首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The trace element zinc is essential for the immune system, and zinc deficiency affects multiple aspects of innate and adaptive immunity. There are remarkable parallels in the immunological changes during aging and zinc deficiency, including a reduction in the activity of the thymus and thymic hormones, a shift of the T helper cell balance toward T helper type 2 cells, decreased response to vaccination, and impaired functions of innate immune cells. Many studies confirm a decline of zinc levels with age. Most of these studies do not classify the majority of elderly as zinc deficient, but even marginal zinc deprivation can affect immune function. Consequently, oral zinc supplementation demonstrates the potential to improve immunity and efficiently downregulates chronic inflammatory responses in the elderly. These data indicate that a wide prevalence of marginal zinc deficiency in elderly people may contribute to immunosenescence.  相似文献   

2.
For more than 50 years, zinc is known to be an essential trace element, having a regulatory role in the immune system. Deficiency in zinc thus compromises proper immune function, like it is observed in the elderly population. Here mild zinc deficiency is a common condition, documented by a decline of serum or plasma zinc levels with age. This leads to a dysregulation mainly in the adaptive immunity that can result in an increased production of pro-inflammatory cytokines, known as a status called inflamm-aging. T cell activation as well as polarization of T helper (Th) cells into their different subpopulations (Th1, Th2, Th17, regulatory T cells (Treg)) is highly influenced by zinc homeostasis. In the elderly a shift of the Th cell balance towards Th2 response is observed, a non-specific pre-activation of T cells is displayed, as well as a decreased response to vaccination is seen. Moreover, an impaired function of innate immune cells indicate a predominance of zinc deficiency in the elderly that may contribute to immunosenescence. This review summarizes current findings about zinc deficiency and supplementation in elderly individuals.  相似文献   

3.
IntroductionSubclinical deficiency of zinc is associated with impairment of immune system function, growth, and cognitive development in children. Although plasma zinc is the best available biomarker of the risk of zinc deficiency in populations, its sensitivity for early detection of deficiency is limited. Therefore, we aimed to investigate zinc deficiency among preschool children and its relationship with whole blood gene expression of zinc transporters ZIP4 and ZnT1.Material and methodsThis cross-sectional study included 139 children aged 32–76 months enrolled in philanthropic day-care centers. We performed an anthropometric evaluation, weighed food record and dietary record for dietary assessment, blood sample collection for zinc, and whole blood gene expression analyses of ZnT1 (SLC30A1) and ZIP4 (SLC39A4).ResultsZinc deficiency was observed in 26.6 % of the children despite adequate zinc intake and a phytate:zinc molar ratio < 18. Usual zinc intake did not affect whole blood gene expression of zinc transporters, but zinc status influenced ZnT1 and ZIP4 whole blood mRNA. Children with zinc deficiency exhibited 37.1 % higher ZnT1 expression and 45.3 % lower ZIP4 expression than children with adequate zinc (p < 0.05).ConclusionChildren with plasma zinc deficiency exhibited higher expression of ZnT1 and lower expression of ZIP4 in whole blood mRNA, reinforcing the existence of strong regulation of mineral homeostasis according to the nutritional status, indicating that this analysis may be useful in the evaluation of dietary interventions.  相似文献   

4.
IntroductionZinc is an essential trace element having manifold functions within living cells. Zinc deficiency but also zinc excess impairs cell-specific functions whereas a balanced zinc level is required for an adequate cell behavior.Material and methodsThis study deals with the impact of cellular priming due to stimulation with interleukin (IL)-1, IL-2, IL-4, IL-6 or the chemokine CXCL12a and its subsequent influence on the intracellular free zinc concentration. Since cellular priming and activation is essential for proper immunological reactions, and across that highly cell-type specific, we investigated T cells, B cells, and peripheral blood mononuclear cells (PBMCs). Additionally, alterations of the intracellular zinc content was investigated by inducing zinc deficiency using the zinc chelator N,N,N',N'-tetrakis(2-pyridylmethyl)ethane-1,2-diamine (TPEN) with subsequent re-supplementation of zinc, hence generating an intracellular zinc flux. Evaluation of zinc staining with FluoZin3-AM, Zinpyr-1 and Zinquin was done by flow cytometry or by fluorescence microscopy.ResultsOur results indicate that cellular priming for different periods of time (10 minutes/one hour) causes decreased intracellular free zinc concentrations in the FluoZin3-AM staining and increased zinc concentrations stained with Zinpyr-1. Furthermore, zinc supplementation after induced zinc deficiency leads to a fast and excessive rise of the intracellular free zinc levels in most cellular compartments.ConclusionOur study emphasizes the importance of zinc homeostasis and zinc distribution during cellular priming and for certain signaling cascades especially in T and B cells. Moreover, we demonstrated that zinc re-supplementation of zinc deficient cells results in significantly elevated intracellular free zinc concentrations compared to untreated controls. Hence, this underlines the need of a balanced zinc homeostasis for proper immune cell function.  相似文献   

