首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 174 毫秒
1.
脂肪组织甘油三酯水解酶参与脂肪分解调控   总被引:2,自引:0,他引:2  
Xu C  Xu GH 《生理科学进展》2008,39(1):10-14
循环中游离脂肪酸增高与肥胖、胰岛素抵抗和2型糖尿病密切相关,其主要来源于脂肪细胞内甘油三酯水解.调控脂肪分解的脂肪酶主要包括激素敏感脂肪酶(hormone-sensitive lipase,HSL)和最近发现的脂肪组织甘油三酯水解酶(adipose triglyceride lipase,ATGL),后者主要分布在脂肪组织,特异水解甘油三酯为甘油二酯,其转录水平受多种因素调控.CGI-58(属于α/β水解酶家族蛋白),可以活化ATGL,基础条件下该蛋白和脂滴包被蛋白(perilipin)紧密结合于脂滴表面,蛋白激酶A激活刺激脂肪分解时,CGI-58与perilipin分离,进而活化ATGL.  相似文献   

2.
Lipolysis involves the sequential breakdown of fatty acids from triacylglycerol and is increased during energy stress such as exercise. Adipose triglyceride lipase (ATGL) is a key regulator of skeletal muscle lipolysis and perilipin (PLIN) 5 is postulated to be an important regulator of ATGL action of muscle lipolysis. Hence, we hypothesized that non-genomic regulation such as cellular localization and the interaction of these key proteins modulate muscle lipolysis during exercise. PLIN5, ATGL and CGI-58 were highly (>60%) colocated with Oil Red O (ORO) stained lipid droplets. PLIN5 was significantly colocated with ATGL, mitochondria and CGI-58, indicating a close association between the key lipolytic effectors in resting skeletal muscle. The colocation of the lipolytic proteins, their independent association with ORO and the PLIN5/ORO colocation were not altered after 60 min of moderate intensity exercise. Further experiments in cultured human myocytes showed that PLIN5 colocation with ORO or mitochondria is unaffected by pharmacological activation of lipolytic pathways. Together, these data suggest that the major lipolytic proteins are highly expressed at the lipid droplet and colocate in resting skeletal muscle, that their localization and interactions appear to remain unchanged during prolonged exercise, and, accordingly, that other post-translational mechanisms are likely regulators of skeletal muscle lipolysis.  相似文献   

3.
Lipolysis is a critical metabolic pathway contributing to energy homeostasis through degradation of triacylglycerides stored in lipid droplets (LDs), releasing fatty acids. Neutral lipid lipases act at the oil/water interface. In mammalian cells, LD surfaces are coated with one or more members of the perilipin protein family, which serve important functions in regulating lipolysis. We investigated mechanisms by which three perilipin proteins control lipolysis by adipocyte triglyceride lipase (ATGL), a key lipase in adipocytes and non-adipose cells. Using a cell culture model, we examined interactions of ATGL and its co-lipase CGI-58 with perilipin 1 (perilipin A), perilipin 2 (adipose differentiation-related protein), and perilipin 5 (LSDP5) using multiple techniques as follows: anisotropy Forster resonance energy transfer, co-immunoprecipitation, [(32)P]orthophosphate radiolabeling, and measurement of lipolysis. The results show that ATGL interacts with CGI-58 and perilipin 5; the latter is selectively expressed in oxidative tissues. Both proteins independently recruited ATGL to the LD surface, but with opposite effects; interaction of ATGL with CGI-58 increased lipolysis, whereas interaction of ATGL with perilipin 5 decreased lipolysis. In contrast, neither perilipin 1 nor 2 interacted directly with ATGL. Activation of protein kinase A (PKA) increased [(32)P]orthophosphate incorporation into perilipin 5 by 2-fold, whereas neither ATGL nor CGI-58 was labeled under the incubation conditions. Cells expressing both ectopic perilipin 5 and ATGL showed a 3-fold increase in lipolysis following activation of PKA. Our studies establish perilipin 5 as a novel ATGL partner and provide evidence that the protein composition of perilipins at the LD surface regulates lipolytic activity of ATGL.  相似文献   

