首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Human bone marrow cells expressing CD34 but not HLA-DR were isolated by immunofluorescence flow cytometric cell sorting. These cells contained a hematopoietic cell (CFU-B1) capable of producing, in an in vitro semisolid culture system, blast-cell-containing colonies, which possessed the capacity for self-renewal and commitment to multipotential differentiation. In addition, CD34+ HLA-DR- marrow cells contained primitive megakaryocyte progenitor cells, the burst-forming unit-megakaryocyte (BFU-MK). A subset of CD34+ HLA-DR- marrow cells lacking the expression of CD15 and CD71 was obtained by flow cytometric cell sorting and was capable of sustaining in vitro hematopoiesis in suspension culture for up to 8 weeks in the absence of a preestablished adherent marrow cell layer. The combination of IL-3 + IL-1 alpha and IL-3 + IL-6 sustained proliferation of these cells for 8 weeks, induced maximal cellular expansion, and increased the numbers of assayable progenitor cells. These studies demonstrate that human CD34+ HLA-DR- marrow cells and their subsets contain primitive multipotential hematopoietic cells capable of self-renewal and of differentiation into multiple hematopoietic lineages.  相似文献   

2.
To explore the physiological significance of AC133 expression on human haematopoietic cells, we phenotyped normal and malignant human haematopoietic cells for AC133 expression, evaluated the utility of AC133 for isolating human stem/progenitor cells in comparison to other known early haematopoietic cell markers, investigated the role of AC133 in regulating hematopoiesis, and evaluated the possibility that MYB might regulate AC133. We found that while human CD34+ progenitor cells expressed AC133, expression was rapidly downregulated during differentiation. In apparent contrast, AC133 mRNA was detectable in cells isolated from CFU-Mix, BFU-E, CFU-GM and CFU-Meg colonies. Human cord blood CD34+ cells expressed AC133 at higher levels than their normal bone marrow counterparts. In apparent contrast to normal primitive haematopoietic cells, the AC133 protein was undetectable on cells from 24 different human haematopoietic cells lines, even though the majority of these cells expressed AC133 mRNA. Since CD34, AC133 and the c-kit (KIT) receptor are all co-expressed on human stem/progenitor cells, we compared the ability of monoclonal antibodies directed against each of these proteins to isolate early progenitor cells. Using these antibodies and magnetized particles in a standard immunoaffinity isolation protocol, we found that anti-CD34 and anti-KIT MoAbs could isolate > 80-90% of the clonogeneic cell population present in a given marrow sample. Anti-AC133 MoAbs recovered approximately 75-80% of CFU-GM and CFU-Meg, but only about 30% of CFU-Mix and BFU-E. Perturbation of AC133 expression with antisense oligodeoxynucleotides (AS ODN) resulted in transient downregulation of AC133 protein on human CD34+ cells but no apparent effect on cell survival or cloning efficiency ex vivo. Finally, downregulation of MYB expression with AS ODN had no effect on the AC133 expression at either the mRNA or protein level. Based on these results, we conclude that AC133 offers no distinct advantage over CD34 or c-kit as a target for immunoaffinity based isolation of primitive hematopoietic cells, that AC133 expression is not required for normal hematopoietic progenitor cell development in vitro, and finally that AC133 expression may not be MYB-dependent.  相似文献   

3.
4.
Media conditioned by normal murine bone marrow cells contain an inhibitor of haemopoietic spleen colony-forming cell proliferation that is concentrated in a nominal 50-100K fraction. Media conditioned by regenerating marrow cells contain a proliferation-stimulatory activity that is concentrated in a nominal 30-50K fraction. Cell separation experiments demonstrated that the activities are produced by adherent, phagocytic, radioresistant, Thy 1.2- Fc+, F4/80+ cells. Cultured macrophages, obtained from long-term marrow cultures or derived from progenitor cells in methyl cellulose cultures are also capable of producing inhibitory and stimulatory activities. The results are consistent with macrophages being an important source of stem cell proliferation regulators in the bone marrow.  相似文献   

