatase to stabilize MT interactions specifically at sites of polarized growth.  相似文献   

20.
The regulation and signaling pathways involved in the invasive growth of yeast have been studied extensively because of their general applicability to fungal pathogenesis. Bud2p, which functions as a GTPase-activating protein (GAP) for Bud1p/Rsr1p, is required for appropriate budding patterns and filamentous growth. The regulatory mechanisms leading to Bud2p activation, however, are poorly understood. In this study, we report that ADP-ribosylation factor 3p (Arf3p) acts as a regulator of Bud2p activation during invasive growth. Arf3p binds directly to the N-terminal region of Bud2p and promotes its GAP activity both in vitro and in vivo. Genetic analysis shows that deletion of BUD1 suppresses the defect of invasive growth in arf3Δ or bud2Δ cells. Lack of Arf3p, like that of Bud2p, causes the intracellular accumulation of Bud1p-GTP. The Arf3p–Bud2p interaction is important for invasive growth and facilitates the Bud2p–Bud1p association in vivo. Finally, we show that under glucose depletion–induced invasion conditions in yeast, more Arf3p is activated to the GTP-bound state, and the activation is independent of Arf3p guanine nucleotide-exchange factor Yel1p. Thus we demonstrate that a novel spatial activation of Arf3p plays a role in regulating Bud2p activation during glucose depletion–induced invasive growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号