4.
A lipid droplet (LD)-associated protein, perilipin, is a critical regulator of lipolysis in adipocytes. We previously showed that Comparative Gene Identification-58 (CGI-58), a product of the causal gene of Chanarin-Dorfman syndrome, interacts with perilipin on LDs. In this study, we investigated the function of CGI-58 using RNA interference. Notably, CGI-58 knockdown caused an abnormal accumulation of LDs in both 3T3-L1 preadipocytes and Hepa1 hepatoma cells. CGI-58 knockdown did not influence the differentiation of 3T3-L1 adipocytes but reduced the activity of both basal and cAMP-dependent protein kinase-stimulated lipolysis. In vitro studies showed that CGI-58 itself does not have lipase/esterase activity, but it enhanced the activity of adipose triglyceride lipase. Upon lipolytic stimulation, endogenous CGI-58 was rapidly dispersed from LDs into the cytosol along with small particulate structures. This shift in localization depends on the phosphorylation of perilipin, because phosphorylated perilipin lost the ability to bind CGI-58. During lipolytic activation, LDs in adipocytes vesiculate into micro-LDs. Using coherent anti-Stokes Raman scattering microscopy, we pursued the formation of micro-LDs in single cells, which seemed to occur in cytoplasmic regions distant from the large central LDs. CGI-58 is not required for this process. Thus, CGI-58 facilitates lipolysis in cooperation with perilipin and other factors, including lipases.  相似文献   

5.
TNF-α potently stimulates basal lipolysis in adipocytes, which may contribute to hyperlipidemia and peripheral insulin resistance in obesity. Recent studies show that adipose triglyceride lipase (ATGL) and hormone-sensitive lipase (HSL) act sequentially in catalyzing the first two steps of adipose lipolysis in response to β-adrenergic stimulation. Here, we sought to determine their functional roles in TNF-α-induced lipolysis. Silencing of ATGL expression in adipocytes almost completely abolished basal and TNF-α-induced glycerol release. In comparison, the glycerol release under the same conditions was only partially decreased upon reduction in expression of either HSL or the ATGL coactivator CGI-58. Interestingly, overexpression of ATGL restored the lipolytic rates in cells with silenced HSL or CGI-58, indicating a predominant role for ATGL. While expression of ATGL, HSL and CGI-58 remains mostly unaffected, TNF-α treatment caused a rapid abrogation of the ATGL inhibitory protein G0S2. TNF-α drastically decreased the level of G0S2 mRNA, and the level of G0S2 protein could be maintained by inhibiting proteasomal protein degradation using MG-132. Furthermore, coexpression of G0S2 was able to significantly decrease TNF-α-stimulated lipolysis mediated by overexpressed ATGL or CGI-58. We propose that the early reduction in G0S2 content is permissive for TNF-α-induced lipolysis.  相似文献   

6.
谢宇潇  高士争  赵素梅 《遗传》2013,35(5):595-598
细胞中脂滴(Lipid droplets, LDs)表面存在多个调控脂肪储存和分解的蛋白, 这些蛋白对机体的脂肪代谢起着很重要的调控作用。CGI-58(Comparative gene identification-58)分布在LDs表面, 属于α/β水解酶折叠家族, 是脂肪甘油三酯脂肪酶(Adipose triglyceride lipase, ATGL)和依赖酰基辅酶A溶血磷脂酸酰基转移酶(Lysophosphatidic acid acyltransferase, LPAAT)的激活剂。在脂肪分解过程中, CGI-58结合PAT蛋白家族成员之一的脂滴包被蛋白(Perlipin)和ATGL, 促进脂肪分解, 同时CGI-58对ATGL的激活功能受脂滴包被蛋白家族成员间蛋白质与蛋白质相互作用的影响。文章结合国内外研究热点, 针对CGI-58在动物脂类代谢中的作用进行了综述。  相似文献   

