首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
CXCR4 is a G protein-coupled receptor (GPCR) that has multiple critical functions in normal and pathologic physiology that include regulation of the metastatic behavior of mammary carcinoma, and utilization as a coreceptor for infection by T-tropic strains of human immunodeficiency virus-1. Molecular dynamic simulations of the rhodopsin-based homology model of CXCR4 were performed in a solvated lipid bilayer to reproduce the microenvironment of this integral membrane protein. The amino acids in CXCR4 necessary for interaction with an inverse agonist, T140, and a weak partial agonist, AMD3100, identified by alanine scanning mutants, were spatially consistent when computationally docked. Whereas T140 binds residues in extracellular domains and regions of the hydrophobic core proximal to the cell surface, amino acids in the central hydrophobic core are critical to binding of AMD3100. The physical localization of T140 binding to CXCR4 by biochemical analyses corroborated the molecular and computational approaches. The structural basis for the interaction of T140 and AMD3100 with CXCR4 confirms that the mechanisms used by these agents are different. This complementary utilization of molecular, physical, and computation analysis provides a powerful approach to elucidate GPCR conformation.  相似文献   

2.
The interaction of the CXCR4 antagonist AMD3100 with its target is greatly influenced by specific aspartate residues in the receptor protein, including Asp(171) and Asp(262). We have now found that aspartate-to-asparagine substitutions at these positions differentially affect the binding of four different anti-CXCR4 monoclonal antibodies as well as the infectivity of diverse human immunodeficiency virus type 1 (HIV-1) strains and clinical isolates. Mutation of Asp(262) strongly decreased the coreceptor efficiency of CXCR4 for wild-type but not for AMD3100-resistant HIV-1 NL4.3. Thus, resistance of HIV-1 NL4.3 to AMD3100 is associated with a decreased dependence of the viral gp120 on Asp(262) of CXCR4, pointing to a different mode of interaction of wild-type versus AMD3100-resistant virus with CXCR4.  相似文献   

3.
Here we report that the N-pyridinylmethyl cyclam analog AMD3451 has antiviral activity against a wide variety of R5, R5/X4, and X4 strains of human immunodeficiency virus type 1 (HIV-1) and HIV-2 (50% inhibitory concentration [IC(50)] ranging from 1.2 to 26.5 microM) in various T-cell lines, CCR5- or CXCR4-transfected cells, peripheral blood mononuclear cells (PBMCs), and monocytes/macrophages. AMD3451 also inhibited R5, R5/X4, and X4 HIV-1 primary clinical isolates in PBMCs (IC(50), 1.8 to 7.3 microM). A PCR-based viral entry assay revealed that AMD3451 blocks R5 and X4 HIV-1 infection at the virus entry stage. AMD3451 dose-dependently inhibited the intracellular Ca(2+) signaling induced by the CXCR4 ligand CXCL12 in T-lymphocytic cells and in CXCR4-transfected cells, as well as the Ca(2+) flux induced by the CCR5 ligands CCL5, CCL3, and CCL4 in CCR5-transfected cells. The compound did not interfere with chemokine-induced Ca(2+) signaling through CCR1, CCR2, CCR3, CCR4, CCR6, CCR9, or CXCR3 and did not induce intracellular Ca(2+) signaling by itself at concentrations up to 400 microM. In freshly isolated monocytes, AMD3451 inhibited the Ca(2+) flux induced by CXCL12 and CCL4 but not that induced by CCL2, CCL3, CCL5, and CCL7. The CXCL12- and CCL3-induced chemotaxis was also dose-dependently inhibited by AMD3451. Furthermore, AMD3451 inhibited CXCL12- and CCL3L1-induced endocytosis in CXCR4- and CCR5-transfected cells. AMD3451, in contrast to the specific CXCR4 antagonist AMD3100, did not inhibit but enhanced the binding of several anti-CXCR4 monoclonal antibodies (such as clone 12G5) at the cell surface, pointing to a different interaction with CXCR4. AMD3451 is the first low-molecular-weight anti-HIV agent with selective HIV coreceptor, CCR5 and CXCR4, interaction.  相似文献   