5.
Aging is a complex process associated with physiological changes in numerous organ systems. In particular, aging of the immune system is characterized by progressive dysregulation of immune responses, resulting in increased susceptibility to infectious diseases, impaired vaccination efficacy and systemic low-grade chronic inflammation. Increasing evidence suggest that intracellular zinc homeostasis, regulated by zinc transporter expression, is critically involved in the signaling and activation of immune cells. We hypothesize that epigenetic alterations and nutritional deficits associated with aging may lead to zinc transporter dysregulation, resulting in decreases in cellular zinc levels and enhanced inflammation with age. The goal of this study was to examine the contribution of age-related zinc deficiency and zinc transporter dysregulation on the inflammatory response in immune cells. The effects of zinc deficiency and age on the induction of inflammatory responses were determined using an in vitro cell culture system and an aged mouse model. We showed that zinc deficiency, particularly the reduction in intracellular zinc in immune cells, was associated with increased inflammation with age. Furthermore, reduced Zip 6 expression enhanced proinflammatory response, and age-specific Zip 6 dysregulation correlated with an increase in Zip 6 promoter methylation. Furthermore, restoring zinc status via dietary supplementation reduced aged-associated inflammation. Our data suggested that age-related epigenetic dysregulation in zinc transporter expression may influence cellular zinc levels and contribute to increased susceptibility to inflammation with age.  相似文献   

6.
Influence of zinc supplementation (30 and 45 mg kg–1, orally once for 5 days) during chelation of lead (0.3 mmol kg–1, chelating agent, i.p., once for 5 days) on some selected variables of the immune system was investigated in male rats. Treatment with CaNa2EDTA either alone or in combination with zinc (30 mg kg–1) produced a significant recovery in lead induced alteration in primary antibody forming cells to T-dependent antigen and the delayed-type hypersensitivity response to bovine albumin. However, biologically significant recovery was observed only with zinc at a dose of 45 mg kg1. It is assumed that zinc depletion during lead exposure and chelation treatment lead to harmful effects on cellular proliferation by inhibiting DNA synthesis and various enzymes during mitosis. The zinc supplementation fulfills this requirement during proliferation and clonal expansion of immunocompetent cells augmenting the immune system.  相似文献   

7.
ObjectivesZinc, which is found in high concentrations in the β-cells of the pancreas, is also a critical component for the endocrine functions of the pancreas. SLC30A8/ZnT8 is the carrier protein responsible for the transport of zinc from the cytoplasm to the insulin granules. The aim of this study was to investigate how dietary zinc status affects pancreatic beta cell activation and ZnT8 levels in infant male rats born to zinc-deficient mothers.MethodsThe study was performed on male pups born to mothers fed a zinc-deficient diet. A total of 40 male rats were divided into 4 equal groups. Group 1: In addition to maternal zinc deficiency, this group was fed a zinc-deficient diet. Group 2: In addition to maternal zinc deficiency, this group was fed a standard diet. Group 3: In addition to maternal zinc deficiency, this group was fed a standard diet and received additional zinc supplementation. Group 4: Control group. Pancreas ZnT8 levels were determined by ELISA method and insulin-positive cell ratios in β-cells by immunohistochemistry.ResultsThe highest pancreatic ZnT8 levels and anti-insulin positive cell ratios in the current study were obtained in Group 3 and Group 4. In our study, the lowest pancreatic ZnT8 levels were obtained in Group 1 and Group 2, and the lowest pancreatic anti-insulin positive cell ratios were obtained in Group 1.ConclusionThe results of the present study; in rats fed a zinc-deficient diet after maternal zinc deficiency has been established shows that ZnT8 levels and anti-insulin positive cell ratios in pancreatic tissue, which is significantly suppressed, reach control values with intraperitoneal zinc supplementation.  相似文献   

