首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We have previously shown that liposomes coated with a neoglycolipid constructed from mannotriose and dipalmitoylphosphatidylethanolamine (Man3-DPPE) activate peritoneal macrophages to induce enhanced expression of co-stimulatory molecules and MHC class II. In this study, we investigated the signaling pathways activated by the Man3-DPPE-coated liposomes (OMLs) in a murine macrophage cell line, J774A.1. In response to OML stimulation, ERK among MAPKs was clearly and transiently phosphorylated in J774 cells. ERK phosphorylation was also induced by treatment of the cells with Man3-DPPE and Man3-BSA, but not by uncoated liposomes. In addition, rapid and transient phosphorylation of Akt and Src family kinases (SFKs) was observed in response to OMLs. OML-induced ERK phosphorylation was inhibited by specific inhibitors of PI3K and SFKs, and OML-induced Akt phosphorylation was inhibited by a inhibitor of SFKs. Therefore, OMLs may activate the PI3K/Akt pathway through phosphorylation of Src family kinases to induce ERK activation.  相似文献   

3.
Common mechanisms plants use to translate the external stimuli into cellular responses are the activation of mitogen-activated protein kinase (MAPK) cascade. These MAPK cascades are highly conserved in eukaryotes and consist of three subsequently acting protein kinases, MAP kinase kinase kinase (MAPKKK), MAP kinase kinase (MAPKK) and MAP kinase (MAPK) which are linked in various ways with upstream receptors and downstream targets. Plant MAPK cascades regulate numerous processes, including various environmental stresses, hormones, cell division and developmental processes. The number of MAPKKs in Arabidopsis and rice is almost half the number of MAPKs pointing important role of MAPKKs in integrating signals from several MAPKKKs and transducing signals to various MAPKs. The cross talks between different signal transduction pathways are concentrated at the level of MAPKK in the MAPK cascade. Here we discussed the insights into MAPKK mediated response to environmental stresses and in plant growth and development.  相似文献   

4.
The hypoxia responsive region (HRR) of the VEGF promoter plays a key role in regulating VEGF expression. We found that the cold shock domain (Y-box) repressor proteins, dbpA and dbpB/YB-1, bind distinct strands of the human VEGF HRR. We find both dbpA and dbpB are phosphorylated by ERK2 and GSK3beta in vitro, and the binding of dbpB to single-strand VEGF HRR DNA is regulated by this phosphorylation. These findings suggest the ERK/MAPK and PI3K pathways may regulate VEGF expression in part through regulating the action of these repressor proteins.  相似文献   

5.
6.
The C-Raf kinase is regulated by numerous phosphorylation steps. To quantify the most prominent phosphorylation sites of C-Raf, we performed mass spectrometry analysis of wild-type C-Raf and the constitutively active C-Raf mutant C-Raf-Y340D/Y341D. We confirmed phosphorylation of most of the sites reported in the literature with the exception that we did not detect phosphorylation of threonine 268/269 (autophosphorylation sites) and threonine 491/serine 494 (kinase activation loop). Importantly, we detected novel phosphorylation sites at the positions of serine 296 and 301. The degree of phosphorylation in these positions depends on the level of activation of C-Raf. Furthermore, we show here, using point mutant forms of C-Raf kinases with serine to alanine and serine to aspartic acid substitution, that serines 296 and 301 contribute to negative regulation of C-Raf.  相似文献   

7.
We recently reported proliferative and anti-mineralogenic effects of vanadate on fish chondrocytes and here we investigate the signalling pathways associated with these effects. Our data show that vanadate stimulates chondrocyte proliferation through the MAPK pathway, using signalling mechanisms similar to those used by IGF-1, while it inhibits chondrocyte differentiation/mineralization through a putative PI-3K/Ras/Erk signalling, a pathway shared with insulin. Our data also suggest that vanadate impairs ECM mineralization not only by interfering with regulatory pathways but also by inhibiting enzymatic activity of ALP. Finally, this work provides additional evidence for the conservation, throughout evolution, of mechanisms regulating chondrocyte proliferation and differentiation.  相似文献   