7.
Ho PC  Chuang YS  Hung CH  Wei LN 《Cellular signalling》2011,23(8):1396-1403
Receptor-interacting protein 140 (RIP140) is abundantly expressed in mature adipocyte and modulates gene expression involved in lipid and glucose metabolism. Protein kinase C epsilon and protein arginine methyltransferase 1 can sequentially stimulate RIP140 phosphorylation and then methylation, thereby promoting its export to the cytoplasm. Here we report a lipid signal triggering cytoplasmic accumulation of RIP140, and a new functional role for cytoplasmic RIP140 in adipocyte to regulate lipolysis. Increased lipid content, particularly an elevation in diacylglycerol levels, promotes RIP140 cytoplasmic accumulation and increased association with lipid droplets (LDs) by its direct interaction with perilipin. By interacting with RIP140, perilipin more efficiently recruits hormone-sensitive lipase (HSL) to LDs and enhances adipose triglyceride lipase (ATGL) forming complex with CGI-58, an activator of ATGL. Consequentially, HSL can more readily access its substrates, and ATGL is activated, ultimately enhancing lipolysis. In adipocytes, blocking cytoplasmic RIP140 accumulation reduces basal and isoproterenol-stimulated lipolysis and the pro-inflammatory potential of their conditioned media (i.e. activating NF-κB and inflammatory genes in macrophages). These results show that in adipocytes with high lipid contents, RIP140 increasingly accumulates in the cytoplasm and enhances triglyceride catabolism by directly interacting with perilipin. The study suggests that reducing nuclear export of RIP140 might be a useful means of controlling adipocyte lipolysis.  相似文献   

8.

Background

A previous study has demonstrated that endurance training under hypoxia results in a greater reduction in body fat mass compared to exercise under normoxia. However, the cellular and molecular mechanisms that underlie this hypoxia-mediated reduction in fat mass remain uncertain. Here, we examine the effects of modest hypoxia on adipocyte function.

Methods

Differentiated 3T3-L1 adipocytes were incubated at 5% O2 for 1 week (long-term hypoxia, HL) or one day (short-term hypoxia, HS) and compared with a normoxia control (NC).

Results

HL, but not HS, resulted in a significant reduction in lipid droplet size and triglyceride content (by 50%) compared to NC (p < 0.01). As estimated by glycerol release, isoproterenol-induced lipolysis was significantly lowered by hypoxia, whereas the release of free fatty acids under the basal condition was prominently enhanced with HL compared to NC or HS (p < 0.01). Lipolysis-associated proteins, such as perilipin 1 and hormone-sensitive lipase, were unchanged, whereas adipose triglyceride lipase and its activator protein CGI-58 were decreased with HL in comparison to NC. Interestingly, such lipogenic proteins as fatty acid synthase, lipin-1, and peroxisome proliferator-activated receptor gamma were decreased. Furthermore, the uptake of glucose, the major precursor of 3-glycerol phosphate for triglyceride synthesis, was significantly reduced in HL compared to NC or HS (p < 0.01).

Conclusion

We conclude that hypoxia has a direct impact on reducing the triglyceride content and lipid droplet size via decreased glucose uptake and lipogenic protein expression and increased basal lipolysis. Such an hypoxia-induced decrease in lipogenesis may be an attractive therapeutic target against lipid-associated metabolic diseases.  相似文献   

9.
Hormone-sensitive lipase (HSL) is the predominant lipase effector of catecholamine-stimulated lipolysis in adipocytes. HSL-dependent lipolysis in response to catecholamines is mediated by protein kinase A (PKA)-dependent phosphorylation of perilipin A (Peri A), an essential lipid droplet (LD)-associated protein. It is believed that perilipin phosphorylation is essential for the translocation of HSL from the cytosol to the LD, a key event in stimulated lipolysis. Using adipocytes retrovirally engineered from murine embryonic fibroblasts of perilipin null mice (Peri-/- MEF), we demonstrate by cell fractionation and confocal microscopy that up to 50% of cellular HSL is LD-associated in the basal state and that PKA-stimulated HSL translocation is fully supported by adenoviral expression of a mutant perilipin lacking all six PKA sites (Peri Adelta1-6). PKA-stimulated HSL translocation was confirmed in differentiated brown adipocytes from perilipin null mice expressing an adipose-specific Peri Adelta1-6 transgene. Thus, PKA-induced HSL translocation was independent of perilipin phosphorylation. However, Peri Adelta1-6 failed to enhance PKA-stimulated lipolysis in either MEF adipocytes or differentiated brown adipocytes. Thus, the lipolytic action(s) of HSL at the LD surface requires PKA-dependent perilipin phosphorylation. In Peri-/- MEF adipocytes, PKA activation significantly enhanced the amount of HSL that could be cross-linked to and co-immunoprecipitated with ectopic Peri A. Notably, this enhanced cross-linking was blunted in Peri-/- MEF adipocytes expressing Peri Adelta1-6. This suggests that PKA-dependent perilipin phosphorylation facilitates (either direct or indirect) perilipin interaction with LD-associated HSL. These results redefine and expand our understanding of how perilipin regulates HSL-mediated lipolysis in adipocytes.  相似文献   

