首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ability to visualise specific genes and proteins within bacterial cells is revolutionising knowledge of chromosome segregation. The essential elements appear to be the driving force behind DNA replication, which occurs at fixed cellular positions, the condensation of newly replicated DNA by a chromosome condensation machine located at the cell 1/4 and 3/4 positions, and molecular machines that act at midcell to allow chromosome separation after replication and movement of the sister chromosomes away from the division septum prior to cell division. This review attempts to provide a perspective on current views of the bacterial chromosome segregation mechanism and how it relates to other cellular processes.  相似文献   

2.
In most bacteria two vital processes of the cell cycle: DNA replication and chromosome segregation overlap temporally. The action of replication machinery in a fixed location in the cell leads to the duplication of oriC regions, their rapid separation to the opposite halves of the cell and the duplicated chromosomes gradually moving to the same locations prior to cell division. Numerous proteins are implicated in co-replicational DNA segregation and they will be characterized in this review. The proteins SeqA, SMC/MukB, MinCDE, MreB/Mbl, RacA, FtsK/SpoIIIE playing different roles in bacterial cells are also involved in chromosome segregation. The chromosomally encoded ParAB homologs of active partitioning proteins of low-copy number plasmids are also players, not always indispensable, in the segregation of bacterial chromosomes.  相似文献   

3.
The bacterial chromosome is a highly compacted nucleoproteic structure. Its apparent disordered morphology is difficult to conciliate with newly discovered mechanisms governing the propagation of genetic information between mother and daughter cells. Recent experiments in bacterial genetics, biochemistry and cytology from a number of laboratories are beginning to unravel how at each cell division, DNA replication and segregation proteins interact spatially with specific DNA motifs to orchestrate replication and movement of replication forks and chromosomes. We propose here a method to confirm and perhaps extend these experiments by in silico protein sequence comparisons and phylogeny. This analysis showed a parallel evolution between the histone-like protein HU and key protein factors involved in DNA replication and chromosome segregation.  相似文献   

4.
Homologous recombination events between circular chromosomes, occurring during or after replication, can generate dimers that need to be converted to monomers prior to their segregation at cell division. In Escherichia coli, chromosome dimers are converted to monomers by two paralogous site-specific tyrosine recombinases of the Xer family (XerC/D). The Xer recombinases act at a specific dif site located in the replication termination region, assisted by the cell division protein FtsK. This chromosome resolution system has been predicted in most Bacteria and further characterized for some species. Archaea have circular chromosomes and an active homologous recombination system and should therefore resolve chromosome dimers. Most archaea harbour a single homologue of bacterial XerC/D proteins (XerA), but not of FtsK. Therefore, the role of XerA in chromosome resolution was unclear. Here, we have identified dif-like sites in archaeal genomes by using a combination of modeling and comparative genomics approaches. These sites are systematically located in replication termination regions. We validated our in silico prediction by showing that the XerA protein of Pyrococcus abyssi specifically recombines plasmids containing the predicted dif site in vitro. In contrast to the bacterial system, XerA can recombine dif sites in the absence of protein partners. Whereas Archaea and Bacteria use a completely different set of proteins for chromosome replication, our data strongly suggest that XerA is most likely used for chromosome resolution in Archaea.  相似文献   

5.
Eukaryotic chromosomes contain a locus, the centromere, at which force is applied to separate replicated chromosomes. A centromere analogue is also found in some bacterial plasmids and chromosomes, although not yet identified in the well-studied Escherichia coli chromosome. We aimed to identify centromere-like sequences in E. coli with the premise that such sequences would be the first to migrate towards the cell poles, away from the cell centre where DNA replication is believed to occur. We have labelled different loci on the chromosome by integrating arrays of binding sites for LacI-EYFP and phage lambdacI-ECFP and supplying these fusion proteins in trans. Comparison of such pairs of loci suggests the presence of a centromere-like site close to the origin of replication. Polar migration of the site was dependent on migS, a locus recently implicated in chromosome migration, thus providing strong support for migS being the E. coli centromere.  相似文献   

6.
The bacterial nucleoid: a highly organized and dynamic structure   总被引:1,自引:0,他引:1  
Recent advances in bacterial cell biology have revealed unanticipated structural and functional complexity, reminiscent of eukaryotic cells. Particular progress has been made in understanding the structure, replication, and segregation of the bacterial chromosome. It emerged that multiple mechanisms cooperate to establish a dynamic assembly of supercoiled domains, which are stacked in consecutive order to adopt a defined higher-level organization. The position of genetic loci on the chromosome is thereby linearly correlated with their position in the cell. SMC complexes and histone-like proteins continuously remodel the nucleoid to reconcile chromatin compaction with DNA replication and gene regulation. Moreover, active transport processes ensure the efficient segregation of sister chromosomes and the faithful restoration of nucleoid organization while DNA replication and condensation are in progress.  相似文献   

