首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Mycobacterium smegmatis genome contains six operons designated mce (mammalian cell entry). These operons, which encode membrane and exported proteins, are highly conserved in pathogenic and non-pathogenic mycobacteria. Although the function of the Mce protein family has not yet been established in Mycobacterium smegmatis, the requirement of the mce4 operon for cholesterol utilization and uptake by Mycobacterium tuberculosis has recently been demonstrated. In this study, we report the construction of an M. smegmatis knock-out mutant deficient in the expression of all six mce operons. The consequences of these mutations were studied by analyzing physiological parameters and phenotypic traits. Differences in colony morphology, biofilm formation and aggregation in liquid cultures were observed, indicating that mce operons of M. smegmatis are implicated in the maintenance of the surface properties of the cell. Importantly, the mutant strain showed reduced cholesterol uptake when compared to the parental strain. Further cholesterol uptake studies using single mce mutant strains showed that the mutation of operon mce4 was reponsible for the cholesterol uptake failure detected in the sextuple mce mutant. This finding demonstrates that mce4operon is involved in cholesterol transport in M. smegmatis.  相似文献   

2.
3.
The cloned mammalian cell entry gene mce1a from Mycobacterium tuberculosis confers to non-pathogenic Escherichia coli the ability to invade and survive inside macrophages and HeLa cells. The aim of this work was to search for and characterize homologs of the four M. tuberculosis mammalian cell entry operons (mce1, mce2, mce3 and mce4) in mycobacteria other than tuberculosis (MOTT). The dot-blot and polymerase chain reaction (PCR) experiments performed on 24 clinical isolates representing 20 different mycobacterial species indicated that the mce operons were widely distributed throughout the genus Mycobacterium. BLAST search results showed the presence of mce1, mce2 and mce4 homologs in Mycobacterium bovis, Mycobacterium avium and Mycobacterium smegmatis. A homologous region for the mce3 operon was also found in M. avium and M. smegmatis. DNA and protein alignments were done to compare the M. tuberculosis mce operons and the deduced M. bovis, M. avium, and M. smegmatis homologs. The deduced proteins of M. bovis mce1, mce2 and mce4 operons had 99.6-100% homology with the respective M. tuberculosis mce proteins (MTmce). The similarity between M. avium mce proteins and the individual M. tuberculosis homologs ranged from 56.2 to 85.5%. The alignment results between M. smegmatis mce proteins and the respective MTmce proteins ranged from 58.5% to 68.5%. Primer sets were designed from the M. tuberculosis mce4a gene for amplification of 379-bp fragments. Amplification was successful in 14 strains representing 11 different mycobacterial species. The PCR fragments were sequenced from 10 strains representing eight species. Alignment of the sequenced PCR products showed that mce4a homologs are highly conserved in the genus Mycobacterium. In conclusions, the four mce operons in different mycobacterial species are generally organized in the same manner. The phylogenetic tree comparing the different mce operons showed that the mce1 operon was closely related to the mce2 operon and mce3 diverged from the other operons. The wide distribution of the mce operons in pathogenic and non-pathogenic mycobacteria implicates that the presence of these putative virulence genes is not an indicator for the pathogenicity of the bacilli. Instead, the pathogenicity of these factors might be determined by their expression.  相似文献   

4.
Molecular Biology Reports - Tuberculosis (TB) remains a prominent health concern worldwide. Besides extensive research and vaccinations available, attempts to control the pandemic are cumbersome...  相似文献   

5.
分子流行病学是研究结核分枝杆菌传播和种群进化的有力工具。特别是近年来建立起来的单核苷酸多态性分型方法,能将结核分枝杆菌临床菌株分为三大家族,并且确立其种系发生关系。研究表明,不同进化分支上的结核分枝杆菌在不同的国家和地区流行,不同基因型菌株的致病性和传播力不尽相同。如细胞和动物模型都证明在东亚流行的北京基因型菌株比其他基因型菌株具有更高的毒力,能抑制宿主的免疫反应。本文综述近年来在结核分枝杆菌进化、分型及菌株致病性方面的研究成果。  相似文献   