4.
The bicyclam AMD3100 is a potent and selective inhibitor of the replication of human immunodeficiency virus type 1 and type 2 (HIV-1 and HIV-2). It was recently demonstrated that the compound inhibited HIV entry through CXCR4 but not through CCR5. Selectivity of AMD3100 for CXCR4 was further indicated by its lack of effect on HIV-1 and HIV-2 infection mediated by the CCR5, CCR3, Bonzo, BOB, and US28, coreceptors. AMD3100 completely blocked HIV-1 infection mediated by a mutant CXCR4 bearing a deletion of most of the amino-terminal extracellular domain. In contrast, relative resistance to AMD3100 was conferred by different single amino acid substitutions in the second extracellular loop (ECL2) or in the adjacent membrane-spanning domain, TM4. Only substitutions of a neutral residue for aspartic acid and of a nonaromatic residue for phenylalanine (Phe) were associated with drug resistance. This suggests a direct interaction of AMD3100 with these amino acids rather than indirect effects of their mutation on the CXCR4 structure. The interaction of aspartic acids of ECL2 and TM4 with AMD3100 is consistent with the positive charge of bicyclams, which might block HIV-1 entry by preventing electrostatic interactions between CXCR4 and the HIV-1 envelope protein gp120. Other features of AMD3100 must account for its high antiviral activity, in particular the presence of an aromatic linker between the cyclam units. This aromatic group might engage in hydrophobic interactions with the Phe-X-Phe motifs of ECL2 or TM4. These results confirm the importance of ECL2 for the HIV coreceptor activity of CXCR4.  相似文献   

5.
Dual-tropic human immunodeficiency virus type 1 (HIV-1) strains infect both primary macrophages and transformed T-cell lines. Prototype T-cell line-tropic (T-tropic) strains use CXCR4 as their principal entry coreceptor (X4 strains), while macrophagetropic (M-tropic) strains use CCR5 (R5 strains). Prototype dual tropic strains use both coreceptors (R5X4 strains). Recently, CXCR4 expressed on macrophages was found to support infection by certain HIV-1 isolates, including the dual-tropic R5X4 strain 89.6, but not by T-tropic X4 prototypes like 3B. To better understand the cellular basis for dual tropism, we analyzed the macrophage coreceptors used for Env-mediated cell-cell fusion as well as infection by several dual-tropic HIV-1 isolates. Like 89.6, the R5X4 strain DH12 fused with and infected both wild-type and CCR5-negative macrophages. The CXCR4-specific inhibitor AMD3100 blocked DH12 fusion and infection in macrophages that lacked CCR5 but not in wild-type macrophages. This finding indicates two independent entry pathways in macrophages for DH12, CCR5 and CXCR4. Three primary isolates that use CXCR4 but not CCR5 (tybe, UG021, and UG024) replicated efficiently in macrophages regardless of whether CCR5 was present, and AMD3100 blocking of CXCR4 prevented infection in both CCR5 negative and wild-type macrophages. Fusion mediated by UG021 and UG024 Envs in both wild-type and CCR5-deficient macrophages was also blocked by AMD3100. Therefore, these isolates use CXCR4 exclusively for entry into macrophages. These results confirm that macrophage CXCR4 can be used for fusion and infection by primary HIV-1 isolates and indicate that CXCR4 may be the sole macrophage coreceptor for some strains. Thus, dual tropism can result from two distinct mechanisms: utilization of both CCR5 and CXCR4 on macrophages and T-cell lines, respectively (dual-tropic R5X4), or the ability to efficiently utilize CXCR4 on both macrophages and T-cell lines (dual-tropic X4).  相似文献   

6.
We report the solution structure of T140, a truncated polyphemusin peptide analogue that efficiently inhibits infection of target cells by T-cell line-tropic strains of HIV-1 through its specific binding to a chemokine receptor, CXCR4. Nuclear magnetic resonance analysis and molecular dynamic calculations revealed that T140 has a rigidly structured conformation constituted by an antiparallel beta-sheet and a type II' beta-turn. A protuberance is formed on one side of the beta-sheet by the side-chain functional groups of the three amino acid residues (L-3-(2-naphthyl)alanine, Tyr5 and Arg14), each of which is indispensable for strong anti-HIV activity. These findings provide a rationale to dissect the structural basis for the ability of this compound to block the interaction between CXCR4 and envelope glycoproteins from T-tropic strains of HIV-1.  相似文献   