10.
CGI-58/ABHD5 coactivates adipose triglyceride lipase (ATGL). In adipocytes, CGI-58 binds to perilipin 1A on lipid droplets under basal conditions, preventing interaction with ATGL. Upon activation of protein kinase A (PKA), perilipin 1A is phosphorylated and CGI-58 rapidly disperses into the cytoplasm, enabling lipase coactivation. Because the amino acid sequence of murine CGI-58 has a predicted PKA consensus sequence of RKYS239S240, we hypothesized that phosphorylation of CGI-58 is involved in this process. We show that Ser239 of murine CGI-58 is a substrate for PKA using phosphoamino acid analysis, MS, and immuno­blotting approaches to study phosphorylation of recombinant CGI-58 and endogenous CGI-58 of adipose tissue. Phosphorylation of CGI-58 neither increased nor impaired coactivation of ATGL in vitro. Moreover, Ser239 was not required for CGI-58 function to increase triacylglycerol turnover in human neutral lipid storage disorder fibroblasts that lack endogenous CGI-58. Both CGI-58 and S239A/S240A-mutated CGI-58 localized to perilipin 1A-coated lipid droplets in cells. When PKA was activated, WT CGI-58 dispersed into the cytoplasm, whereas substantial S239A/S240A-mutated CGI-58 remained on lipid droplets. Perilipin phosphorylation also contributed to CGI-58 dispersion. PKA-mediated phosphorylation of CGI-58 is required for dispersion of CGI-58 from perilipin 1A-coated lipid droplets, thereby increasing CGI-58 availability for ATGL coactivation.  相似文献   

11.
Lipolysis is an important metabolic pathway controlling energy homeostasis through degradation of triglycerides stored in lipid droplets and release of fatty acids. Lipid droplets of mammalian cells are coated with one or more members of the PAT protein family, which serve important functions in regulating lipolysis. In this study, we investigate the mechanisms by which PAT family members, perilipin A, adipose differentiation-related protein (ADFP), and LSDP5, control lipolysis catalyzed by hormone-sensitive lipase (HSL), a major lipase in adipocytes and several non-adipose cells. We applied fluorescence microscopic tools to analyze proteins in situ in cultured Chinese hamster ovary cells using fluorescence recovery after photobleaching and anisotropy Forster resonance energy transfer. Fluorescence recovery after photobleaching data show that ADFP and LSDP5 exchange between lipid droplet and cytoplasmic pools, whereas perilipin A does not. Differences in protein mobility do not correlate with PAT protein-mediated control of lipolysis catalyzed by HSL or endogenous lipases. Forster resonance energy transfer and co-immunoprecipitation experiments reveal that each of the three PAT proteins bind HSL through interaction of the lipase with amino acids within the highly conserved amino-terminal PAT-1 domain. ADFP and LSDP5 bind HSL under basal conditions, whereas phosphorylation of serine residues within three amino-terminal protein kinase A consensus sequences of perilipin A is required for HSL binding and maximal lipolysis. Finally, protein kinase A-mediated phosphorylation of HSL increases lipolysis in cells expressing ADFP or LSDP5; in contrast, phosphorylation of perilipin A exerts the major control over HSL-mediated lipolysis when perilipin is the main lipid droplet protein.  相似文献   