5.
Abstract. Media conditioned by normal murine bone marrow cells contain an inhibitor of haemopoietic spleen colony-forming cell proliferation that is concentrated in a nominal 50-100K fraction. Media conditioned by regenerating marrow cells contain a proliferation-stimulatory activity that is concentrated in a nominal 30-50K fraction. Cell separation experiments demonstrated that the activities are produced by adherent, phagocytic, radioresistant, Thy 1.2- Fc+, F4/80+ cells. Cultured macrophages, obtained from long-term marrow cultures or derived from progenitor cells in methyl cellulose cultures are also capable of producing inhibitory and stimulatory activities. The results are consistent with macrophages being an important source of stem cell proliferation regulators in the bone marrow.  相似文献   

6.
CD 34~ 造血干/祖细胞(HSC/HPC)是十分异质性的,由多个不同功能亚群所构成,在分化方向与重建造血等方面差异显著。本文对正常人骨髓CD 34~ HSC/HPC各亚群进行了较全面的分析。首先以阳性选择策略,采用Isolex~(TM) 50免疫磁球分选术富集骨髓CD 34~ HSC/HPC,其纯度>90%,随之采用免疫荧光抗体双标记二维流式细胞仪对其测定,发现高纯度的CD 34~ HSC/HPC可分为八个不同亚群:1.CD 34~ /CD 71~-(23.4%—56.6%)与CD 34~ /CD 71~ (33.4%—66.6%);2.CD34~ /CD 45~-(80.8%—82.5%)与CD34~ /CD 45~ (8.1%—11.2%);3.CD 34~ /CD 33~-(20.4%—80.6%)与CD 34~ /CD 33~ (14.6%—64.8%);4.CD 34~ /DR~-(6.3%—11.0%)与CD 34~ /DR~ (82.8%—85.5%)。用免疫胶体金——免疫桥酶联组化双染色对上述亚群进一步分析的结果与流式细胞仪的高度一致,为研究各亚群的功能与生物学特性提供了坚实基础  相似文献   

7.
Mesenchymal stem cells (MSCs) have received considerable attention in recent years. Particularly exciting is the prospect that MSCs could be differentiated into specialized cells of interest, which could then be used for cell therapy and tissue engineering. MSCs derived from nonhuman primates could be a powerful tool for investigating the differentiation potential in vitro and in vivo for preclinical research. The purpose of this study was to isolate cynomolgus mesenchymal stem cells (cMSCs) from adult bone marrow and characterize their growth properties and multipotency. Mononuclear cells were isolated from cynomolgus monkey bone marrow by density-gradient centrifugation, and adherent fibroblast-like cells grew well in the complete growth medium with 10 μM Tenofovir. cMSCs expressed mesenchymal markers, such as CD29, CD105, CD166 and were negative for hematopoietic markers such as CD34, CD45. Furthermore, the cells were capable of differentiating into osteogenic, chondrogenic, and adipogenic lineages under certain conditions, maintaining normal karyotype throughout extended culture. We also compared different methods (lipofection, nucleofection and lentivirus) for genetic modification of cMSCs and found lentivirus proved to be the most effective method with transduction efficiency of up to 44.6% and lowest level of cell death. The cells after transduction stably expressed green fluorescence protein (GFP) and maintained the abilities to differentiate down osteogenic and adipogenic lineages. In conclusion, these data showed that cMSCs isolated from cynomolgus bone marrow shared similar characteristics with human MSCs and might provide an attractive cell type for cell-based therapy in higher-order mammalian species disorder models.  相似文献   

8.
Adipose tissue is composed of lipid‐filled mature adipocytes and a heterogeneous stromal vascular fraction (SVF) population of cells. Similarly, the bone marrow (BM) is composed of multiple cell types including adipocytes, hematopoietic, osteoprogenitor, and stromal cells necessary to support hematopoiesis. Both adipose and BM contain a population of mesenchymal stromal/stem cells with the potential to differentiate into multiple lineages, including adipogenic, chondrogenic, and osteogenic cells, depending on the culture conditions. In this study we have shown that human adipose‐derived stem cells (ASCs) and bone marrow mesenchymal stem cells (BMSCs) populations display a common expression profile for many surface antigens, including CD29, CD49c, CD147, CD166, and HLA‐abc. Nevertheless, significant differences were noted in the expression of CD34 and its related protein, PODXL, CD36, CD 49f, CD106, and CD146. Furthermore, ASCs displayed more pronounced adipogenic differentiation capability relative to BMSC based on Oil Red staining (7‐fold vs. 2.85‐fold induction). In contrast, no difference between the stem cell types was detected for osteogenic differentiation based on Alizarin Red staining. Analysis by RT‐PCR demonstrated that both the ASC and BMSC differentiated adipocytes and osteoblast displayed a significant upregulation of lineage‐specific mRNAs relative to the undifferentiated cell populations; no significant differences in fold mRNA induction was noted between ASCs and BMSCs. In conclusion, these results demonstrate human ASCs and BMSCs display distinct immunophenotypes based on surface positivity and expression intensity as well as differences in adipogenic differentiation. The findings support the use of both human ASCs and BMSCs for clinical regenerative medicine. J. Cell. Physiol. 226: 843–851, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