7.
Feline immunodeficiency virus (FIV) shares with T-cell tropic strains of human immunodeficiency virus type 1 (HIV-1) the use of the chemokine receptor CXCR4 for cellular entry. In order to map the interaction of the FIV envelope surface unit (SU) with CXCR4, full-length FIV SU-Fc as well as constructs with deletions of extended loop L2, V3, V4, or V5 were produced in stable CHO cell lines. Binding studies were performed using these proteins on 3201 cells (CXCR4(hi) CD134(-)), with or without the CXCR4 inhibitor AMD3100. The findings established that SU binding to CXCR4 specifically requires the V3 region of SU. Synthetic peptides spanning the V3 region as well as a panel of monoclonal antibodies (MAbs) to SU were used to further map the site of CXCR4 interaction. Both the SU V3-specific antibodies and the full-length V3 peptide potently blocked binding of SU to CXCR4 and virus entry. By using a set of nested peptides overlapping a region of SU specifically recognized by CD134-dependent neutralizing V3 MAbs, we showed that the neutralizing epitope and the region required for CXCR4 binding are within the same contiguous nine-amino-acid sequence of V3. Site-directed mutagenesis was used to reveal that serine 393 and tryptophan 394 at the predicted tip of V3 are required to facilitate entry into the target cell via CXCR4. Although the amino acid sequences are not identical between FIV and HIV, the ability of FIV to bind and utilize both feline and human CXCR4 makes the feline model an attractive venue for development of broad-based entry antagonists.  相似文献   

8.
Different strains of human immunodeficiency virus type 1 (HIV-1) vary markedly in the ability to infect cells of the monocyte/macrophage (M/M) lineage. M/M are generally resistant to infection with T-cell-tropic (T-tropic) strains of HIV-1. Recently, the chemokine receptors CCR5 and CXCR4 were identified as cofactors for fusion/entry of macrophage- and T-tropic strains of HIV-1, respectively. To investigate the mechanisms of resistance of M/M to T-tropic HIV-1 infection, we examined a number of subclones of the U937 promonocytic cell line. We found that certain subclones of U937 (plus clones) could, while others (minus clones) could not, support replication of T-tropic strains of HIV-1. We demonstrate that (i) both minus and plus clones support HIV-1 replication when transfected with an infectious molecular cDNA clone of a T-tropic HIV-1; (ii) minus clones do not, but plus clones do, efficiently support fusion with cells expressing HIV-1 IIIB Env; (iii) both plus and minus clones (with the exception of one clone) express physiologically functional CXCR4 protein as well as CD4 on the cell surface; (iv) introduction of CXCR4 into the CXCR4-negative clone does not restore fusogenicity with or susceptibility to T-tropic HIV-1; and (v) a ligand (stromal cell-derived factor 1) for or a monoclonal antibody (12G5) to CXCR4 does not effectively inhibit HIV-mediated cell-to-cell fusion of U937 cells. These data indicate that resistance to T-tropic HIV-1 infection of U937 minus clones occurs at fusion/ entry events and that expression of functional CXCR4 and CD4 is not a sole determinant for susceptibility to T-tropic HIV-1 infection; furthermore, they suggest that other factors are positively or negatively involved in HIV-mediated cell-to-cell fusion in U937 promonocytic cells.  相似文献   

9.
The chemokine receptor CXCR4 is a co-receptor for T-tropic strains of HIV-1. A number of small molecule antagonists of CXCR4 are in development but all are likely to lead to adverse effects due to the physiological function of CXCR4. To prevent these complications, allosteric agonists may be therapeutically useful as adjuvant therapy in combination with small molecule antagonists. A synthetic cDNA library coding for 160,000 different SDF-based peptides was screened for CXCR4 agonist activity in a yeast strain expressing a functional receptor. Peptides that activated CXCR4 in an autocrine manner induced colony formation. Two peptides, designated RSVM and ASLW, were identified as novel agonists that are insensitive to the CXCR4 antagonist AMD3100. In chemotaxis assays using the acute lymphoblastic leukemia cell line CCRF-CEM, RSVM behaves as a partial agonist and ASLW as a superagonist. The superagonist activity of ASLW may be related to its inability to induce receptor internalization. In CCRF-CEM cells, the two peptides are also not inhibited by another CXCR4 antagonist, T140, or the neutralizing monoclonal antibodies 12G5 and 44717.111. These results suggest that alternative agonist-binding sites are present on CXCR4 that could be screened to develop molecules for therapeutic use.  相似文献   