7.
Raymond Portalier  A. Worcel 《Cell》1976,8(2):245-255
Gentle lysis of E. coli cells in the presence of a DNA counterion (either 1.0 M NaCl or 5 mM spermidine) permits the isolation of the folded intact bacterial chromosome associated with membrane fragments. Most of the proteins in these chromosomes are also found in purified membrane preparations, and they can be identified as belonging to either the inner or the outer bacterial membrane.Ultraviolet irradiation of the membrane-attached chromosomes causes the formation of a stable complex between two inner membrane proteins (molecular weight 80,000 and 56,000 daltons) and 5-bromodeoxyuridine (BrdU)-substituted DNA. The photochemical attachment of BrdU-substituted DNA to specific membrane proteins suggests that these proteins may be bound to the DNA in vivo. Such DNA-membrane-binding proteins may have a role in the attachment of the folded chromosome to the bacterial envelope.  相似文献   

8.
The duplication of DNA and faithful segregation of newly replicated chromosomes at cell division is frequently dependent on recombinational processes. The rebuilding of broken or stalled replication forks is universally dependent on homologous recombination proteins. In bacteria with circular chromosomes, crossing over by homologous recombination can generate dimeric chromosomes, which cannot be segregated to daughter cells unless they are converted to monomers before cell division by the conserved Xer site-specific recombination system. Dimer resolution also requires FtsK, a division septum-located protein, which coordinates chromosome segregation with cell division, and uses the energy of ATP hydrolysis to activate the dimer resolution reaction. FtsK can also translocate DNA, facilitate synapsis of sister chromosomes and minimize entanglement and catenation of newly replicated sister chromosomes. The visualization of the replication/recombination-associated proteins, RecQ and RarA, and specific genes within living Escherichia coli cells, reveals further aspects of the processes that link replication with recombination, chromosome segregation and cell division, and provides new insight into how these may be coordinated.  相似文献   

9.
Graumann PL 《Biochimie》2001,83(1):53-59
SMC proteins are a ubiquitous protein family, present in almost all organisms so far analysed except for a few bacteria. They function in chromosome condensation, segregation, cohesion, and DNA recombination repair in eukaryotes, and can introduce positive writhe into DNA in vitro. SMC proteins and the structurally homologous MukB protein are unusual ATPases that form antiparallel dimers, with long coiled coil segments separating globular ends capable of binding DNA. Recently, SMC proteins have been shown to be essential for chromosome condensation, segregation and cell cycle progression in bacteria. Identification of a suppressor mutation for MukB in topoisomerase I in Escherichia coli suggests that SMC proteins are involved in negative DNA supercoiling in vivo, and by this means organize and compact chromosomes. A model is discussed in which bacterial SMC proteins act after an initial separation of replicated chromosome origins into the future daughter cell, separating sister chromatids by condensing replicated DNA strands within both cell halves. This would be analogous to a pulling of DNA strands into opposite cell halves by a condensation mechanism exerted at two specialised subregions in the cell.  相似文献   

10.
To assemble mitotic spindles, cells nucleate microtubules from a variety of sources including chromosomes and centrosomes. We know little about how the regulation of microtubule nucleation contributes to spindle bipolarity and spindle size. The Aurora A kinase activator TPX2 is required for microtubule nucleation from chromosomes as well as for spindle bipolarity. We use bacterial artificial chromosome-based recombineering to introduce point mutants that block the interaction between TPX2 and Aurora A into human cells. TPX2 mutants have very short spindles but, surprisingly, are still bipolar and segregate chromosomes. Examination of microtubule nucleation during spindle assembly shows that microtubules fail to nucleate from chromosomes. Thus, chromosome nucleation is not essential for bipolarity during human cell mitosis when centrosomes are present. Rather, chromosome nucleation is involved in spindle pole separation and setting spindle length. A second Aurora A-independent function of TPX2 is required to bipolarize spindles.  相似文献   

11.
Chromosome segregration and cell division requires the regulated assembly of the mitotic spindle apparatus. This mitotic spindle is composed of condensed chromosomes attached to a dynamic array of microtubules. The microtubule array is nucleated by centrosomes and organized by associated structural and motor proteins. Mechanical linkages between sister chromatids and microtubules are critical for spindle assembly and chromosome segregation. Defects in either chromosome or centrosome segregation can lead to aneuploidy and are correlated with cancer progression. In this review, we discuss current models of how centrosomes and chromosomes organize the spindle for their equal distribution to each daughter cell.  相似文献   

12.
Eukaryote cells dramatically reorganize their long chromosomal DNAs to facilitate their physical segregation during mitosis. The internal organization of folded mitotic chromosomes remains a basic mystery of cell biology; its understanding would likely shed light on how chromosomes are separated from one another as well as into chromosome structure between cell divisions. We report biophysical experiments on single mitotic chromosomes from human cells, where we combine micromanipulation, nano-Newton-scale force measurement and biochemical treatments to study chromosome connectivity and topology. Results are in accord with previous experiments on amphibian chromosomes and support the 'chromatin network' model of mitotic chromosome structure. Prospects for studies of chromosome-organizing proteins using siRNA expression knockdowns, as well as for differential studies of chromosomes with and without mutations associated with genetic diseases, are also discussed.  相似文献   