9.
FLT3/FLK2, a member of the receptor tyrosine kinase family, plays a critical role in maintenance of hematopoietic homeostasis, and the constitutively active form of the FLT3 mutation is one of the most common genetic abnormalities in acute myelogenous leukemia. In murine hematopoiesis, Flt3 is not expressed in self-renewing hematopoietic stem cells, but its expression is restricted to the multipotent and the lymphoid progenitor stages at which cells are incapable of self-renewal. We extensively analyzed the expression of Flt3 in human (h) hematopoiesis. Strikingly, in both the bone marrow and the cord blood, the human hematopoietic stem cell population capable of long-term reconstitution in xenogeneic hosts uniformly expressed Flt3. Furthermore, human Flt3 is expressed not only in early lymphoid progenitors, but also in progenitors continuously along the granulocyte/macrophage pathway, including the common myeloid progenitor and the granulocyte/macrophage progenitor. We further found that human Flt3 signaling prevents stem and progenitors from spontaneous apoptotic cell death at least through up-regulating Mcl-1, an indispensable survival factor for hematopoiesis. Thus, the distribution of Flt3 expression is considerably different in human and mouse hematopoiesis, and human FLT3 signaling might play an important role in cell survival, especially at stem and progenitor cells that are critical cellular targets for acute myelogenous leukemia transformation.  相似文献   

10.
人卵黄囊造血的探讨   总被引:1,自引:0,他引:1  
采用卵黄囊组织切片、涂片的形态学、细胞化学染色、造血干/祖细胞体外培养及CD_(34)单克隆抗体免疫荧光检测等方法研究表明:人卵黄囊中存在造血岛,造血岛内由于造血微环境的特点致使此期造血主要向红系分化。血岛中检测出CD_(34)~ 细胞,比例高于胎肝及成人骨髓,干/祖细胞于体外培养形成红系集落。结论:人胚胎期造血源于卵黄囊。  相似文献   

11.
Tissue engineering may offer patients new options when replacement or repair of an organ is needed. However, most tissues will require a microvascular network to supply oxygen and nutrients. One strategy for creating a microvascular network would be promotion of vasculogenesis in situ by seeding vascular progenitor cells within the biopolymeric construct. To pursue this strategy, we isolated CD34(+)/CD133(+) endothelial progenitor cells (EPC) from human umbilical cord blood and expanded the cells ex vivo as EPC-derived endothelial cells (EC). The EPC lost expression of the stem cell marker CD133 but continued to express the endothelial markers KDR/VEGF-R2, VE-cadherin, CD31, von Willebrand factor, and E-selectin. The cells were also shown to mediate calcium-dependent adhesion of HL-60 cells, a human promyelocytic leukemia cell line, providing evidence for a proinflammatory endothelial phenotype. The EPC-derived EC maintained this endothelial phenotype when expanded in roller bottles and subsequently seeded on polyglycolic acid-poly-l-lactic acid (PGA-PLLA) scaffolds, but microvessel formation was not observed. In contrast, EPC-derived EC seeded with human smooth muscle cells formed capillary-like structures throughout the scaffold (76.5 +/- 35 microvessels/mm(2)). These results indicate that 1) EPC-derived EC can be expanded in vitro and seeded on biodegradable scaffolds with preservation of endothelial phenotype and 2) EPC-derived EC seeded with human smooth muscle cells form microvessels on porous PGA-PLLA scaffolds. These properties indicate that EPC may be well suited for creating microvascular networks within tissue-engineered constructs.  相似文献   

