首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Isoforms of the polarity protein par6 have distinct functions   总被引:4,自引:0,他引:4  
PAR-6 is essential for asymmetric division of the Caenorhabditis elegans zygote. It is also critical for cell polarization in many other contexts throughout the Metazoa. The Par6 protein contains a PDZ domain and a partial CRIB (Cdc42/Rac interactive binding) domain, which mediate interactions with other polarity proteins such as Par3, Cdc42, Pals1, and Lgl. A family of mammalian Par6 isoforms (Par6A-D) has been described, but the significance of this diversification has been unclear. Here we demonstrate that Par6 family members localize differently when expressed in Madin-Darby canine kidney epithelial cells and have distinct effects on tight junction (TJ) assembly. Par6B localizes to the cytosol and inhibits TJ formation, but Par6A co-localizes predominantly with the TJ marker ZO-1 at cell-cell contacts and does not affect junctions. These functional differences correlate with differences in Pals1 binding; Par6B interacts strongly with Pals1, whereas Par6A binds weakly to Pals1 even in the presence of active Cdc42. Pals1 has a low affinity for the isolated CRIB-PDZ domain of Par6A, but analysis of chimeras showed that in addition Pals1 binding is blocked by an inhibitory property of the N terminus of Par6A. Unexpectedly, the localization of Par6A to cell-cell contacts is Cdc42-independent.  相似文献   

2.
Epithelial cells display apical-basal polarity, and the apical surface is segregated from the basolateral membranes by a barrier called the tight junction (TJ). TJs are constructed from transmembrane proteins that form cell-cell contacts-claudins, occludin, and junctional adhesion molecule (JAM)-plus peripheral proteins such as ZO-1. The Par proteins (partitioning-defective) Par3 and Par6, plus atypical protein kinase C (aPKC) function in the formation or maintenance of TJs and more generally in metazoan cell polarity establishment. Par6 contains a PDZ domain and a partial CRIB (Cdc42/Rac interactive binding) domain and binds the small GTPase Cdc42. Here, we show that Par6 inhibits TJ assembly in MDCK II epithelial cells after their disruption by Ca(2+) depletion but does not inhibit adherens junction (AJ) formation. Transepithelial resistance and paracellular diffusion assays confirmed that assembly of functional TJs is delayed by Par6 overexpression. Strikingly, the isolated, N-terminal fragment of PKCzeta, which binds Par6, also inhibits TJ assembly. Activated Cdc42 can disrupt TJs, but neither a dominant-negative Cdc42 mutant nor the CRIB domain of gammaPAK (p21-activated kinase), which inhibits Cdc42 function, observably inhibit TJ formation. These results suggest that Cdc42 and Par6 negatively regulate TJ assembly in mammalian epithelial cells.  相似文献   

3.
The GTPases Rac and Cdc42 play a pivotal role in the establishment of cell polarity by stimulating biogenesis of tight junctions (TJs). In this study, we show that the Rac-specific guanine nucleotide exchange factor Tiam1 (T-lymphoma invasion and metastasis) controls the cell polarity of epidermal keratinocytes. Similar to wild-type (WT) keratinocytes, Tiam1-deficient cells establish primordial E-cadherin-based adhesions, but subsequent junction maturation and membrane sealing are severely impaired. Tiam1 and V12Rac1 can rescue the TJ maturation defect in Tiam1-deficient cells, indicating that this defect is the result of impaired Tiam1-Rac signaling. Tiam1 interacts with Par3 and aPKCzeta, which are two components of the conserved Par3-Par6-aPKC polarity complex, and triggers biogenesis of the TJ through the activation of Rac and aPKCzeta, which is independent of Cdc42. Rac is activated upon the formation of primordial adhesions (PAs) in WT but not in Tiam1-deficient cells. Our data indicate that Tiam1-mediated activation of Rac in PAs controls TJ biogenesis and polarity in epithelial cells by association with and activation of the Par3-Par6-aPKC polarity complex.  相似文献   