13.
ATP-dependent aggregation of single-stranded DNA by a bacterial SMC homodimer.   总被引:15,自引:1,他引:14  
M Hirano  T Hirano 《The EMBO journal》1998,17(23):7139-7148
SMC (structural maintenance of chromosomes) proteins are putative ATPases that are highly conserved among Bacteria, Archaea and Eucarya. Eukaryotic SMC proteins are implicated in a diverse range of chromosome dynamics including chromosome condensation, dosage compensation and recombinational repair. In eukaryotes, two different SMC proteins form a heterodimer, which in turn acts as the core component of a large protein complex. Despite recent progress, no ATP-dependent activity has been found in individual SMC subunits. We report here the first biochemical characterization of a bacterial SMC protein from Bacillus subtilis. Unlike eukaryotic versions, the B.subtilis SMC protein (BsSMC) is a simple homodimer with no associated subunits. It binds preferentially to single-stranded DNA (ssDNA) and has a ssDNA-stimulated ATPase activity. In the presence of ATP, BsSMC forms large nucleoprotein aggregates in a ssDNA-specific manner. Proteolytic cleavage of BsSMC is changed upon binding to ATP and ssDNA. The energy-dependent aggregation of ssDNA might represent a primitive type of chromosome condensation that occurs during segregation of bacterial chromosomes.  相似文献   

14.
Mitotic chromosomes are essential structures for the faithful transmission of duplicated genomic DNA into two daughter cells during cell division. Although more than 100 years have passed since chromosomes were first observed, it remains unclear how a long string of genomic DNA is packaged into compact mitotic chromosomes. Although the classical view is that human chromosomes consist of radial 30 nm chromatin loops that are somehow tethered centrally by scaffold proteins, called condensins, cryo-electron microscopy observation of frozen hydrated native chromosomes reveals a homogeneous, grainy texture and neither higher-order nor periodic structures including 30 nm chromatin fibres were observed. As a compromise to fill this huge gap, we propose a model in which the radial chromatin loop structures in the classic view are folded irregularly toward the chromosome centre with the increase in intracellular cations during mitosis. Consequently, compact native chromosomes are made up primarily of irregular chromatin networks cross-linked by self-assembled condensins forming the chromosome scaffold.  相似文献   

15.
16.
Eukaryotic chromosomes possess multiple origins of replication, whereas bacterial chromosomes are replicated from a single origin. The archaeon Pyrococcus abyssi also appears to have a single origin, suggesting a common rule for prokaryotes. However, in the current work, we describe the identification of two active origins of replication in the single chromosome of the hyperthermophilic archaeon Sulfolobus solfataricus. Further, we identify conserved sequence motifs within the origins that are recognized by a family of three Sulfolobus proteins that are homologous to the eukaryotic initiator proteins Orc1 and Cdc6. We demonstrate that the two origins are recognized by distinct subsets of these Orc1/Cdc6 homologs. These data, in conjunction with an analysis of the levels of the three Orc1/Cdc6 proteins in different growth phases and cell cycle stages, lead us to propose a model for the roles for these proteins in modulating origin activity.  相似文献   

17.
One of the most remarkable and yet poorly understood events during the cell cycle is how dispersed chromatin fragments are transformed into chromosomes every time cells undergo mitosis. It has been postulated that mitotic chromosomes might contain an axial scaffold that is involved in condensation but its molecules and structure have remained elusive. Recent data suggests that the condensin complex might indeed be an essential part of the scaffold that provides a platform for other proteins to localize and promote different aspects of chromosome condensation.  相似文献   

18.
One of the most remarkable and yet poorly understood events during the cell cycle is how dispersed chromatin fragments are transformed into chromosomes every time cells undergo mitosis. It has been postulated that mitotic chromosomes might contain an axial scaffold that is involved in condensation but its molecules and structure have remained elusive. Recent data suggests that the condensin complex might indeed be an essential part of the scaffold that provides a platform for other proteins to localize and promote different aspects of chromosome condensation.  相似文献   

19.
Archaea and the cell cycle   总被引:9,自引:4,他引:5  
Sequence similarity data suggest that archaeal chromosome replication is eukaryotic in character. Putative nucleoid-processing proteins display similarities to both eukaryotic and bacterial counterparts, whereas cell division may occur through a predominantly bacterial mechanism. Insights into the organization of the archaeal cell cycle are therefore of interest, not only for understanding archaeal biology, but also for investigating how components from the other two domains interact and work in concert within the same cell; in addition, archaea may have the potential to provide insights into eukaryotic initiation of chromosome replication.  相似文献   

20.
Bacteria ensure the fidelity of genetic inheritance by the coordinated control of chromosome segregation and cell division. Here, we review the molecules and mechanisms that govern the correct subcellular positioning and rapid separation of newly replicated chromosomes and plasmids towards the cell poles and, significantly, the emergence of mitotic-like machineries capable of segregating plasmid DNA. We further describe surprising similarities between proteins involved in DNA partitioning (ParA/ParB) and control of cell division (MinD/MinE), suggesting a mechanism for intracellular positioning common to the two processes. Finally, we discuss the role that the bacterial cytoskeleton plays in DNA partitioning and the missing link between prokaryotes and eukaryotes that is bacterial mechano-chemical motor proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号