8.
The mechanism underlying protease-activated receptor (PAR)-activation and subsequent interleukin (IL)-8 production in airway epithelial cells is not yet understood. In this study we investigated the role of mitogen-activated protein kinases (MAPKs) in A549 airway epithelial cells. We studied the consequence of activation of PARs with simultaneous exposure to LPS. Thrombin, PAR-2-activating peptide and LPS, were tested alone and in combination. They induced significant synthesis of IL-8. However, only activation of PAR triggered phosphorylation of ERK1/2 and JNK. The application of the inhibitors of these two MAPKs resulted in reduction of IL-8 production. Thus, activation of PARs but not stimulation with LPS leads to ERK1/2 and JNK-mediated production of IL-8.  相似文献   

9.
Receptor tyrosine kinases of the Eph family play multiple roles in the physiological regulation of tissue homeostasis and in the pathogenesis of various diseases, including cancer. The EphA2 receptor is highly expressed in most cancer cell types, where it has disparate activities that are not well understood. It has been reported that interplay of EphA2 with oncogenic signaling pathways promotes cancer cell malignancy independently of ephrin ligand binding and receptor kinase activity. In contrast, stimulation of EphA2 signaling with ephrin-A ligands can suppress malignancy by inhibiting the Ras-MAP kinase pathway, integrin-mediated adhesion, and epithelial to mesenchymal transition. Here we show that ephrin-A1 ligand-dependent activation of EphA2 decreases the growth of PC3 prostate cancer cells and profoundly inhibits the Akt-mTORC1 pathway, which is hyperactivated due to loss of the PTEN tumor suppressor. Our results do not implicate changes in the activity of Akt upstream regulators (such as Ras family GTPases, PI3 kinase, integrins, or the Ship2 lipid phosphatase) in the observed loss of Akt T308 and S473 phosphorylation downstream of EphA2. Indeed, EphA2 can inhibit Akt phosphorylation induced by oncogenic mutations of not only PTEN but also PI3 kinase. Furthermore, it can decrease the hyperphosphorylation induced by constitutive membrane-targeting of Akt. Our data suggest a novel signaling mechanism whereby EphA2 inactivates the Akt-mTORC1 oncogenic pathway through Akt dephosphorylation mediated by a serine/threonine phosphatase. Ephrin-A1-induced Akt dephosphorylation was observed not only in PC3 prostate cancer cells but also in other cancer cell types. Thus, activation of EphA2 signaling represents a possible new avenue for anti-cancer therapies that exploit the remarkable ability of this receptor to counteract multiple oncogenic signaling pathways.  相似文献   

10.
Tfs1p and Ylr179cp are yeast proteins belonging to the PEBP family. Tfs1p, but not Ylr179cp, has been shown to interact with and inhibit Ira2p, a GTPase-activating protein of Ras. Tfs1p has been shown to be a specific inhibitor of the CPY protease and the 3D structure of the complex has been resolved. To shed light on the molecular determinants of Tfs1p involved in the Tfs1/Ira2 interaction, the 3D structure of Ylr179cp has been modelled and compared to that of Tfs1p. Tfs1p point mutants and Tfs1 hybrid proteins combining regions of Tfs1p and Ylr179cp were also designed and their function was tested. Results, interpreted from a structural point of view, show that the accessibility of the surface pocket of Tfs1p, its N-terminal region and the specific electrostatic properties of a large surface region containing these two elements, play a crucial role in this interaction.  相似文献   

11.
CK2alpha is the catalytic subunit of protein kinase CK2 and a member of the CMGC family of eukaryotic protein kinases like the cyclin-dependent kinases, the MAP kinases and glycogen-synthase kinase 3. We present here a 1.6 A resolution crystal structure of a fully active C-terminal deletion mutant of human CK2alpha liganded by two sulfate ions, and we compare this structure systematically with representative structures of related CMGC kinases. The two sulfate anions occupy binding pockets at the activation segment and provide the structural basis of the acidic consensus sequence S/T-D/E-X-D/E that governs substrate recognition by CK2. The anion binding sites are conserved among those CMGC kinases. In most cases they are neutralized by phosphorylation of a neighbouring threonine or tyrosine side-chain, which triggers conformational changes for regulatory purposes. CK2alpha, however, lacks both phosphorylation sites at the activation segment and structural plasticity. Here the anion binding sites are functionally changed from regulation to substrate recognition. These findings underline the exceptional role of CK2alpha as a constitutively active enzyme within a family of strictly controlled protein kinases.  相似文献   