8.
Lothar Rink  Philip Gabriel 《Biometals》2001,14(3-4):367-383
Zinc is an essential trace element for the immune system, but also very important in other organ systems. Every highly proliferating cell system is dependent on sufficient availability of zinc. During the last decades the influence of zinc on various cell systems have been investigated. Multiple effects of exogenously added zinc have been described in in vitro culture systems and in in vivo systems. However, most of these effects are so far poorly understood, and the dosages used in the in vitro systems are not comparable and sometimes unphysiologically high. Especially in the immune system a number of effects were described and over the last ten years we have come to understand some molecular mechanisms of zinc in this cell system. A zinc deficiency is accompanied by an immunodeficiency, resulting in an increased number of infections. However, the immune function is delicately regulated by zinc, since both increased and decreased zinc levels result in a disturbed immune function. Therefore, zinc supplementation must be accurately supervised. In this review, we discuss the activity of extracellular zinc in four sections. 1. The effect of zinc on different in vitro cell systems, including keratinocytes, osteocytes and leukocytes, and the concentrations of zinc needed for a specific cell response. 2. The modulation of the innate immune system in vitro and in vivo. 3. The role of zinc in the B cell response and antibody production. 4. Effects of zinc on the development and function of T cells.  相似文献   

9.

Background

Zinc deficiency due to poor nutrition or genetic mutations in zinc transporters is a global health problem and approaches to providing effective dietary zinc supplementation while avoiding potential toxic side effects are needed.

Methods/Principal Findings

Conditional knockout of the intestinal zinc transporter Zip4 (Slc39a4) in mice creates a model of the lethal human genetic disease acrodermatitis enteropathica (AE). This knockout leads to acute zinc deficiency resulting in rapid weight loss, disrupted intestine integrity and eventually lethality, and therefore provides a model system in which to examine novel approaches to zinc supplementation. We examined the efficacy of dietary clioquinol (CQ), a well characterized zinc chelator/ionophore, in rescuing the Zip4 intest KO phenotype. By 8 days after initiation of the knockout neither dietary CQ nor zinc supplementation in the drinking water was found to be effective at improving this phenotype. In contrast, dietary CQ in conjunction with zinc supplementation was highly effective. Dietary CQ with zinc supplementation rapidly restored intestine stem cell division and differentiation of secretory and the absorptive cells. These changes were accompanied by rapid growth and dramatically increased longevity in the majority of mice, as well as the apparent restoration of the homeostasis of several essential metals in the liver.

Conclusions

These studies suggest that oral CQ (or other 8-hydroxyquinolines) coupled with zinc supplementation could provide a facile approach toward treating zinc deficiency in humans by stimulating stem cell proliferation and differentiation of intestinal epithelial cells.  相似文献   

10.
Background and objectiveA deficit in zinc has been related to a higher probability of developing cardiovascular diseases (CVDs). The anti-inflammatory and anti-oxidative capabilities of zinc may have a wide range of therapeutic impacts on CVDs. We conducted a comprehensive systematic review and meta-analysis of the possible impacts that zinc supplementation may have on the risk factors associated with CVDs.MethodsTo identify eligible randomized clinical trials (RCTs) evaluating the effects of zinc supplementation on CVDs risk factors, electronic databases including PubMed, Web of Science, and Scopus were systematically searched up to January 2023. The heterogeneity of trials was checked using the I2 statistic. According to the heterogeneity tests, random effects models were estimated and pooled data were defined as the weighted mean difference (WMD) with a 95% confidence interval (CI).ResultsOf 23165 initial records, 75 studies that met inclusion criteria were analyzed in this meta-analysis. The pooled findings indicated the significant lowering effects of zinc supplementation on triglycerides (TG), total cholesterol (TC), fasting blood glucose (FBG), Hemoglobin A1C (HbA1C), Homeostatic Model Assessment for Insulin Resistance (HOMA-IR), C-reactive protein (CRP), interleukin-6 (IL-6), Tumor necrosis factor-α (TNF-α), nitric oxide (NO), malondialdehyde (MDA), total antioxidant capacity (TAC), and glutathione (GSH), with no noticeable effects on low-density lipoprotein (LDL), high-density lipoprotein (HDL), insulin, systolic blood pressure (SBP), diastolic blood pressure (DBP), aspartate transaminase (AST), and Alanine aminotransferase (ALT).ConclusionOverall, zinc supplementation may boost recognized coronary risk factors that contribute to the development of CVDs. Future research should be conducted to bolster our results.  相似文献   