4.
We have previously proposed that IQGAP1, an effector of Rac1 and Cdc42, negatively regulates cadherin-mediated cell-cell adhesion by interacting with beta-catenin and by causing the dissociation of alpha-catenin from cadherin-beta-catenin-alpha-catenin complexes and that activated Rac1 and Cdc42 positively regulate cadherin-mediated cell-cell adhesion by inhibiting the interaction of IQGAP1 with beta-catenin. However, it remains to be clarified in which physiological processes the Rac1-Cdc42-IQGAP1 system is involved. We here examined whether the Rac1-IQGAP1 system is involved in the cell-cell dissociation of Madin-Darby canine kidney II cells during 12-O-tetradecanoylphorbol-13-acetate (TPA)- or hepatocyte growth factor (HGF)-induced cell scattering. By using enhanced green fluorescent protein (EGFP)-tagged alpha-catenin, we found that EGFP-alpha-catenin decreased prior to cell-cell dissociation during cell scattering. We also found that the Rac1-GTP level decreased after stimulation with TPA and that the Rac1-IQGAP1 complexes decreased, while the IQGAP1-beta-catenin complexes increased during action of TPA. Constitutively active Rac1 and IQGAP1 carboxyl terminus, a putative dominant-negative mutant of IQGAP1, inhibited the disappearance of alpha-catenin from sites of cell-cell contact induced by TPA. Taken together, these results indicate that alpha-catenin is delocalized from cell-cell contact sites prior to cell-cell dissociation induced by TPA or HGF and suggest that the Rac1-IQGAP1 system is involved in cell-cell dissociation through alpha-catenin relocalization.  相似文献   

5.
PAR (partitioning-defective) proteins, which were first identified in the nematode Caenorhabditis elegans, are essential for asymmetric cell division and polarized growth, whereas Cdc42 mediates establishment of cell polarity. Here we describe an unexpected link between these two systems. We have identified a family of mammalian Par6 proteins that are similar to the C. elegans PDZ-domain protein PAR-6. Par6 forms a complex with Cdc42-GTP, with a human homologue of the multi-PDZ protein PAR-3 and with the regulatory domains of atypical protein kinase C (PKC) proteins. This assembly is implicated in the formation of normal tight junctions at epithelial cell-cell contacts. Thus, Par6 is a key adaptor that links Cdc42 and atypical PKCs to Par3.  相似文献   

6.
Cdc42 is a small GTPase that is required for cell polarity establishment in eukaryotes as diverse as budding yeast and mammals. Par6 is also implicated in metazoan cell polarity establishment and asymmetric cell divisions. Cdc42.GTP interacts with proteins that contain a conserved sequence called a CRIB motif. Uniquely, Par6 possesses a semi-CRIB motif that is not sufficient for binding to Cdc42. An adjacent PDZ domain is also necessary and is required for biological effects of Par6. Here we report the crystal structure of a complex between Cdc42 and the Par6 GTPase-binding domain. The semi-CRIB motif forms a beta-strand that inserts between the four strands of Cdc42 and the three strands of the PDZ domain to form a continuous eight-stranded sheet. Cdc42 induces a conformational change in Par6, detectable by fluorescence resonance energy transfer spectroscopy. Nuclear magnetic resonance studies indicate that the semi-CRIB motif of Par6 is at least partially structured by the PDZ domain. The structure highlights a novel role for a PDZ domain as a structural scaffold.  相似文献   

7.
During animal development, a complex of Par3, Par6 and atypical protein kinase C (aPKC) plays a central role in cell polarisation. The small G protein Cdc42 also functions in cell polarity and has been shown in some cases to act by regulating the Par3 complex. However, it is not yet known whether Cdc42 and the Par3 complex widely function together in development or whether they have independent functions. For example, many studies have implicated Cdc42 in cell migrations, but the Par3 complex has only been little studied, with conflicting results. Here we examine the requirements for CDC-42 and the PAR-3/PAR-6/PKC-3 complex in a range of different developmental events. We found similar requirements in all tissues examined, including polarised growth of vulval precursors and seam cells, migrations of neuroblasts and axons, and the development of the somatic gonad. We also propose a novel role for primordial germ cells in mediating coalescence of the Caenorhabditis elegans gonad. These results indicate that CDC-42 and the PAR-3/PAR-6/aPKC complex function together in diverse cell types.  相似文献   