12.
The platelet glycoprotein IIb (alpha(IIb); CD41) constitutes the alpha subunit of a highly expressed platelet surface integrin protein. We demonstrate that CD41 serves as the earliest marker of primitive erythroid progenitor cells in the embryonic day 7 (E7.0) yolk sac and high-level expression identifies essentially all E8.25 yolk sac definitive hematopoietic progenitors. Some definitive hematopoietic progenitor cells in the fetal liver and bone marrow also express CD41. Hematopoietic stem cell competitive repopulating ability is present in CD41(dim) and CD41(lo/-) cells isolated from bone marrow and fetal liver cells, however, activity is enriched in the CD41(lo/-) cells. CD41(bright) yolk sac definitive progenitor cells co-express CD61 and bind fibrinogen, demonstrating receptor function. Thus, CD41 expression marks the onset of primitive and definitive hematopoiesis in the murine embryo and persists as a marker of some stem and progenitor cell populations in the fetal liver and adult marrow, suggesting novel roles for this integrin.  相似文献   

13.
摘要 目的:探讨应用全骨髓贴壁法体外分离培养SD大鼠骨髓间充质干细胞(BMSCs)的可行性,研究其生物学特性,为骨组织工程提供种子细胞。方法:取SPF级5周龄健康SD大鼠2只,脱颈处死,分离双下肢股骨、胫骨,全骨髓贴壁法分离培养、纯化BMSCs;通过倒置显微镜观察原代、传代细胞生长情况、绘制生长、贴壁率曲线,研究其生物学特性;流式细胞仪检测表面标志物、诱导成成骨等方法进行鉴定。结果:应用全骨髓贴壁法可在体外分离出活性好、纯度高的BMSCs。倒置显微镜下可见原代细胞呈梭形、多角形,传代细胞形态均一呈纤维样;P3代BMSCs经流式细胞鉴定:CD44、CD90高表达,CD31、CD45低表达;定向诱导向成骨细胞分化,可见明显矿化结节。结论:证实应用全骨髓贴壁培养法体外可成功分离BMSCs,所分离培养、纯化的细胞生物学稳定,纯度高、活性好,具有多向分化潜能,能为骨组织工程、骨质疏松症和骨折不愈合疾病的研究提供种子细胞。  相似文献   

14.
The neovascularization of tissues is accomplished by two distinct processes: de novo formation of blood vessels through the assembly of progenitor cells during early prenatal development (vasculogenesis), and expansion of a pre-existing vascular network by endothelial cell sprouting (angiogenesis), the main mechanism of blood vessel growth in postnatal life. Evidence exists that adult bone marrow (BM)-derived progenitor cells can contribute to the formation of new vessels by their incorporation into sites of active angiogenesis. Aim of this study was to investigate the in vitro self-organizing capacity of human BM mononuclear cells (BMMNC) to induce vascular morphogenesis in a three-dimensional (3D) matrix environment in the absence of pre-existing vessels. Whole BMMNC as well as the adherent and non-adherent fractions of BMMNC were embedded in fibrin gels and cultured for 3-4 weeks without additional growth factors. The expression of hematopoietic-, endothelial-, smooth muscle lineage, and stem cell markers was analyzed by immunohistochemistry and confocal laser-scanning microscopy. The culture of unselected BMMNC in 3D fibrin matrices led to the formation of cell clusters expressing the endothelial progenitor cell (EPC) markers CD133, CD34, vascular endothelial growth factor receptor (VEGFR)-2, and c-kit, with stellar shaped spreading of peripheral elongated cells forming tube-like structures with increasing complexity over time. Cluster formation was dependent on the presence of both adherent and non-adherent BMMNC without the requirement of external growth factors. Developed vascular structures expressed the endothelial markers CD34, VEGFR-2, CD31, von Willebrand Factor (vWF), and podocalyxin, showed basement-membrane-lined lumina containing CD45+ cells and were surrounded by alpha-smooth muscle actin (SMA) expressing mural cells. Our data demonstrate that adult human BM progenitor cells can induce a dynamic self organization process to create vascular structures within avascular 3D fibrin matrices suggesting a possible alternative mechanism of adult vascular development without involvement of pre-existing vascular structures.  相似文献   