11.
Zinc and immunity   总被引:3,自引:0,他引:3  
Nutritional deficiency of zinc is widespread throughout the developing countries and a conditioned deficiency of zinc is known to occur in many diseased states. Zinc is known to play an important role in the immune system and zinc deficient subjects may experience increased susceptibility to a variety of pathogens. We have studied the effects of a mild deficiency of zinc on T cells in an experimental model of human zinc deficiency. We showed that T cell functions were affected adversely even when the deficiency of zinc was mild in humans. Characteristically during zinc deficiency, the serum thymulin activity (a thymic hormone) was decreased which was restored following zinc supplementation. Our studies also showed that zinc deficiency caused an imbalance between TH1 and TH2 functions. The production of IFN-g, IL-2, TNF-a (products of TH1 cells) were decreased, whereas the production of IL-4, IL-6 and IL-10 (products of TH2) were not affected during zinc deficiency. T cell subpopulation studies revealed that the CD4+ CD45RA+ to CD4+ CD45RO+ ratio was decreased as a result of zinc deficiency, suggesting that zinc may be required for the regeneration of new CD4+ T cells. We further documented that zinc deficiency decreased NK cell lytic activity and caused a decrease in the percentage of CD8+ CD73+ T cells which are known to be predominantly precursors of cytotoxic T cells. In a suitable cell culture model our studies revealed that the gene expression of a DNA synthesizing enzyme TK was affected adversely which resulted in delayed cell cycle and decreased cell growth. The above immunological consequences of zinc deficiency may be responsible for decreased cell mediated immune functions in zinc deficient subjects.  相似文献   

12.
BackgroundZinc, one of the most important essential trace elements in the human body, regulates a wide range of cellular functions of immune cells, such as proliferation, differentiation and survival. Zinc deficiency affects both the innate and adaptive immune system. Zinc supplementation was discussed as possible therapy for infectious diseases and T cell-mediated autoimmune diseases. However, the influence of commercial zinc preparations on proliferation and cytokine production of resting and antigen-stimulated peripheral blood mononuclear cells (PBMC) has not yet been completely investigated.MethodsHere, we examined whether zinc aspartate (Unizink®), an approved drug to treat zinc deficiency in patients, induces proliferation, cytokine production, and induction of apoptosis/caspase 3/7 activity of resting PBMC under high-density cell culture condition. In addition, we performed antigen-specific proliferation experiments, where PBMCs of healthy donors vaccinated against Influenza A (H1N1) and/or SARS-CoV-2 were stimulated with Influenza A (H1N1) peptides or SARS-CoV-2 peptides as well as the Mixed Lymphocyte Culture (MLC) in the presence of increasing concentrations of zinc aspartate.ResultsWe observed a dose-dependent enhancement of proliferation and induction of cytokine production (IFN-γ, IL-5, GM-CSF and CXCL10) of resting PBMC in presence of zinc aspartate. The number of cells with active caspase 3/7 and, consecutively, the amount of cells undergoing apoptosis steadily decreased in presence of zinc aspartate. Moreover, zinc aspartate was capable of stimulating antigen-specific PBMC proliferation using MLC or influenza A (H1N1) and SARS-CoV-2 peptides in both a dose-dependent and a donor-specific manner. In the absence of zinc aspartate, we clearly could discriminate two groups of responders: low and high responders to antigenic stimulation. The addition of increasing concentration of zinc aspartate significantly stimulated the proliferation of PBMC from low responders, but not from high responders.ConclusionTaken together, our results suggest that zinc aspartate induces the proliferation of resting and antigen-stimulated PBMCs under high-density cell culture conditions. Thus, zinc might represent a supportive treatment in patients suffering from infectious diseases.  相似文献   