10.
We screened a panel of R5X4 and X4 human immunodeficiency virus type 1 (HIV-1) strains for their sensitivities to AMD3100, a small-molecule CXCR4 antagonist that blocks HIV-1 infection via this coreceptor. While no longer under clinical development, AMD3100 is a useful tool with which to probe interactions between the viral envelope (Env) protein and CXCR4 and to identify pathways by which HIV-1 may become resistant to this class of antiviral agents. While infection by most virus strains was completely blocked by AMD3100, we identified several R5X4 and X4 isolates that exhibited plateau effects: as the AMD3100 concentration was increased, virus infection and membrane fusion diminished to variable degrees. Once saturating concentrations of AMD3100 were achieved, further inhibition was not observed, indicating a noncompetitive mode of viral resistance to the drug. The magnitude of the plateau varied depending on the virus isolate, as well as the cell type used, with considerable variation observed when primary human T cells from different human donors were used. Structure-function studies indicated that the V1/V2 region of the R5X4 HIV-1 isolate DH12 was necessary for AMD3100 resistance and could confer this property on two heterologous Env proteins. We conclude that some R5X4 and X4 HIV-1 isolates can utilize the AMD3100-bound conformation of CXCR4, with the efficiency being influenced by both viral and host factors. Baseline resistance to this CXCR4 antagonist could influence the clinical use of such compounds.  相似文献   

11.
We recently reported that a cationic peptide, T22 ([Tyr(5,12), Lys(7)]-polyphemusin II), specifically inhibits human immunodeficiency virus type 1 (HIV-1) infection mediated by CXCR4 (T. Murakami et al., J. Exp. Med. 186:1389-1393, 1997). Here we demonstrate that T22 effectively inhibits replication of T-tropic HIV-1, including primary isolates, but not of non-T-tropic strains. By using a panel of chimeric viruses between T- and M-tropic HIV-1 strains, viral determinants for T22 susceptibility were mapped to the V3 loop region of gp120. T22 bound to CXCR4 and interfered with stromal-cell-derived factor-1alpha-CXCR4 interactions in a competitive manner. Blocking of anti-CXCR4 monoclonal antibodies by T22 suggested that the peptide interacts with the N terminus and two of the extracellular loops of CXCR4. Furthermore, the inhibition of cell-cell fusion in cells expressing CXCR4/CXCR2 chimeric receptors suggested that determinants for sensitivity of CXCR4 to T22 include the three extracellular loops of the coreceptor.  相似文献   

12.
CXCR4-using (X4) human immunodeficiency virus type 1 (HIV-1) variants evolve from CCR5-restricted (R5) HIV-1 variants. Early after their first appearance in vivo, X4 HIV-1 variants additionally use CCR5. The ability to use CCR5 in addition to CXCR4 is generally lost late in infection. Here we studied whether this evolution of the coreceptor repertoire is also reflected in a changing sensitivity of X4 variants to CXCR4 antagonists such as peptide T22 and the synthetic compound AMD3100. We observed differences in the concentrations of CXCR4 antagonists needed to suppress replication of X4 HIV variants from different patients. In general, late X4 HIV variants were less sensitive to AMD3100 than were early R5X4 HIV variants. The differences between early R5X4 HIV variants and late X4 variants were less pronounced for T22-mediated inhibition. These results suggest an ongoing evolution of X4 virus variants toward more efficient usage of the cellular entry complex.  相似文献   