8.
A polarity complex of PAR-3, PAR-6 and atypical protein kinase C (aPKC) functions in various cell-polarization events, including neuron specification. The small GTPase Cdc42 binds to PAR-6 and regulates cell polarity. However, little is known about the downstream signals of the Cdc42-PAR protein complex. Here, we found that PAR-3 directly interacted with STEF/Tiam1, which are Rac-specific guanine nucleotide-exchange factors, and that STEF formed a complex with PAR-3-aPKC-PAR-6-Cdc42-GTP. Cdc42 induces lamellipodia in a Rac-dependent manner in N1E-115 neuroblastoma cells. Disruption of Cdc42-PAR-6 or PAR-3-STEF binding inhibited Cdc42-induced lamellipodia but not filopodia. The isolated STEF-binding PAR-3 fragment was sufficient to induce lamellipodia independently of Cdc42 and PAR-6. PAR-3 is required for Cdc42-induced Rac activation, but is not essential for lamellipodia formation itself. In cultured hippocampal neurons, STEF accumulated at the tip of the growing axon and colocalized with PAR-3. The spatio-temporal activation and signalling of Cdc42-PAR-6-PAR-3-STEF/Tiam1-Rac seem to be involved in neurite growth and axon specification. We propose that the PAR-6-PAR-3 complex mediates Cdc42-induced Rac activation by means of STEF/Tiam1, and that this process seems to be required for the establishment of neuronal polarity.  相似文献   

9.
Recent data have revealed new mechanisms that underlie endothelial cell (EC) lumen formation during vascular morphogenic events in development, wound repair, and other disease states. It is apparent that EC interactions with extracellular matrices (ECMs) establish signaling cascades downstream of integrin ligation leading to activation of the Rho GTPases, Cdc42 and Rac1, which are required for lumen formation. In large part, this process is driven by intracellular vacuole formation and coalescence, which rapidly leads to the creation of fluid-filled matrix-free spaces that are then interconnected via EC-EC interactions to create multicellular tube structures. EC vacuoles markedly accumulate in a polarized fashion directly adjacent to the centrosome in a region that strongly accumulates Cdc42 protein as indicated by green fluorescent protein (GFP)-Cdc42 during the lumen formation process. Downstream of Cdc42-mediated signaling, key molecules that have been identified to be required for EC lumen formation include Pak2, Pak4, Par3, Par6, and the protein kinase C (PKC) isoforms zeta and epsilon. Together, these molecules coordinately regulate the critical EC lumen formation process in three-dimensional (3D) collagen matrices. These events also require cell surface proteolysis mediated through membrane type 1 matrix metalloproteinase (MT1-MMP), which is necessary to create vascular guidance tunnels within the 3D matrix environment. These tunnels represent physical spaces within the ECM that are necessary to regulate vascular morphogenic events, including the establishment of interconnected vascular tube networks as well as the recruitment of pericytes to initiate vascular tube maturation (via basement membrane matrix assembly) and stabilization. Current research continues to analyze how specific molecules integrate signaling information in concert to catalyze EC lumen formation, pericyte recruitment, and stabilization processes to control vascular morphogenesis in 3D extracellular matrices.  相似文献   

10.
Hepatocyte growth factor (HGF) is a paracrine cytokine that influences epithelial morphogenesis by modulating cell–cell adhesion and cell polarity. We have examined the role of HGF in the tight junction (TJ) formation. We followed the assembly and disassembly at the plasma membrane of the major component of the TJ, zonula occludens-1 (ZO-1) protein, after HGF treatment. We applied HGF to the basolateral compartment of MDCK cell monolayers grown on transwell filters to analyze the effect of HGF on polarized cells. Confocal laser scanning microscopy showed that HGF caused a marked reduction of ZO-1 at the lateral sites and a concomitant increase in the cytoplasm. We used the calcium switch assay to analyze the effect of HGF in early TJ development. In MDCK cells cultured in low calcium levels, ZO-1 is distributed intracellularly. The presence of HGF greatly retarded the movement of ZO-1 from the cytosol to the membrane after restoration of normal (1.8 mM) calcium levels for 1.5 and 3 hr. The presence of HGF during the calcium switch caused increased tyrosine phosphorylation of β-catenin. The incubation of MDCK cells with vanadate, a potent tyrosine-specific phosphatase inhibitor, also affected the ZO-1 localization at the plasma membrane during the calcium switch. This was concomitant with increased tyrosine phosphorylation of β-catenin. These results suggest that HGF affects the TJ assembly, and this phenomenon may be important in loosening of intercellular junctions and migration of epithelial cells during HGF-induced morphogenesis. J. Cell. Physiol. 176:465–471, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