13.
In zinc deficiency, the function of leukocytes is impaired. However, the results of studies on the zinc concentration of blood cells in zinc deficiency are conflicting, probably in part because of technical and analytical problems. The aim of this study was to investigate, under standard conditions, the uptake of65Zn-labeled zinc by blood cells, taken from zinc-deficient rats and from rats in which an inflammation is induced. In both conditions, the serum zinc concentration is reduced. In clinical practice, this makes it difficult to determine whether the decrease in serum zinc is the result of a real or an apparent zinc deficiency. In stress, like an inflammatory disease, the decrease of zinc reflects an apparent zinc deficiency because of redistribution of serum zinc into the liver and because of decrease in serum albumin concentration. Over 70% of the serum zinc is bound to albumin. Blood cells from zinc-deficient and control rats were isolated using a discontinuous Percoll gradient and incubated under nearly physiological conditions in a65Zn-containing medium. A significant increase in the in vitro uptake of65Zn-labeled zinc by the blood cells of zinc-deficient rats was seen: erythrocytes 1.3, mononuclear cells 2.0, and polymorphonuclear cells 2.6 times the control values. During inflammation, no change in65Zn-labeled zinc uptake by erythrocytes and mononuclear cells was demonstrated after 2 d, although the serum zinc and albumin concentrations were decreased, but a small but significant increase in zinc uptake by polymorphonuclear cells was observed. This study of65Zn uptake in vitro under standard conditions may prove of value for distinguishing in patients real zinc deficiency from apparent zinc deficiency owing to, e.g., stress, although additional experiments should be performed. A part of this study has been presented at the Meeting of The American Gastroenterological Association on May 12–18, 1990, San Antonio, TX, and has been published in abstract inGastroenterology 98 suppl., A423.  相似文献   

14.
Zinc is an important micronutrient for humans, and zinc deficiency among schoolchildren is deleterious to growth and development, immune competence, and cognitive function. However, the effect of zinc supplementation on cognitive function remains poorly understood. The purpose of our study was to evaluate the effect of oral zinc supplementation (5 mg Zn/day for 3 months) on the Full Scale Intelligence Quotient (FSIQ), Verbal Intelligence Quotient (VIQ), and Performance Intelligence Quotient (PIQ) using a Wechsler Intelligence Scale for Children (WISC-III). We studied 36 schoolchildren aged 6 to 9 years (7.8?±?1.1) using a nonprobability sampling method. The baseline serum zinc concentrations increased significantly after zinc supplementation (p?<?0.0001), with no difference between sexes. Tests were administered under basal conditions before and after zinc supplementation, and there was no difference in FSIQ according to gender or age. The results demonstrated that zinc improved the VIQ only in the Information Subtest (p?=?0.009), although the supplementation effects were more significant in relation to the PIQ, as these scores improved for the Picture Completion, Picture Arrangement, Block Design, and Object Assembly Subtests (p?=?0.0001, for all subtests). In conclusion, zinc supplementation improved specific cognitive abilities, thereby positively influencing the academic performance of schoolchildren, even those without marginal zinc deficiency.  相似文献   

15.
AimsThe aim of this study was to investigate the effect of iron or/and zinc supplementation and termination of this treatment on the antioxidant defence of the male reproductive system and sperm viability in rats.MethodsThe study consisted of 3 stages: I) 4-week adaptation to the diets (C-control or D-iron deficient); II) 4-week iron and/or zinc supplementation (10-times more than in the C diet of iron: CSFe, DSFe; zinc: CSZn, DSZn; or iron and zinc: CSFeZn, DSFeZn; and III) 2-week post-supplementation period (the same diets as during stage I). Parameters of antioxidant status (total antioxidant capacity and SOD, GPx, and CAT activiy), oxidative damage (lipid and protein peroxidation), and sperm viability were measured.ResultsSimultaneous iron and zinc supplementation compared to iron supplementation (CSFeZn vs CSFe) increased SOD activity in the testes and decreased the level of malondialdehyde in the epididymis after stage II, and increased the percentage of live sperm after stage III. After discontinuation of the iron and zinc supplementation and a return to the control diet, the following was observed a decrease of SOD activity in the testes and GPx activity in the epididymis, and a increase malondialdehyde concentration in prostates. After stage III, in DSFeZn vs DSFe rats, an increase of SOD and CAT activity in the epididymis was found.ConclusionZinc supplementation simultaneous with iron may protect the male reproductive system against oxidative damage induced by high doses of iron and may have a beneficial effect on sperm viability. The effect of this supplementation was observed even two weeks after the termination of the intervention.  相似文献   