12.
Rv2140c is one of many conserved Mycobacterium tuberculosis proteins for which no molecular function has been identified. We have determined a high-resolution crystal structure of the Rv2140c gene product, which reveals a dimeric complex that shares strong structural homology with the phosphatidylethanolamine-binding family of proteins. Rv2140c forms low-millimolar interactions with a selection of soluble phosphatidylethanolamine analogs, indicating that it has a role in lipid metabolism. Furthermore, the small molecule locostatin binds to the Rv2140c ligand-binding site and also inhibits the growth of the model organism Mycobacterium smegmatis.  相似文献   

13.
ERK1 and ERK2 (ERK1/2) are central to the regulation of cell division, growth and survival. They are activated by phosphorylation of the Thr- and the Tyr- residues in their Thr-Glu-Tyr activation loops. The dogma is that dually-phosphorylated ERK1/2 constitute the principal activities in intact cells. We previously showed that, in neonatal rat cardiac myocytes, endothelin-1 and phorbol 12-myristate 13-acetate (PMA) powerfully and rapidly (maximal at ~ 5 min) activate ERK1/2. Here, we show that dually-phosphorylated ERK1/2 rapidly (< 2 min) appear in the nucleus following stimulation with endothelin-1. We characterized the active ERK1/2 species in myocytes exposed to endothelin-1 or PMA using MonoQ FPLC. Unexpectedly, two peaks of ERK1 and two peaks of ERK2 activity were resolved using in vitro kinase assays. One of each of these represented the dually-phosphorylated species. The other two represented activities for ERK1 or ERK2 which were phosphorylated solely on the Thr- residue. Monophosphothreonyl ERK1/2 represented maximally ~ 30% of total ERK1/2 activity after stimulation with endothelin-1 or PMA, and their kcat values were estimated to be minimally ~ 30% of the dually-phosphorylated species. Appearance of monophosphothreonyl ERK1/2 was rapid but delayed in comparison with dually-phosphorylated ERK1/2. Of 10 agonists studied, endothelin-1 and PMA were most effective in terms of ERK1/2 activation and in stimulating the appearance of monophosphothreonyl and dually-phosphorylated ERK1/2. Thus, enzymically active monophosphothreonyl ERK1/2 are formed endogenously following activation of the ERK1/2 cascade and we suggest that monophosphothreonyl ERK1/2 arise by protein tyrosine phosphatase-mediated dephosphorylation of dually-phosphorylated ERK1/2.  相似文献   

14.
15.
16.
Our previous studies showed that the prothoracicotropic hormone (PTTH) stimulated extracellular signal-regulated kinase (ERK) phosphorylation in prothoracic glands of Bombyx mori both in vitro and in vivo. In the present study, the signaling pathway by which PTTH activates ERK phosphorylation was further investigated using PTTH, second messenger analogs, and various inhibitors. ERK phosphorylation induced by PTTH was partially reduced in Ca2+-free medium. The calmodulin antagonist, calmidazolium, partially inhibited both PTTH-stimulated ERK phosphorylation and ecdysteroidogenesis, indicating the involvement of calmodulin. When the prothoracic glands were treated with agents that directly elevate the intracellular Ca2+ concentration [either A23187, thapsigargin, or the protein kinase C (PKC) activator, phorbol 12-myristate acetate (PMA)], a great increase in ERK phosphorylation was observed. In addition, it was found that PTTH-stimulated ecdysteroidogenesis was greatly attenuated by treatment with PKC inhibitors (either calphostin C or chelerythrine C). However, PTTH-stimulated ERK phosphorylation was not attenuated by the above PKC inhibitors, indicating that PKC is not involved in PTTH-stimulated ERK phosphorylation. A potent and specific inhibitor of insulin receptor tyrosine kinase, HNMPA-(AM)3, greatly inhibited the ability of PTTH to activate ERK phosphorylation and stimulate ecdysteroidogenesis. However, genistein, another tyrosine kinase inhibitor, did not inhibit PTTH-stimulated ERK phosphorylation, although it did markedly attenuate the ability of A23187 to activate ERK phosphorylation. From these results, it is suggested that PTTH-stimulated ERK phosphorylation is only partially Ca2+- and calmodulin-dependent and that HNMPA-(AM)3-sensitive receptor tyrosine kinase is involved in activation of ERK phosphorylation by PTTH.  相似文献   