11.
Cdc42 plays an evolutionarily conserved role in promoting cell polarity and is indispensable during epithelial morphogenesis. To further investigate the role of Cdc42, we have used a three-dimensional matrigel model, in which single Caco-2 cells develop to form polarized cysts. Using this system, we previously reported that Cdc42 controls mitotic spindle orientation during cell division to correctly position the apical surface in a growing epithelial structure. In the present study, we have investigated the specific downstream effectors through which Cdc42 controls this process. Here, we report that Par6B and its binding partner, atypical protein kinase C (aPKC), are required to regulate Caco-2 morphogenesis. Depletion or inhibition of Par6B or aPKC phenocopies the loss of Cdc42, inducing misorientation of the mitotic spindle, mispositioning of the nascent apical surface, and ultimately, the formation of aberrant cysts with multiple lumens. Mechanistically, Par6B and aPKC function interdependently in this context. Par6B localizes to the apical surface of Caco-2 cysts and is required to recruit aPKC to this compartment. Conversely, aPKC protects Par6B from proteasomal degradation, in a kinase-independent manner. In addition, we report that depletion or inhibition of aPKC induces robust apoptotic cell death in Caco-2 cells, significantly reducing both cyst size and number. Cell survival and apical positioning depend upon different thresholds of aPKC expression, suggesting that they are controlled by distinct downstream pathways. We conclude that Par6B and aPKC control mitotic spindle orientation in polarized epithelia and, furthermore, that aPKC coordinately regulates multiple processes to promote morphogenesis.  相似文献   

12.
Cell polarity is essential for cell division, cell differentiation, and most differentiated cell functions including cell migration. The small G protein Cdc42 controls cell polarity in a wide variety of cellular contexts. Although restricted localization of active Cdc42 seems to be important for its distinct functions, mechanisms responsible for the concentration of active Cdc42 at precise cortical sites are not fully understood. In this study, we show that during directed cell migration, Cdc42 accumulation at the cell leading edge relies on membrane traffic. Cdc42 and its exchange factor βPIX localize to intracytosplasmic vesicles. Inhibition of Arf6-dependent membrane trafficking alters the dynamics of Cdc42-positive vesicles and abolishes the polarized recruitment of Cdc42 and βPIX to the leading edge. Furthermore, we show that Arf6-dependent membrane dynamics is also required for polarized recruitment of Rac and the Par6-aPKC polarity complex and for cell polarization. Our results demonstrate influence of membrane dynamics on the localization and activation of Cdc42 and consequently on directed cell migration.  相似文献   

13.
Juvenile Batten disease (juvenile neuronal ceroid lipofuscinosis, JNCL) is a devastating neurodegenerative disease caused by mutations in CLN3, a protein of undefined function. Cell lines derived from patients or mice with CLN3 deficiency have impairments in actin-regulated processes such as endocytosis, autophagy, vesicular trafficking, and cell migration. Here we demonstrate the small GTPase Cdc42 is misregulated in the absence of CLN3, and thus may be a common link to multiple cellular defects. We discover that active Cdc42 (Cdc42-GTP) is elevated in endothelial cells from CLN3 deficient mouse brain, and correlates with enhanced PAK-1 phosphorylation, LIMK membrane recruitment, and altered actin-driven events. We also demonstrate dramatically reduced plasma membrane recruitment of the Cdc42 GTPase activating protein, ARHGAP21. In line with this, GTP-loaded ARF1, an effector of ARHGAP21 recruitment, is depressed. Together these data implicate misregulated ARF1-Cdc42 signaling as a central defect in JNCL cells, which in-turn impairs various cell functions. Furthermore our findings support concerted action of ARF1, ARHGAP21, and Cdc42 to regulate fluid phase endocytosis in mammalian cells. The ARF1-Cdc42 pathway presents a promising new avenue for JNCL therapeutic development.  相似文献   