12.
Lipoic acid (LA) is a naturally occurring compound with beneficial effects on obesity. The aim of this study was to evaluate its effects on lipolysis in 3T3-L1 adipocytes and the mechanisms involved. Our results revealed that LA induced a dose- and time-dependent lipolytic action, which was reversed by pretreatment with the c-Jun N-terminal kinase inhibitor SP600125, the PKA inhibitor H89, and the AMP-activated protein kinase activator AICAR. In contrast, the PI3K/Akt inhibitor LY294002 and the PDE3B antagonist cilostamide enhanced LA-induced lipolysis. LA treatment for 1 h did not modify total protein content of hormone-sensitive lipase (HSL) but significantly increased the phosphorylation of HSL at Ser563 and at Ser660, which was reversed by H89. LA treatment also induced a marked increase in PKA-mediated perilipin phosphorylation. LA did not significantly modify the protein levels of adipose triglyceride lipase or its activator comparative gene identification 58 (CGI-58) and inhibitor G(0)/G(1) switch gene 2 (G0S2). Furthermore, LA caused a significant inhibition of adipose-specific phospholipase A2 (AdPLA) protein and mRNA levels in parallel with a decrease in the amount of prostaglandin E2 released and an increase in cAMP content. Together, these data suggest that the lipolytic actions of LA are mainly mediated by phosphorylation of HSL through cAMP-mediated activation of protein kinase A probably through the inhibition of AdPLA and prostaglandin E2.  相似文献   

13.
Triacylglycerols (TGs) stored in lipid droplets (LDs) are hydrolyzed in a highly regulated metabolic process called lipolysis to free fatty acids that serve as energy substrates for β-oxidation, precursors for membrane lipids and signaling molecules. Comparative gene identification-58 (CGI-58) stimulates the enzymatic activity of adipose triglyceride lipase (ATGL), which catalyzes the hydrolysis of TGs to diacylglycerols and free fatty acids. In adipose tissue, protein-protein interactions between CGI-58 and the LD coating protein perilipin 1 restrain the ability of CGI-58 to activate ATGL under basal conditions. Phosphorylation of perilipin 1 disrupts these interactions and mobilizes CGI-58 for the activation of ATGL. We have previously demonstrated that the removal of a peptide at the N terminus (residues 10–31) of CGI-58 abrogates CGI-58 localization to LDs and CGI-58-mediated activation of ATGL. Here, we show that this tryptophan-rich N-terminal peptide serves as an independent LD anchor, with its three tryptophans serving as focal points of the left (harboring Trp21 and Trp25) and right (harboring Trp29) anchor arms. The solution state NMR structure of a peptide comprising the LD anchor bound to dodecylphosphocholine micelles as LD mimic reveals that the left arm forms a concise hydrophobic core comprising tryptophans Trp21 and Trp25 and two adjacent leucines. Trp29 serves as the core of a functionally independent anchor arm. Consequently, simultaneous tryptophan alanine permutations in both arms abolish localization and activity of CGI-58 as opposed to tryptophan substitutions that occur in only one arm.  相似文献   

14.
Adipocyte lipolysis was compared with hormone-sensitive lipase (HSL)/perilipin subcellular distribution and perilipin phosphorylation using Western blot analysis. Under basal conditions, HSL resided predominantly in the cytosol and unphosphorylated perilipin upon the lipid droplet. Upon lipolytic stimulation of adipocytes isolated from young rats with the beta-adrenergic agonist, isoproterenol, HSL translocated from the cytosol to the lipid droplet, but there was no movement of perilipin from the droplet to the cytosol; however, perilipin phosphorylation was observed. By contrast, upon lipolytic stimulation and perilipin phosphorylation in cells from more mature rats, there was no HSL translocation but a significant movement of perilipin away from the lipid droplet. Adipocytes from younger rats had markedly greater rates of lipolysis than those from the older rats. Thus high rates of lipolysis require translocation of HSL to the lipid droplet and translocation of HSL and perilipin can occur independently of each other. A loss of the ability to translocate HSL to the lipid droplet probably contributes to the diminished lipolytic response to catecholamines with age.  相似文献   

