首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Green fluorescent protein (GFP) is a useful reporter to follow the in vivo behaviour of proteins, but the wild-type gfp gene does not function in many organisms, including many plants and filamentous fungi. We show that codon-modified forms of gfp , produced for use in plants, function effectively in Aspergillus nidulans both as gene expression reporters and as vital reporters for protein location. To demonstrate the use of these modified gfp s as reporter genes we have used fluorescence to follow ethanol-induced GFP expression from the alcA promoter. Translational fusions with the modified gfp were used to follow protein location in living cells; plant ER-retention signals targeted GFP to the endoplasmic reticulum, whereas fusion to the GAL4 DNA-binding domain targeted it to the nucleus. Nuclear-targeted GFP allowed real-time observation of nuclear movement and division. These modified gfp genes should provide useful markers to follow gene expression, organelle behaviour and protein trafficking in real time.  相似文献   

2.
3.
We made a series of improved Gateway binary vectors (pGWBs) for plant transformation. Fifteen different reporters and tags, sGFP, GUS, LUC, EYFP, ECFP, G3GFP, mRFP, 6xHis, FLAG, 3xHA, 4xMyc, 10xMyc, GST, T7, and TAP, were employed. Some vectors carry the 2x35S-Omega promoter for higher-level expression. The kanamycin- and hygromycin-resistant markers are independently available for each of the 43 types of vectors, thus an additional transformation of once-transformed plants can be carried out easily. Their small size and high-copy number in Escherichia coli make possible easier handling at plasmid preparation and sequencing. Improved pGWBs should be a powerful tool for transgenic research in plants.  相似文献   

4.
Abstract: The detailed analysis of the expression pattern of a plant gene can give important clues about its function in plant development, cell differentiation and defence reactions. Gene expression studies have been greatly facilitated by the employment of proteins like β-glucuronidase (GUS), green fluorescent protein (GFP), and firefly luciferase (LUC) as reporters of gene activity. The application of reporter genes in plants, specifically in the field of gene expression studies, has expanded over the years from a mere tool to quantify (trans) gene expression in tissue samples, to real-time imaging of in planta promoter dynamics. To correctly interpret the activity that is given by each reporter, it is important to have a good understanding of the intrinsic properties of the different reporter proteins. Here we discuss those properties of GUS, LUC and GFP that are of interest in gene expression studies.  相似文献   

5.
6.
A novel triple fusion reporter system for use in gene trap mutagenesis   总被引:1,自引:0,他引:1  
Gene trapping is an insertional mutagenesis strategy that allows for simultaneous gene identification and mutation in embryonic stem (ES) cells. Gene trap vectors both disrupt coding sequence and report on the genes' endogenous expression. The most popular gene trap reporter to date combines beta-galactosidase expression with neomycin resistance in a fusion protein known as beta-geo. Here we describe a refinement to this reporter that also incorporates real time fluorescent readouts. We have constructed a series of gene trap vectors incorporating a novel tripartite fusion protein consisting of EGFP, beta-galactosidase, and the neomycin or hygromycin resistance activities. Our results indicate that these triple fusions can function efficiently as reporters of endogenous trapped gene expression and subcellular localization. We show that these fusion proteins constitute versatile gene trap reporters whose activity can be detected in real time by fluorescence and in fixed tissue with a sensitive enzymatic activity.  相似文献   

7.
8.
The visualization of green fluorescent protein (GFP) fusions with microtubule or actin filament (F-actin) binding proteins has provided new insights into the function of the cytoskeleton during plant development. For studies on actin, GFP fusions to talin have been the most generally used reporters. Although GFP-Talin has allowed in vivo F-actin imaging in a variety of plant cells, its utility in monitoring F-actin in stably transformed plants is limited particularly in developing roots where interesting actin dependent cell processes are occurring. In this study, we created a variety of GFP fusions to Arabidopsis Fimbrin 1 (AtFim1) to explore their utility for in vivo F-actin imaging in root cells and to better understand the actin binding properties of AtFim1 in living plant cells. Translational fusions of GFP to full-length AtFim1 or to some truncated variants of AtFim1 showed filamentous labeling in transient expression assays. One truncated fimbrin-GFP fusion was capable of labeling distinct filaments in stably transformed Arabidopsis roots. The filaments decorated by this construct were highly dynamic in growing root hairs and elongating root cells and were sensitive to actin disrupting drugs. Therefore, the fimbrin-GFP reporters we describe in this study provide additional tools for studying the actin cytoskeleton during root cell development. Moreover, the localization of AtFim1-GFP offers insights into the regulation of actin organization in developing roots by this class of actin cross-linking proteins.  相似文献   