13.
Zerhouni B  Nelson JA  Saha K 《Journal of virology》2004,78(22):12288-12296
We recently isolated from an infant an X4-syncytium-inducing (SI) human immunodeficiency virus type 1 (HIV-1) variant (92US143-T8) that was able to infect CD8+ lymphocytes independently of CD4. Although it was CD4 independent, the 92US143-T8 isolate also maintained the ability to infect CD4+ cells. In the present study, we investigated the role of CXCR4 in the infection of CD4+ and CD8+ cells by this primary isolate. The expression of CXCR4 was down modulated in CD8+ lymphocytes after infection with the 93US143-T8 isolate. Infection of CD8+ lymphocytes by the 93US143-T8 isolate was prevented by treatment with AMD3100, a specific antagonist for CXCR4, indicating CXCR4-dependent infection. Interestingly, AMD3100 treatment had no inhibitory role in the infection of purified CD4+ lymphocytes by the same isolate. Furthermore, AMD3100 treatment failed to prevent infection of known CD4+ CXCR4+ T-cell lines (MT-2 and CEM) by the 93US143-T8 isolate. In fact, virus replication in the CD4+ cells was often enhanced in the presence of AMD3100. Viruses produced from the infected CD4+ cells in the presence of AMD3100 maintained an unchanged envelope genotype and an SI phenotype. For the first time, these results provide evidence of CXCR4-dependent infection of CD8+ lymphocytes by a primary HIV-1 isolate. This study also shows a different mode of infection for the CD4+ and CD8+ lymphocytes by the same HIV-1 variant. Finally, our findings suggest that a more careful evaluation is necessary before the random use of AMD3100 as a new entry inhibitor in patients harboring SI HIV-1 strains.  相似文献   

14.
AMD3465 is a novel, nonpeptide CXCR4 antagonist and a potent inhibitor of HIV cell entry in that one of the four-nitrogen cyclam rings of the symmetrical, prototype bicyclam antagonist AMD3100 has been replaced by a two-nitrogen N-pyridinylmethylene moiety. This substitution induced an 8-fold higher affinity as determined against (125)I-12G5 monoclonal CXCR4 antibody binding, and a 22-fold higher potency in inhibition of CXCL12-induced signaling through phosphatidylinositol accumulation. Mutational mapping of AMD3465 and a series of analogs of this in a library of 23 mutants covering the main ligand binding pocket of the CXCR4 receptor demonstrated that the single cyclam ring of AMD3465 binds in the pocket around AspIV:20 (Asp(171)), in analogy with AMD3100, whereas the N-pyridinylmethylene moiety mimics the other cyclam ring through interactions with the two acidic anchor-point residues in transmembrane (TM)-VI (AspVI:23/Asp(262)) and TM-VII (GluVII:06/Glu(288)). Importantly, AMD3465 has picked up novel interaction sites, for example, His(281) located at the interface of extracellular loop 3 and TM-VII and HisIII:05 (His(113)) in the middle of the binding pocket. It is concluded that the simple N-pyridinylmethylene moiety of AMD3465 substitutes for one of the complex cyclam moieties of AMD3100 through an improved and in fact expanded interaction pattern mainly with residues located in the extracellular segments of TM-VI and -VII of the CXCR4 receptor. It is suggested that the remaining cyclam ring of AMD3465, which ensures the efficacious blocking of the receptor, in a similar manner can be replaced by chemical moieties allowing for, for example, oral bioavailability.  相似文献   

15.
AMD3100 is a symmetric bicyclam, prototype non-peptide antagonist of the CXCR4 chemokine receptor. Mutational substitutions at 16 positions located in TM-III, -IV, -V, -VI, and -VII lining the main ligand-binding pocket of the CXCR4 receptor identified three acid residues: Asp(171) (AspIV:20), Asp(262) (AspVI:23), and Glu(288) (GluVII:06) as the main interaction points for AMD3100. Molecular modeling suggests that one cyclam ring of AMD3100 interacts with Asp(171) in TM-IV, whereas the other ring is sandwiched between the carboxylic acid groups of Asp(262) and Glu(288) from TM-VI and -VII, respectively. Metal ion binding in the cyclam rings of AMD3100 increased its dependence on Asp(262) and provided a tighter molecular map of the binding site, where borderline mutational hits became clear hits for the Zn(II)-loaded analog. The proposed binding site for AMD3100 was confirmed by a gradual build-up in the rather distinct CXCR3 receptor, for which the compound normally had no effect. Introduction of only a Glu at position VII:06 and the removal of a neutralizing Lys residue at position VII:02 resulted in a 1000-fold increase in affinity of AMD3100 to within 10-fold of its affinity in CXCR4. We conclude that AMD3100 binds through interactions with essentially only three acidic anchor-point residues, two of which are located at one end and the third at the opposite end of the main ligand-binding pocket of the CXCR4 receptor. We suggest that non-peptide antagonists with, for example, improved oral bioavailability can be designed to mimic this interaction and thereby efficiently and selectively block the CXCR4 receptor.  相似文献   