15.
Chanarin–Dorfman syndrome (CDS) is a rare autosomal recessive disease of lipid metabolism; it is associated with congenital ichthyosis typed as non-bullous congenital ichthyosiform erythroderma (NCIE). CDS is characterized by the presence of an abnormally large number of cytosolic lipid droplets containing triacylglycerol (TG) in various tissues such as the skin, liver, and leukocytes. Mutations in the CGI-58 (also called ABHD5) gene encoding a 39-kDa protein of the α/β hydrolase domain subfamily have been shown to be responsible for this disorder. In adipocytes, CGI-58 is involved in TG degradation on lipid droplets; in doing so, it coordinates with several lipolytic factors including perilipin, a member of the PAT protein family, and ATGL, a putative rate-limiting lipase in adipocytes. In quiescent adipocytes, CGI-58 interacts with perilipin on the surfaces of lipid droplets. Upon hormonal stimulation, CGI-58 facilitates massive lipolysis by activating ATGL. Some CGI-58 mutations found in CDS patients cancel the ability to interact with perilipin or activate ATGL, indicating that the loss of these interactions is physiologically important. However, based on the tissue distributions of these lipolytic factors, there are likely multiple molecular targets of CGI-58 actions. This in turn gives rise to the multiple phenotypes of CDS, such as ichthyosis, liver steatosis, or neurosensory diseases.  相似文献   

16.
Lipolysis is primarily regulated by protein kinase A (PKA), which phosphorylates perilipin and hormone-sensitive lipase (HSL), and causes translocation of HSL from cytosol to lipid droplets in adipocytes. Perilipin coats lipid droplet surface and assumes to prevent lipase access to triacylglycerols, thus inhibiting basal lipolysis; phosphorylated perilipin facilitates lipolysis on PKA activation. Here, we induced lipolysis in primary rat adipocytes by inhibiting protein serine/threonine phosphatase with specific inhibitors, okadaic acid and calyculin. The incubation with calyculin promotes incorporation of 32Pi into perilipins, thus, confirming that perilipin is hyperphosphorylated. The lipolysis response to calyculin is gradually accompanied by increased accumulation of phosphorylated perilipin A in a concentration- and time-responsive manner. When perilipin phosphorylation is abrogated by the addition of N-ethylmaleimide, lipolysis ceases. Different from a considerable translocation of HSL upon PKA activation with isoproterenol, calyculin does not alter HSL redistribution in primary or differentiated adipocytes, as confirmed by both immunostaining and immunoblotting. Thus, we suggest that inhibition of the phosphatase by calyculin activates lipolysis via promoting perilipin phosphorylation rather than eliciting HSL translocation in adipocytes. Further, we show that when the endogenous phosphatase is inhibited by calyculin, simultaneous PKA activation with isoproterenol converts most of the perilipin to the hyperphosphorylated species, and induces enhanced lipolysis. Apparently, as PKA phosphorylates perilipin and stimulates lipolysis, the phosphatase acts to dephosphorylate perilipin and attenuate lipolysis. This suggests a two-step strategy governed by a kinase and a phosphatase to modulate the steady state of perilipin phosphorylation and hence the lipolysis response to hormonal stimulation.  相似文献   

17.
Despite the critical roles of intracellular lipid droplets (LDs) in lipid storage and metabolism, little is known about the molecular mechanisms of their functions. Several protein components associated with the surface of LDs have been identified. A major one is perilipin in adipocytes and steroidogenic cells, whereas ADRP in most other cell types. They are loosely grouped as a small protein family sharing a common N-terminal motif, called the PAT domain. Perilipin regulates the breakdown of triacylglycerol in LDs via its phosphorylation. ADRP is characterized as a fatty acid binding protein and involved in lipid uptake and LD formation. For examining the functions of perilipin and ADRP at the molecular level, we performed yeast two-hybrid screening in this study, to find their functional partners. We identified CGI-58, a product of the causal gene of Chanarin-Dorfman syndrome (CDS), as an interactor for both perilipin and ADRP. Specific interaction between CGI-58 and perilipin was confirmed in a GST-pulldown assay and supported by fluorescence microscopic analyses. We further demonstrated that CGI-58 is principally located at the surface of LDs in 3T3-L1 cells, together with perilipin, and its expression is upregulated upon stimulation for adipocyte differentiation. Other than CGI-58, we also identified in yeast two-hybrid screening HSP86 and D52 tumor proteins as binding partners of perilipin, and IRG-47 of ADRP. These factors might be cooperated with perilipin and ADRP, and hence involved in membrane dynamics of LDs as well as the regulation of lipolysis on the surface of LDs.  相似文献   