15.
Umbilical cord blood (UCB) transplantation has emerged as a promising therapy, but it is challenged by scarcity of stem cells. Eltrombopag is a non-peptide, thrombopoietin (TPO) receptor agonist, which selectively activates c-Mpl in humans and chimpanzees. We investigated eltrombopag's effects on human UCB hematopoietic stem cell (HSC) and hematopoietic progenitor cell (HPC) expansion, and its effects on hematopoiesis in vivo. Eltrombopag selectively augmented the expansion of human CD45+, CD34+, and CD41+ cells in bone marrow compartment without effects on mouse bone marrow cells in the NOD/SCID mice xenotransplant model. Consequently, eltrombopag increased peripheral human platelets and white blood cells. We further examined effects in the STAT and AKT signaling pathways in serum-free cultures. Eltrombopag expanded human CD34+ CD38-, CD34+, and CD41+ cells. Both eltrombopag and recombinant human TPO (rhTPO) induced phosphorylation of STAT5 of CD34+ CD41-, CD34- CD41+, and CD34- CD41- cells. rhTPO preferentially induced pSTAT3, pAKT, and more pSTAT5 in CD34- C41+ cells, while eltrombopag had no effects on pSTAT3. In conclusion, eltrombopag enhanced expansion of HSCs/HPCs of human UCB in vivo and in vitro, and promoted multi-lineage hematopoiesis through the expansion of bone marrow HSCs/HPCs of human UCB in vivo. Eltrombopag differed somewhat from rhTPO in the signal transduction pathways by favoring earlier HSC/HPC populations.  相似文献   

16.
Megakaryocytopoiesis and thrombocytopoiesis result from the interactions between hematopoietic progenitor cells, humoral factors, and marrow stromal cells derived from mesenchymal stem cells (MSCs) or MSCs directly. MSCs are self-renewing marrow cells that provide progenitors for osteoblasts, adipocytes, chondrocytes, myocytes, and marrow stromal cells. MSCs are isolated from bone marrow aspirates and are expanded in adherent cell culture using an optimized media preparation. Culture-expanded human MSCs (hMSCs) express a variety of hematopoietic cytokines and growth factors and maintain long-term culture-initiating cells in long-term marrow culture with CD34(+) hematopoietic progenitor cells. Two lines of evidence suggest that hMSCs function in megakaryocyte development. First, hMSCs express messenger RNA for thrombopoietin, a primary regulator for megakaryocytopoiesis and thrombocytopoiesis. Second, adherent hMSC colonies in primary culture are often associated with hematopoietic cell clusters containing CD41(+) megakaryocytes. The physical association between hMSCs and megakaryocytes in marrow was confirmed by experiments in which hMSCs were copurified by immunoselection using an anti-CD41 antibody. To determine whether hMSCs can support megakaryocyte and platelet formation in vitro, we established a coculture system of hMSCs and CD34(+) cells in serum-free media without exogenous cytokines. These cocultures produced clusters of hematopoietic cells atop adherent MSCs. After 7 days, CD41(+) megakaryocyte clusters and pro-platelet networks were observed with pro-platelets increasing in the next 2 weeks. CD41(+) platelets were found in culture medium and expressed CD62P after thrombin treatment. These results suggest that MSCs residing within the megakaryocytic microenvironment in bone marrow provide key signals to stimulate megakaryocyte and platelet production from CD34(+) hematopoietic cells.  相似文献   

17.
目的:探究Periostin(骨膜蛋白)表达上调对雌性去势大鼠骨髓间充质干细胞(BMSCs)成骨分化、细胞增殖与凋亡特性的作用。方法:通过去势手术建立雌性大鼠骨质疏松模型,待建模成功后分离培养并鉴定BMSCs,利用含有增强型绿色荧光蛋白(EGFP)和大鼠Periostin基因的重组慢病毒转染P3代BMSCs,成骨诱导后鉴定其成骨分化能力改变,流式细胞仪检测其细胞周期以及细胞凋亡率的变化。结果:成功建立骨质疏松模型;荧光显微镜下观察到绿色荧光提示慢病毒载体实现转染并表达目的蛋白;慢病毒转染组BMSCs成骨诱导后ALP及茜素红染色较去势组BMSCs染色加深;慢病毒转染组BMSCs的S期细胞比例为(17.07±0.56)%,显著高于去势组BMSCs的S期细胞比例(8.42±0.02)%,差异具有统计学意义(P0.05);慢病毒转染组BMSCs的细胞凋亡率为(7.3±0.1)%,显著低于去势组BMSCs的凋亡率(12.05±0.55)%,其差异具有统计学意义(P0.05)。结论:Periostin表达上调可提高去势骨髓间充质干细胞的成骨分化及细胞增殖能力,并对其凋亡有抑制作用。  相似文献   