16.
CXCR4 is a chemokine receptor used by some strains of HIV-1 as an entry coreceptor in association with cell surface CD4 on human cells. In human immunodeficiency virus type 1 (HIV-1)-infected individuals, the appearance of viral isolates with a tropism for CXCR4 (T tropic) has been correlated with late disease progression. The presumed natural ligands for CXCR4 are SDF-1alpha and SDF-1beta, which are proposed to play a role in blocking T-tropic HIV-1 cell entry. Here, we demonstrate that addition of an N-terminal methionine residue to SDF-1beta (Met-SDF-1beta) results in a dramatically enhanced functional activity compared to that of native SDF-1beta. Equivalent concentrations of Met-SDF-1beta are markedly more inhibitory for T-tropic HIV-1 replication than SDF-1beta. A comparison of the biological activities of these two forms of SDF-1beta reveals that Met-SDF-1beta induces a more pronounced intracellular calcium flux yet binds with slightly lower affinity to CXCR4 than SDF-1beta. Down-modulation of CXCR4 is similar after exposure of cells to either chemokine form for 2 h. However, after a 48-h incubation, the surface expression of CXCR4 is much lower for cells treated with Met-SDF-1beta. The enhanced blocking of T-tropic HIV-1 by Met-SDF-1beta appears to be related to prolonged CXCR4 down-modulation.  相似文献   

17.
The G protein-coupled receptor CXCR4 is a coreceptor, along with CD4, for the human immunodeficiency virus type 1 (HIV-1) and has been implicated in breast cancer metastasis. We studied the binding of the HIV-1 gp120 envelope glycoprotein (gp) to CXCR4 but found that the gp120s from CXCR4-using HIV-1 strains bound nonspecifically to several cell lines lacking human CXCR4 expression. Therefore, we constructed paramagnetic proteoliposomes (CXCR4-PMPLs) containing pure, native CXCR4. CXCR4-PMPLs specifically bound the natural ligand, SDF-1alpha, and the gp120s from CXCR4-using HIV-1 strains. Conformation-dependent anti-CXCR4 antibodies and the CXCR4 antagonist AMD3100 blocked HIV-1 gp120 binding to CXCR4-PMPLs. The gp120-CXCR4 interaction was blocked by anti-gp120 antibodies directed against the third variable (V3) loop and CD4-induced epitopes, structures that have also been implicated in the binding of gp120 to the other HIV-1 coreceptor, CCR5. Compared with the binding of R5 HIV-1 gp120s to CCR5, the gp120-CXCR4 interaction exhibited a lower affinity (K(d) = 200 nm) and was dependent upon prior CD4 binding, even at low temperature. Thus, although similar regions of X4 and R5 HIV-1 gp120s appear to be involved in binding CXCR4 and CCR5, respectively, differences exist in nonspecific binding to cell surfaces, affinity for the chemokine receptor, and CD4 dependence at low temperature.  相似文献   