14.
In epithelia, cells are arranged in an orderly pattern with a defined orientation and shape. Cadherin containing apical adherens junctions (AJs) and the associated actomyosin cytoskeleton likely contribute to epithelial cell shape by providing apical tension. The Rho guanosine triphosphatases are well known regulators of cell junction formation, maintenance, and function. Specifically, Rho promotes actomyosin activity and cell contractility; however, what controls and localizes this Rho activity as epithelia remodel is unresolved. Using mosaic clonal analysis in the Drosophila melanogaster pupal eye, we find that Cdc42 is critical for limiting apical cell tension by antagonizing Rho activity at AJs. Cdc42 localizes Par6–atypical protein kinase C (aPKC) to AJs, where this complex limits Rho1 activity and thus actomyosin contractility, independent of its effects on Wiskott-Aldrich syndrome protein and p21-activated kinase. Thus, in addition to its role in the establishment and maintenance of apical–basal polarity in forming epithelia, the Cdc42–Par6–aPKC polarity complex is required to limit Rho activity at AJs and thus modulate apical tension so as to shape the final epithelium.  相似文献   

15.
Tight junctions help establish polarity in mammalian epithelia by forming a physical barrier that separates apical and basolateral membranes. Two evolutionarily conserved multi-protein complexes, Crumbs (Crb)-PALS1 (Stardust)-PATJ (DiscsLost) and Cdc42-Par6-Par3-atypical protein kinase C (aPKC), have been implicated in the assembly of tight junctions and in polarization of Drosophila melanogaster epithelia. Here we identify a biochemical and functional link between these two complexes that is mediated by Par6 and PALS1 (proteins associated with Lin7). The interaction between Par6 and PALS1 is direct, requires the amino terminus of PALS1 and the PDZ domain of Par6, and is regulated by Cdc42-GTP. The transmembrane protein Crb can recruit wild-type Par6, but not Par6 with a mutated PDZ domain, to the cell surface. Expression of dominant-negative PALS1-associated tight junction protein (PATJ) in MDCK cells results in mis-localization of PALS1, members of the Par3-Par6-aPKC complex and the tight junction marker, ZO-1. Similarly, overexpression of Par6 in MDCK cells inhibits localization of PALS1 to the tight junction. Our data highlight a previously unrecognized link between protein complexes that are essential for epithelial polarity and formation of tight junctions.  相似文献   

16.
Anaphase initiation requires ubiquitin-dependent proteolysis of crucial substrates through activation of the ubiquitin ligase Anaphase Promoting Complex/Cyclosome (APC/C) in association with its coactivator Cdc20. To prevent chromosome segregation errors, effector proteins of a safeguard mechanism called spindle assembly checkpoint (SAC), Mad2 and BubR1, bind Cdc20 and restrain APC/CCdc20 activation until spindle assembly. Coordinated chromosome segregation also requires timely SAC inactivation. Spindle assembly appears necessary to silence SAC, however, how resolution of the SAC effector branch is achieved is still largely unknown. We show here that the complex between Mad2 and Cdc20 peaked at prometaphase in mammalian cells, while its dissociation proceeded along with spindle assembly and required proteolysis. Proteolysis did not appear required for assembly of metaphase spindles but rather needed for Mad2-Cdc20 complex resolution by promoting reversal of phosphorylations that maintain the complex. Indeed, in the absence of proteolysis, Mad2-Cdc20 complex dissociation was reversed by treatment with cyclin-dependent kinase or Aurora kinase inhibitors. Mad2-Cdc20 disassembly was, however, resistant to the potent PP1 and PP2A phosphatases inhibitor okadaic acid. We propose that SAC silencing in mammalian cells requires proteolysis-dependent activation of okadaic acid-resistant phosphatase(s) to reverse phosphorylations that lock the Mad2-Cdc20 complex.  相似文献   

17.
Cdc42 has been implicated in numerous biochemical pathways during epithelial morphogenesis, including the control of spindle orientation during mitosis, the establishment of apical-basal polarity, the formation of apical cell–cell junctions, and polarized secretion. To investigate the signaling pathways through which Cdc42 mediates these diverse effects, we have screened an siRNA library corresponding to the 36 known Cdc42 target proteins, in a human bronchial epithelial cell line. Two targets, PAK4 and Par6B, were identified as necessary for the formation of apical junctions. PAK4 is recruited to nascent cell–cell contacts in a Cdc42-dependent manner, where it is required for the maturation of primordial junctions into apical junctions. PAK4 kinase activity is essential for junction maturation, but overexpression of an activated PAK4 mutant disrupts this process. Par6B, together with its binding partner aPKC, is necessary both for junction maturation and for the retention of PAK4 at sites of cell–cell contact. This study demonstrates that controlled regulation of PAK4 is required for apical junction formation in lung epithelial cells and highlights potential cross-talk between two Cdc42 targets, PAK4 and Par6B.  相似文献   