18.
The relationship between isoproterenol-induced lipolysis and the phosphorylation of perilipin and hormone-sensitive lipase (HSL) was examined using cell-free systems consisting of lipid droplets isolated from rat fat cells and HSL, and/or trioleoylglycerol emulsified with gum arabic and HSL. Isoproterenol was found to stimulate lipolysis in the cell-free system with the lipid droplets without an increase in the phosphorylation of either perilipin or HSL. On the other hand, no stimulation of lipolysis was found in the cell-free system containing lipid droplets despite increases in the phosphorylation of perilipin and HSL. In the cell-free system consisting of trioleoylglycerol emulsified with gum arabic and HSL, neither isoproterenol nor increases in the phosphorylation of perilipin and HSL accelerated lipolysis. These results suggest that isoproterenol-induced lipolysis may not be mediated through the phosphorylation of perilipin and HSL, and may rather be dependent on the substrate of HSL.  相似文献   

19.
Akey step in lipolytic activation of adipocytes is the translocation of hormone-sensitive lipase (HSL) from the cytosol to the surface of the lipid storage droplet. Adipocytes from perilipin-null animals have an elevated basal rate of lipolysis compared with adipocytes from wild-type mice, but fail to respond maximally to lipolytic stimuli. This defect is downstream of the beta-adrenergic receptor-adenylyl cyclase complex. Now, we show that HSL is basally associated with lipid droplet surfaces at a low level in perilipin nulls, but that stimulated translocation from the cytosol to lipid droplets is absent in adipocytes derived from embryonic fibroblasts of perilipin-null mice. We have also reconstructed the HSL translocation reaction in the nonadipocyte Chinese hamster ovary cell line by introduction of GFP-tagged HSL with and without perilipin A. On activation of protein kinase A, HSL-GFP translocates to lipid droplets only in cells that express fully phosphorylatable perilipin A, confirming that perilipin is required to elicit the HSL translocation reaction. Moreover, in Chinese hamster ovary cells that express both HSL and perilipin A, these two proteins cooperate to produce a more rapidly accelerated lipolysis than do cells that express either of these proteins alone, indicating that lipolysis is a concerted reaction mediated by both protein kinase A-phosphorylated HSL and perilipin A.  相似文献   

20.
Adipose triglyceride lipase (ATGL) is required for efficient mobilization of triglyceride (TG) stores in adipose tissue and non-adipose tissues. Therefore, ATGL strongly determines the availability of fatty acids for metabolic reactions. ATGL activity is regulated by a complex network of lipolytic and anti-lipolytic hormones. These signals control enzyme expression and the interaction of ATGL with the regulatory proteins CGI-58 and G0S2. Up to date, it was unknown whether ATGL activity is also controlled by lipid intermediates generated during lipolysis. Here we show that ATGL activity is inhibited by long-chain acyl-CoAs in a non-competitive manner, similar as previously shown for hormone-sensitive lipase (HSL), the rate-limiting enzyme for diglyceride breakdown in adipose tissue. ATGL activity is only marginally inhibited by medium-chain acyl-CoAs, diglycerides, monoglycerides, and free fatty acids. Immunoprecipitation assays revealed that acyl-CoAs do not disrupt the protein–protein interaction of ATGL and its co-activator CGI-58. Furthermore, inhibition of ATGL is independent of the presence of CGI-58 and occurs directly at the N-terminal patatin-like phospholipase domain of the enzyme. In conclusion, our results suggest that inhibition of the major lipolytic enzymes ATGL and HSL by long-chain acyl-CoAs could represent an effective feedback mechanism controlling lipolysis and protecting cells from lipotoxic concentrations of fatty acids and fatty acid-derived lipid metabolites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号