6.
The Mycobacterium tuberculosis PhoPR two-component system is essential for virulence in animal models of tuberculosis. Recent articles have shown that among the reasons for the attenuation of the M. tuberculosis H37Ra strain is a mutation in the phoP gene that prevents the secretion of proteins that are important for virulence. There is a need for new anti-tubercular therapies because of the emergence of multi-drug-resistant M. tuberculosis strains and also the variable efficacy of the currently used bacille Calmette-Guérin vaccine. Because of its major role in M. tuberculosis pathogenicity, PhoP is a potential target candidate. This review summarizes our understanding of PhoPR's role in virulence and discusses areas in which our knowledge is limited.  相似文献   

7.
8.
9.
10.
Recent reports have indicated that cholesterol plays a crucial role during the uptake of mycobacteria by macrophages. However, the significance of cholesterol modification enzymes encoded by Mycobacterium tuberculosis for bacterial pathogenicity remains unknown. Here, the authors explored whether the well-known cholesterol modification enzyme, cholesterol oxidase (ChoD), is important for virulence of the tubercle bacillus. Homologous recombination was used to replace the choD gene from the M. tuberculosis genome with a nonfunctional copy. The resultant mutant (delta choD) was attenuated in peritoneal macrophages. No attenuation in macrophages was observed when the same strain was complemented with an intact choD gene controlled by a heat shock promoter (delta choDP(hsp)choD). The mice infection experiments confirm the significance of ChoD in the pathogenesis of M. tuberculosis.  相似文献   

11.
Lipoproteins are a subgroup of secreted bacterial proteins characterized by a lipidated N-terminus, processing of which is mediated by the consecutive activity of prolipoprotein diacylglyceryl transferase (Lgt) and lipoprotein signal peptidase (LspA). The study of LspA function has been limited mainly to non-pathogenic microorganisms. To study a potential role for LspA in the pathogenesis of bacterial infections, we have disrupted lspA by allelic replacement in Mycobacterium tuberculosis, one of the world's most devastating pathogens. Despite the presence of an impermeable lipid outer layer, it was found that LspA was dispensable for growth under in vitro culture conditions. In contrast, the mutant was markedly attenuated in virulence models of tuberculosis. Our findings establish lipoprotein metabolism as a major virulence determinant of tuberculosis and define a role for lipoprotein processing in bacterial pathogenesis. In addition, these results hint at a promising new target for therapeutic intervention, as a highly specific inhibitor of bacterial lipoprotein signal peptidases is available.  相似文献   

12.
The lipid-rich cell wall of Mycobacterium tuberculosis, the agent of tuberculosis, serves as an effective barrier against many chemotherapeutic agents and toxic host cell effector molecules, and it may contribute to the mechanism of persistence. Mycobacterium tuberculosis strains mutated in a 13-gene operon called mce1, which encodes a putative ABC lipid transporter, induce aberrant granulomatous response in mouse lungs. Because of the postulated role of the mce1 operon in lipid importation, we compared the cell wall lipid composition of wild type and mce1 operon mutant M. tuberculosis H37Rv strains. High resolution mass spectrometric analyses of the mce1 mutant lipid extracts showed unbound mycolic acids to accumulate in the cell wall. Quantitative analysis revealed a 10.7 fold greater amount of free mycolates in the mutant compared to that of the wild type strain. The free mycolates were comprised of alpha, methoxy and keto mycolates in the ratio 1:0.9:0.6, respectively. Since the mce1 operon is regulated in vivo, the free mycolates that accumulate during infection may serve as a barrier for M. tuberculosis against toxic products and contribute to the pathogen’s persistence.  相似文献   