18.
While a significant amount is known about the biochemical signaling pathways of the Rho family GTPase Cdc42, a better understanding of how these signaling networks are coordinated in cells is required. In particular, the predominant subcellular sites where GTP-bound Cdc42 binds to its effectors, such as p21-activated kinase 1 (PAK1) and N-WASP, a homolog of the Wiskott-Aldritch syndrome protein, are still undetermined. Recent fluorescence resonance energy transfer (FRET) imaging experiments using activity biosensors show inconsistencies between the site of local activity of PAK1 or N-WASP and the formation of specific membrane protrusion structures in the cell periphery. The data presented here demonstrate the localization of interactions by using multiphoton time-domain fluorescence lifetime imaging microscopy (FLIM). Our data here establish that activated Cdc42 interacts with PAK1 in a nucleotide-dependent manner in the cell periphery, leading to Thr-423 phosphorylation of PAK1, particularly along the lengths of cell protrusion structures. In contrast, the majority of GFP-N-WASP undergoing FRET with Cy3-Cdc42 is localized within a transferrin receptor- and Rab11-positive endosomal compartment in breast carcinoma cells. These data reveal for the first time distinct spatial association patterns between Cdc42 and its key effector proteins controlling cytoskeletal remodeling.  相似文献   

19.
The small GTPase Cdc42 has been implicated as an important regulator of cell migration. However, whether Cdc42 plays similar role in all cancer cells irrespective of metastatic potential remains poorly defined. Here, we show by using three different breast cancer cell lines with different metastatic potential, the role of Cdc42 in cell migration/invasion and its relationship with a number of downstream signaling pathways controlling cell migration. Small interfering RNA (siRNA)-mediated knockdown of Cdc42 in two highly metastatic breast cancer cell lines (MDA-MB-231 and C3L5) resulted in enhancement, whereas the same in moderately metastatic (Hs578T) cell line resulted in inhibition of intrinsic cellular migration/invasion. Furthermore, Cdc42 silencing in MDA-MB-231 and C3L5 but not Hs578T cells was shown to be accompanied by increased RhoA activity and phosphorylation of protein kinase C (PKC)-δ, extracellular signal regulated kinase1/2 (Erk1/2), and protein kinase A (PKA). Pharmacological inhibition of PKCδ, MEK-Erk1/2, or PKA was shown to inhibit migration of both control and Cdc42-silenced MDA-MB-231 cells. Furthermore, introduction of constitutively active Cdc42 was shown to decrease migration/invasion of MDA-MB-231 and C3L5 but increase migration/invasion of Hs578T cells. This decreased migration/invasion of MDA-MB-231 and C3L5 cells was also shown to be accompanied by the decrease in the phosphorylations of PKCδ, Erk1/2, and PKA. These results suggested that endogenous Cdc42 could exert a negative regulatory influence on intrinsic migration/invasion and some potentially relevant changes in phosphorylation of PKCδ, Erk1/2, and PKA of some aggressive breast cancer cells.  相似文献   

20.
MAP kinase cascade-dependent responses were investigated during scattering of HepG2 human hepatoma cells stimulated by HGF or phorbol ester. Inhibition of phosphatidylinositol 3-kinase with LY294002 prevented completely the dissociation of cells. Inhibition of MAP kinase kinase (MEK) with PD98059 prevented the development of characteristic morphological changes associated with cell migration. EGF, which failed to induce cell scattering, caused a short-term increase in the phosphorylation of Erk1/Erk2 MAP kinases. On the contrary, HGF or phorbol ester stimulated the phosphorylation of MAP kinases for a long time. Experiments performed with LY294002 indicated that phosphatidylinositol 3-kinase contributed to the HGF-stimulated phosphorylation of Erk1/Erk2. This finding was confirmed by the demonstration that the MAP kinase cascade-dependent expression of a high-Mr (>300 kDa) protein pair appearing in the course of cell scattering was inhibited by LY294002 in HGF-induced cells but was not inhibited in phorbol ester-treated cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号