18.
兔骨髓间充质干细胞的分离、培养与鉴定   总被引:2,自引:0,他引:2  
目的:寻求家兔骨髓间充质干细胞(Bone Mesenchymal Stem cells,BMSCs)培养与分离简单易行的方法,为下一步骨髓间充质干细胞在呼吸系统疾病的应用打好基础。方法:取3个月龄家兔1只,经双侧髂前上棘抽取骨髓共5.0 ml,密度梯度离心法和贴壁筛选法相结合分离、纯化获得BMSCs,倒置差显微镜观察其形态学特性,流式细胞仪鉴定CD34、CD133表达。结果:接种细胞于24小时有少量细胞贴壁,72小时多数细胞可贴壁,贴壁细胞形态多为长梭型或多边形,原代细胞呈集落生长,12-16天可达90%融合,1%胰酶消化后传代培养,培养至第三代备用。流式细胞仪鉴定90%为骨髓间充质干细胞。结论:通过密度梯度离心法与贴壁筛选法可成功分离培养出骨髓间充质干细胞,此方法简单易行,成功率比较高。  相似文献   

19.
Bone marrow is the main site for hematopoiesis in adults. It acts as a niche for hematopoietic stem cells (HSCs) and contains non‐hematopoietic cells that contribute to stem cell dormancy, quiescence, self‐renewal, and differentiation. HSC also exist in resting spleen of several species, although their contribution to hematopoiesis under steady‐state conditions is unknown. The spleen can however undergo extramedullary hematopoiesis (EMH) triggered by physiological stress or disease. With the loss of bone marrow niches in aging and disease, the spleen as an alternative tissue site for hematopoiesis is an important consideration for future therapy, particularly during HSC transplantation. In terms of harnessing the spleen as a site for hematopoiesis, here the remarkable regenerative capacity of the spleen is considered with a view to forming additional or ectopic spleen tissue through cell engraftment. Studies in mice indicate the potential for such grafts to support the influx of hematopoietic cells leading to the development of normal spleen architecture. An important goal will be the formation of functional ectopic spleen tissue as an aid to hematopoietic recovery following clinical treatments that impact bone marrow. For example, expansion or replacement of niches could be considered where myeloablation ahead of HSC transplantation compromises treatment outcomes.  相似文献   

20.
摘要 目的:研究大鼠BMSCs(骨髓间充质干细胞)原代培养与纯度鉴定的方法。方法:无菌环境中,从SD大鼠股骨与胫骨端采集骨髓,先行酶消化,利用全骨髓细胞悬液贴壁法对提取BMSCs实施传代培养,选取生长良好的第3代细胞进行鉴定;对BMSCs实施成脂与成骨诱导分化,同时经由油红O(ORO)与茜素红(ARS)染色法对诱导分化效果加以鉴定;借助流式细胞术(FCM)对CD34、CD44与CD90这3类BMSCs表面标志物的表达展开分析。结果:BMSCs是长梭状贴壁细胞,生长状态为纤维细胞样漩涡状;在第3代BMSCs传代期间,其第1-3 d发展至生长潜伏期,呈较慢速的生长;第3-5 d发展至对数生长期,呈高速生长;待至第7 d长速增殖最大,速度停止上升进入平缓期;BMSCs成骨、成脂诱导结束后,对其诱导分化鉴定发现:细胞出现明显形态学变化,通过ORO对脂肪染色,细胞显示橘红色;待成骨诱导培养结束,通过ARS对钙盐染色,显示红色,且出现矿化结节沉积,说明BMSCs具有良好的成骨、成脂分化能力;FCM测定发现:CD34表达呈阴性(1.09 %),CD90(96.8 %)与CD44(92.4 %)皆呈阳性,与BMSCs表型相符。结论:经由全骨髓黏附培养技术有效分离BMSCs,且完成培养。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号