18.
BACKGROUND: Chemokines drive the migration of leukocytes via interaction with specific G protein-coupled 7-transmembrane receptors. The chemokine ligand/receptor pair stromal cell-derived factor-1 (SDF-1, CXCL12)/CXCR4 is gaining increasing interest because of its involvement in the metastasis of several types of cancer and in certain inflammatory autoimmune disorders such as rheumatoid arthritis. In addition, CXCR4 serves as an important coreceptor for cellular entry of T-tropic strains of human immunodeficiency virus (HIV). Therefore, potent and specific CXCR4 antagonists may have therapeutic potential as anti-HIV, anti-cancer, and anti-inflammatory drugs. METHODS AND RESULTS: Chemokine receptor antagonists can be identified by their ability to inhibit ligand binding to the receptor protein. Until now, chemokine binding assays were mostly performed with radiolabeled chemokine ligands such as [(125)I]CXCL12. To overcome the practical problems associated with such radioactive chemokine binding assays, we have developed a flow cytometric technique using a new, commercially available Alexa Fluor 647 conjugate of CXCL12 (CXCL12(AF647)). Calcium flux, chemotaxis, and p44/42 mitogen-activated protein kinase phosphorylation assays showed that the agonistic activity of the fluorescent CXCL12 was unchanged as compared with that of unlabeled CXCL12. Human T-lymphoid (CXCR4(+)) SupT1 cells and CXCR4-transfected, but not CCR5- or CXCR3-transfected, human astroglioma U87.CD4 cells specifically bound CXCL12(AF647) in a concentration-dependent manner. Unlabeled CXCL12 and the well-known CXCR4 inhibitors, AMD3100 and T22, blocked the binding of CXCL12(AF647) to SupT1 cells with 50% inhibitory concentrations of 92, 13, and 8 ng/ml, respectively. We have also used this method to evaluate CXCL12 binding and CXCR4 expression level in different subsets of human peripheral blood mononuclear cells. CONCLUSION: CXCL12(AF647) is a valuable, more convenient alternative for [(125)I]CXCL12 in ligand/receptor interaction studies.  相似文献   

19.
HIV-1 infection causes the depletion of host CD4 T cells through direct and indirect (bystander) mechanisms. Although HIV Env has been implicated in apoptosis of uninfected CD4 T cells via gp120 binding to either CD4 and/or the chemokine receptor 4 (CXCR4), conflicting data exist concerning the molecular mechanisms involved. Using primary human CD4 T cells, we demonstrate that gp120 binding to CD4 T cells activates proapoptotic p38, but does not activate antiapoptotic Akt. Because ligation of the CD4 receptor alone or the CXCR4 receptor alone causes p38 activation and apoptosis, we used the soluble inhibitors, soluble CD4 (sCD4) or AMD3100, to delineate the role of CD4 and CXCR4 receptors, respectively, in gp120-induced p38 activation and death. sCD4 alone augments gp120-induced death, suggesting that CXCR4 signaling is principally responsible. Supporting that model, AMD3100 reduces death caused by gp120 or by gp120/sCD4. Finally, prevention of gp120-CXCR4 interaction with 12G5 Abs blocks p38 activation and apoptosis, whereas inhibition of CD4-gp120 interaction with Leu-3a has no effect. Consequently, we conclude that gp120 interaction with CXCR4 is required for gp120 apoptotic effects in primary human T cells.  相似文献   

20.
Human immunodeficiency virus type 1 (HIV-1) replicates primarily in lymphoid tissues where it has ready access to activated immune competent cells. We used one of the major pathways of immune activation, namely, CD40-CD40L interactions, to study the infectability of B lymphocytes isolated from peripheral blood mononuclear cells. Highly enriched populations of B lymphocytes generated in the presence of interleukin-4 and oligomeric soluble CD40L upregulated costimulatory and activation markers, as well as HIV-1 receptors CD4 and CXCR4, but not CCR5. By using single-round competent luciferase viruses complemented with either amphotropic or HIV-derived envelopes, we found a direct correlation between upregulation of HIV-1 receptors and the susceptibility of the B lymphocytes to infection with dual-tropic and T-tropic strains of HIV-1; in contrast, cells were resistant to M-tropic strains of HIV-1. HIV-1 envelope-mediated infection was completely abolished with either an anti-CD4 monoclonal antibody or a peptide known to directly block CXCR4 usage and partially blocked with stromal cell-derived factor 1, all of which had no effect on the entry of virus pseudotyped with amphotropic envelope. Full virus replication kinetics confirmed that infection depends on CXCR4 usage. Furthermore, productive cycles of virus replication occurred rapidly yet under most conditions, without the appearance of syncytia. Thus, an activated immunological environment may induce the expression of HIV-1 receptors on B lymphocytes, priming them for infection with selective strains of HIV-1 and allowing them to serve as a potential viral reservoir.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号