16.
The effects of histidine on the zinc status are controversial. In mice, we studied the effects of a moderate histidine supplement on the regulation of the zinc status using subcutaneously administered65Zn. In animals fed a zinc-adequate diet, histidine supplement did not cause changes in the zinc status (zinc concentrations,65Zn tissue distribution, and tissue specific activities). Neither effects on the regulation of the zinc status (65Zn retention, excretion and biological half-life) could be demonstrated. However, the combination of a low zinc diet and moderate histidine supplementation caused changes in the regulation of the zinc status (lower65Zn retention, associated with increased fecal excretion and a shorter biological half-life), aggravating the dietary deficiency (lower bone zinc, a shift in the65Zn tissue distribution). Reviewing the literature, it seems that only a molar histidine/zinc ration of 2,000 or higher will cause zinc deficiency.  相似文献   

17.
Normal zinc levels are essential for the development and maintenance of immune functions; Zn deficiency is detrimental to the embryo and offspring of experimental animals, especially concerning immune development. It is known that Zn supplementation improves immune responses. To further explore the relation between Zn administration and the metal in vitro effects, we studied zinc (500 mg/l) supplementation impact on lymphocytes and macrophages and zinc in vitro effects, in BALB/c mice supplemented from gestation to lactation. Results show a significant increase in proliferation (assessed by 3H incorporation) in lymphocytes exposed to Zn (0.1 mM) in vitro, in 3-wk-old mice; this effect is annulled when the supplementation period is lengthened, indicating saturation of the mechanisms involved in zinc induced stimulation. Macrophages functional capacity assessed by erythrophagocytosis was also improved by Zn supplementation and furthermore by the in vitro exposure to the metal, in mice 3 wk old, this was also depressed by Zn accumulation due to the supplementation period extension (9 weeks). Results show an improvement in the immune parameters analysed due to zinc supplementation and to zinc in vitro exposure. Results also suggest the accumulation of zinc as a result of prolonged supplementation periods, suppresses the cells response to zinc in vitro.  相似文献   

18.
ProjectThe aim of this study was to determine the effects of zinc supplementation on serum zinc and leptin levels as well as on anthropometric status and some biochemical parameters in hemodialysis (HD) patients.ProcedureIn this randomized, double-blind, and placebo-controlled trial, sixty HD patients were randomly divided into groups to receive a daily supplement of 100 mg elemental Zn (supplemented group) or placebo (control group) for 60 days. Anthropometric measurements were taken using standard calibrated instruments. Serum zinc and leptin levels were determined by atomic absorption and ELISA method respectively before and after intervention.ResultsZinc supplementation resulted in significant increase in the mean serum zinc level in the experimental group while changes observed in the placebo group were not significant. The mean serum leptin in women part of the experimental group was decreased significantly after supplementation. After adjusting for age, BMI, body fat (%), serum zinc and dietary Zn intake, a negative and significant association was observed between serum zinc and leptin levels in all subjects (β = −0.33, P = 0.03) as a result of Zn supplementation.ConclusionsMore studies are needed to clarify the mechanisms by which serum leptin level is influenced as a result of zinc supplementation in HD patients.  相似文献   

19.
BackgroundZinc deficiency is associated with adverse effects on maternal health and pregnancy outcomes. These consequences have been reported over the years from zinc supplementation trials and observational studies whereby outcomes of maternal, foetal and infant health were measured. Owing to the importance of zinc in the functions of epigenetic enzymes, pre-clinical studies have shown that its deficiency could disrupt biological activities that involve epigenetic mechanisms in offspring. Thus, this review assessed the link between epigenetics and the effects of maternal zinc deficiency on the offspring’s health in animal studies.MethodsResearch articles were retrieved without date restriction from PubMed, Web of Science, ScienceDirect, and Google Scholar databases, as well as reference lists of relevant articles. The search terms used were “zinc deficiency”, “maternal zinc deficiency”, “epigenetics”, and “offspring.” Six studies met the eligibility criteria and were reviewed.ResultsAll the eligible studies reported maternal zinc deficiency and observed changes in epigenetic markers on the progeny during prenatal and postnatal stages of development. The main epigenetic markers reported were global and gene specific methylation and/ or acetylation. The epigenetic changes led to mortality, disruption in development, and risk of later life diseases.ConclusionMaternal zinc deficiency is associated with epigenetic modifications in offspring, which induce pathologies and increase the risk of later life diseases. More research and insight into the epigenetic mechanisms could spring up new approaches to combat the associated disease conditions.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号