9.
10.
The aim of this work is to increase the efficiency of the biodegradation of polychlorinated biphenyls (PCBs) by the introduction of bacterial genes into the plant genome. For this purpose, we selected the bphC gene encoding 2,3-dihydroxybiphenyl-1,2-dioxygenase from Pseudomonas testosteroni B-356 to be cloned into tobacco plants. The dihydroxybiphenyldioxygenase enzyme is the third enzyme in the biphenyl degradation pathway, and its unique function is the cleavage of biphenyl. Three different constructs were designed and prepared in E. coli: the bphC gene being fused with the beta-glucuronidase (GUS) gene, with the luciferase (LUC) gene, and with histidine tail in three separate plant cloning vectors. The GUS and LUC genes were chosen because they can be used as markers for the easy detection of transgenic plants, while histidine tail better enables the isolation of protein expressed in plant tissue. The prepared vectors were then introduced into cells of Agrobacterium tumefaciens. The transient expression of the prepared genes was first studied in cells of Nicotiana tabacum. Once this ability had been established, model tobacco plants were transformed by agrobacterial infection with the bphC/GUS, bphC/LUC, and bphC/His genes. The transformed regenerants were selected on media using a selective antibiotic, and the presence of transgenes and mRNA was determined by PCR and RT-PCR. The expression of the fused proteins BphC/GUS and BphC/LUC was confirmed histochemically by analysis of the expression of their detection markers. Western blot analysis was performed to detect the presence of the BphC/His protein immunochemically using a mouse anti-His antibody. Growth and viability of transgenic plants in the presence of PCBs was compared with control plants.  相似文献   

11.
Plant functional proteomics research is increasingly dependent upon vectors that facilitate high-throughput gene cloning and expression of fusions to autofluorescent proteins. Here, we describe the pSITE family of plasmids, a new set of Agrobacterium binary vectors, suitable for the stable integration or transient expression of various autofluorescent protein fusions in plant cells. The pSITE vectors permit single-step Gateway-mediated recombination cloning for construction of binary vectors that can be used directly in transient expression studies or for the selection of transgenic plants on media containing kanamycin. These vectors can be used to express native proteins or fusions to monmeric red fluorescent protein or the enhanced green fluorescent protein and its cyan and yellow-shifted spectral variants. We have validated the vectors for use in transient expression assays and for the generation of transgenic plants. Additionally, we have generated markers for fluorescent highlighting of actin filaments, chromatin, endoplasmic reticulum, and nucleoli. Finally, we show that pSITE vectors can be used for targeted gene expression in virus-infected cells, which should facilitate high-throughput characterization of protein dynamics in host-virus interactions.  相似文献   

12.
13.
14.
To facilitate the characterization of plant genes, the Cre-loxP site-specific recombination system was adapted to make reporter vectors for plant expression studies. This system allows promoter fragments to be cloned into a small vector (univector) and subsequently recombined in vitro with binary vectors containing different reporter genes precisely at near-perfect efficiency. We have constructed univector-adapted vectors with three reporters, beta-glucuronidase, luciferase, and green fluorescent protein, and a BASTA-resistance gene for selection of plant transformants. Expression in plants using the new system was validated by comparison to conventional reporter vectors. These new vectors are efficient and economical alternatives to the other plant reporter vectors currently available. The royalty-free Cre-loxP system serves as a platform for the future expansion of recombination-based cloning vectors for plant research.  相似文献   

15.
The first evidence that plants represent a valid, safe and cost-effective alternative to traditional expression systems for large-scale production of antigens and antibodies was described more than 10 years ago. Since then, considerable improvements have been made to increase the yield of plant-produced proteins. These include the use of signal sequences to target proteins to different cellular compartments, plastid transformation to achieve high transgene dosage, codon usage optimization to boost gene expression, and protein fusions to improve recombinant protein stability and accumulation. Thus, several HIV/SIV antigens and neutralizing anti-HIV antibodies have recently been successfully expressed in plants by stable nuclear or plastid transformation, and by transient expression systems based on plant virus vectors or Agrobacterium-mediated infection. The current article gives an overview of plant expressed HIV antigens and antibodies and provides an account of the use of different strategies aimed at increasing the expression of the accessory multifunctional HIV-1 Nef protein in transgenic plants.  相似文献   

16.
17.
We made two series of Gateway binary vectors, pGWBs and R4pGWBs, possessing a UDP-N-acetylglucosamine: dolichol phosphate N-acetylglucosamine-1-P transferase (GPT) gene driven by the nopaline synthase promoter (Pnos) as a tunicamycin resistance marker for the transformation of Arabidopsis thaliana. The reporters and tags employed in this system are sGFP, GUS, LUC, EYFP, ECFP, G3GFP, mRFP, TagRFP, 6xHis, FLAG, 3xHA, 4xMyc, 10xMyc, GST, T7, and TAP. Selection of transformants was successful on plates containing 0.15 mg/L of tunicamycin. These vectors were compatible with existing pGWB and R4pGWB vectors for kanamycin, hygromycin B, and BASTA? selection, and are useful new tools for making transgenic Arabidopsis.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号