17.
18.
Mitogen-activated protein kinase (MAPK) cascades are universal signal transduction modules that play essential roles in plant growth, development and stress response. MAPK kinases (MAPKKs), which link MAPKs and MAPKK kinases (MAPKKKs), are integral in mediating various stress responses in plants. However, to date few data about the roles of poplar MAPKKs in stress signal transduction are available. In this study, we performed a systemic analysis of poplar MAPKK gene family expression profiles in response to several abiotic stresses and stress-associated hormones. Furthermore, Populus trichocarpa MAPKK4 (PtMKK4) was chosen for functional characterization. Transgenic analysis showed that overexpression of the PtMKK4 gene remarkably enhanced drought stress tolerance in the transgenic poplar plants. The PtMKK4-overexpressing plants also exhibited much lower levels of H2O2 and higher antioxidant enzyme activity after exposure to drought stress compared to the wide type lines. Besides, some drought marker genes including PtP5CS, PtSUS3, PtLTP3 and PtDREB8 exhibited higher expression levels in the transgenic lines than in the wide type under drought conditions. This study provided valuable information for understanding the putative functions of poplar MAPKKs involved in important signaling pathways under different stress conditions.  相似文献   

19.
Prion diseases are characterised by severe neural lesions linked to the presence of an abnormal protease-resistant isoform of cellular prion protein (PrPc). The peptide PrP(106-126) is widely used as a model of neurotoxicity in prion diseases. Here, we examine in detail the intracellular signalling cascades induced by PrP(106-126) in cortical neurons and the participation of PrPc. We show that PrP(106-126) induces the activation of subsets of intracellular kinases (e.g., ERK1/2), early growth response 1 synthesis and induces caspase-3 activity, all of which are mediated by nicotinamide adenine dinucleotide phosphate hydrogen-oxidase activity and oxidative stress. However, cells lacking PrPc are similarly affected after peptide exposure, and this questions the involvement of PrPc in these effects.  相似文献   

20.
The ΔF508 mutation in nucleotide-binding domain 1 (NBD1) of the cystic fibrosis transmembrane conductance regulator (CFTR) is the predominant cause of cystic fibrosis. Previous biophysical studies on human F508 and ΔF508 domains showed only local structural changes restricted to residues 509-511 and only minor differences in folding rate and stability. These results were remarkable because ΔF508 was widely assumed to perturb domain folding based on the fact that it prevents trafficking of CFTR out of the endoplasmic reticulum. However, the previously reported crystal structures did not come from matched F508 and ΔF508 constructs, and the ΔF508 structure contained additional mutations that were required to obtain sufficient protein solubility. In this article, we present additional biophysical studies of NBD1 designed to address these ambiguities. Mass spectral measurements of backbone amide 1H/2H exchange rates in matched F508 and ΔF508 constructs reveal that ΔF508 increases backbone dynamics at residues 509-511 and the adjacent protein segments but not elsewhere in NBD1. These measurements also confirm a high level of flexibility in the protein segments exhibiting variable conformations in the crystal structures. We additionally present crystal structures of a broader set of human NBD1 constructs, including one harboring the native F508 residue and others harboring the ΔF508 mutation in the presence of fewer and different solubilizing mutations. The only consistent conformational difference is observed at residues 509-511. The side chain of residue V510 in this loop is mostly buried in all non-ΔF508 structures but completely solvent exposed in all ΔF508 structures. These results reinforce the importance of the perturbation ΔF508 causes in the surface topography of NBD1 in a region likely to mediate contact with the transmembrane domains of CFTR. However, they also suggest that increased exposure of the 509-511 loop and increased dynamics in its vicinity could promote aggregation in vitro and aberrant intermolecular interactions that impede trafficking in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号