13.
Mycobacterium tuberculosis causes a variety of clinical outcomes determined by host as well as bacterial factors. M. tuberculosis disrupted in the mce1 operon causes increased mortality in immunocompetent mice. This operon is negatively regulated by mce1R (Rv0165c). We studied the role of mce1R in infection outcome in mice. At 5 x 10(4) tail vein infectious dose, the median survival time (MST) of mice infected with the mce1R mutant M. tuberculosis H37Rv was 293 days, while mice infected with the wild-type H37Rv survived more than 350 days (P < 0.0001). At a higher dose (5 x 10(6)), the MST of mutant-infected mice was 32 days, compared with 127 days for wild type-infected mice (P < 0.0001). With either tail vein or aerosol infection, mutant-infected mice developed larger granulomatous lesions in their lungs than mice infected with the wild type. Mutant-infected mice were unable to control the bacterial burden in the first 4 weeks of infection, but even after achieving control later, these mice succumbed to granulomatous pneumonia. These observations suggest that the early deregulated expression of the mce1 operon products determines later granulomatous tissue response. mce1 operon may homeostatically regulate the cell wall architecture in vivo that elicits a steady-state granuloma tissue response permitting M. tuberculosis to establish a long-term infection.  相似文献   

14.
15.
16.
Mycobacterium tuberculosis causes a variety of host clinical outcomes. We previously showed that M. tuberculosis disrupted in an operon called mce1 proliferates unchecked in BALB/c mouse lungs. The observed outcome could be attributed either to the mutant bacterial burden or to the host immunopathologic response. To differentiate these possibilities, we studied the outcomes of infection in a mouse strain (C57BL/6) less susceptible to M. tuberculosis than BALB/c. We found that the mutant infection reached a plateau in the lungs at a rate similar to that of the wild type. All mice infected with the mutant, but only half of the groups of mice infected with the wild type or complemented strain, died by 40 weeks (p<0.05). At 12-21 weeks of infection, histological examination of the lungs of mice infected with the mutant showed a diffuse pattern of lymphocyte infiltration, while that of mice infected with the other strains exhibited a nodular cellular infiltration pattern. Surprisingly, the number of bacilli recovered from the lungs was similar in all three groups. These observations suggest that rather than the bacterial burden, products of the mce1 operon may directly or indirectly modulate the host immune response that is protective to both the tubercle bacilli and the host.  相似文献   

17.
Members of the Mycobacterium tuberculosis group synthesize a family of long-chain fatty acids, mycolic acids, which are located in the cell envelope. These include the non-oxygenated alpha-mycolic acid and the oxygenated keto- and methoxymycolic acids. The function in bacterial virulence, if any, of these various types of mycolic acids is unknown. We have constructed a mutant strain of M. tuberculosis with an inactivated hma (cmaA, mma4) gene; this mutant strain no longer synthesizes oxygenated mycolic acids, has profound alterations in its envelope permeability and is attenuated in mice.  相似文献   

18.
19.
The Snm protein secretion system is a critical determinant of Mycobacterium tuberculosis virulence. However, genes encoding components of this pathway are conserved among all mycobacteria, including the nonpathogenic saprophyte Mycobacterium smegmatis. We show that the Snm system is operational in M. smegmatis and that secretion of its homologous ESAT-6 and CFP-10 substrates is regulated by growth conditions. Importantly, we show that Snm secretion in M. smegmatis requires genes that are homologous to those required for secretion in M. tuberculosis. Using a gene knockout strategy in M. smegmatis, we have also discovered four new gene products that are essential for Snm secretion, including the serine protease mycosin 1. Despite the evolutionary distance between M. smegmatis and M. tuberculosis, the M. smegmatis Snm system can secrete the M. tuberculosis ESAT-6 and CFP-10 proteins, suggesting that substrate recognition is also conserved between the two species. M. smegmatis, therefore, represents a powerful system to study the multicomponent Snm secretory machine and to understand the role of this conserved system in mycobacterial biology.  相似文献   

20.
Among 58 isoniazid-sensitive strains of Mycobacterium tuberculosis from India, Burma and East Africa, 23 were of phage type A, 31 of type I (intermediate), 4 of type B and none of type C. Type I strains differed from type A strains in being attenuated in the guinea-pig, susceptible to H2O2, sensitive to thiophen-2-carboxylic acid hydrazide and resistant to thiacetazone and p-aminosalicylic acid; the content of strongly acidic lipids and of sulphatide lipids was low and the attenuation indicator lipid was present. The pattern of results with the type B strains did not correspond to the patterns for types A or I. Strains of type I appear to be a distinct group within the species M. tuberculosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号